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Abstract

We explain how to compute in the algebraic closure of a valued field. These computa-
tions heavily rely on the Newton Polygon Algorithm. They are made in the same spirit
as the dynamic algebraic closure of a field. They give a concrete content to the theorem
saying that a valued field does have an algebraically closed valued extension. The algo-
rithms created for that purpose can be used to perform an effective quantifier elimination
for algebraically closed valued fields, which relies on a very natural geometric idea.
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2 Introduction

Introduction

We consider a valued field K with V its valuation ring and S a subring of V such that K is the
quotient field of S. We assume that S is an explicit ring and that divisibility inside V can be
tested, for any two elements of S. By explicit ring we mean a ring where algebraic operations
and equality test are explicit. These are our minimal assumptions of computability. If we want
more assumptions in certain cases we shall explicitly state them.

We let Kac denote the algebraic closure of K with Vac a valuation ring that extends V.
Our general purpose is the discussion of computational problems in (Kac,Vac) under our com-
putability assumptions on (K,V).

Each computational problem we shall consider has as input a finite family (ci)i=1,...,n of pa-
rameters in the ring S. We call them the coefficients of our computational problem. Algorithms
with the above minimal computability assumptions work uniformly. This means that some
computations are made that give polynomials of Z[C1, . . . , Cn], and that all our tests are of the
two following types:

Is P (c1, . . . , cn) = 0 ? Does Q(c1, . . . , cn) divide P (c1, . . . , cn) in V ?

We are not interested in the way the answers to these tests are made. We may imagine these
answers given either by some oracles or by some algorithms.

We shall denote the unit group by UV or V×, MV = V \ UV will be the maximal ideal
and U1

V = 1+MV is the group of units whose residue is equal to 1. We denote the value group
K×/UV by ΓK. We consider ΓKac as the divisible hull Γdh

K of ΓK, and the valuation vKac as an
extension of vK. We shall denote the residue field V/MV of (K,V) by K . By convention,
v(0) = ∞ (this is not an element of ΓK).

We say that the value of some element x belonging to Kac is well determined if we know
an integer m and two elements F and G of Z[C1, . . . , Cn] such that, setting f = F (c1, . . . , cn),
with f 6= 0, and g = G(c1, . . . , cn), there exists a unit u in Vac such that:

fxm = ug

(a particular case is given by infinite value, i.e., when x = 0.)
We call v(x) the value of x and we read the previous formula as:

m v(x) = v(g)− v(f) .

We shall use the notation x � y for v(x) ≤ v(y).

Example 0.1 Let us for example explain the computations that are necessary to compare
3v(x1) + 2v(x2) to 7v(x3) when the values are given by

f1x
m1
1 = u1g1, f2x

m2
2 = u2g2, f3x

m3
3 = u3g3, (g1, g2, g3 6= 0) .

We consider the LCM m = m1n1 = m2n2 = m3n3 of m1, m2, m3. We have that

fn1
1 xm

1 = un1
1 gn1

1 , fn2
2 xm

2 = un2
2 gn2

2 , fn3
3 xm

3 = un3
3 gn3

3 .

So 3v(x1) + 2v(x2) ≤ 7v(x3) iff g3n1
1 g2n2

2 f 7n3
3 � f 3n1

1 f 2n2
2 g7n3

3 .

The reader can easily verify that computations we shall run in the value group are always
meaningful under our computability asumptions on the ring S.
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In the same way, elements of the residue field will be in general defined from elements of V.
So computations inside the residue field are given by computations inside S.

The constructive meaning of the existence of an algebraic closure (Kac,Vac) of (K,V) is
that computations inside (Kac,Vac) never produce contradictions. The constructive proof of
this constructive meaning can be obtained by considering classical proofs (of the existence of
an algebraic closure) from the viewpoint of dynamical theories (see [2]).

The present paper can be read from a classical point of view as well as from a constructive
one. Our results give a uniform way for computing inside (Kac,Vac) when we know how to
compute inside (K,V).

In the first section we give some basic material for computation inside algebraically closed
valued fields. The most important is the Newton Polygon Algorithm.

In section 2, we explain how the Newton Polygon Algorithm can be used in order to make
explicit computations inside the algebraic closure of a valued field, even in the case where there
is no factorization algorithm for one variable polynomials. It is sufficient to take the point of
view of dynamic evaluations as in [3].

To conclude the paper, we give in section 3 a new quantifier elimination algorithm for the
theory of algebraically closed valued fields (with fixed characteristic and residue field charac-
teristic). The geometric idea for this algorithm is simple. It can be easily implemented after
the work done in section 2.

1 Basic material

1.1 Multisets

A multiset is a set with (nonnegative) multiplicities, or equivalently, a list defined up to
permutation. In particular, the roots of a polynomial P (X) form a multiset in the algebraic
closure of the base field. We shall use the notation [x1, . . . , xd] for the multiset corresponding
to the list (x1, . . . , xd). The cardinality of a multiset is the length of a corresponding list, i.e.,
the sum of multiplicities occurring in the multiset.

We shall use the natural (associative commutative) additive notation for “disjoint unions”
of multisets, e.g.,

[b, a, c, b, b, a, b, d, a, c, b] = 3[a, b] + [b, b, d] + 2[c] = 3[a] + 5[b] + 2[c] + [d] .

We call a pairing between two multisets what remains of a bijection between two correspond-
ing lists when one forgets the ordering of the lists. E.g., if we consider the two lists

(a, a, a, a′, a′, a′, a′′) = (ai)i=1,...,7 and (b, b, b′, b′, b′′, b′′, b′′) = (bi)i=1,...,7

corresponding to the multisets

3[a] + 3[a′] + [a′′] and 2[b] + 2[b′] + 3[b′′] ,

and the bijection

a1 7→ b3, a2 7→ b4, a3 7→ b1, a4 7→ b6, a5 7→ b5, a6 7→ b7, a7 7→ b2 ,

then what remains can be described as

2[a 7→ b′] + [a 7→ b] + 3[a′ 7→ b′′] + [a′′ 7→ b] ,
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or equivalently as

2[(a, b′)] + [(a, b)] + 3[(a′, b′′)] + [(a′′, b)] .

This is a multiset of pairs that gives by the canonical projections the initial multisets 3[a] +
3[a′] + [a′′] and 2[b] + 2[b′] + 3[b′′].

This notion can be extended to r multisets M1, . . . ,Mr with same cardinality k: a pairing
between the Mi’s is a multiset of r-tuples that gives by the canonical projections the initial
multisets M1, . . . ,Mr.

The notion of multisets is a natural one when dealing with roots of a polynomial in an
abstract setting. Multiplicity is relevant, but in general there is no canonical ordering of the
roots.

Dynamic evaluation in [3, 4] can be understood as a way of computing with root multisets.

1.2 The Newton Polygon

Here we recall the well known Newton Polygon Algorithm.

The Newton polygon of a polynomial P (X) =
∑

i=0,...,d piX
i ∈ K[X] (where pd 6= 0) is

obtained from the list of pairs in N× (ΓK ∪ {∞})

((0, v(p0)), (1, v(p1)), . . . , (d, v(pd))) .

The Newton polygon is “the bottom convex hull” of this list. It can be formally defined as
the extracted list ((0, v(p0)), . . . , (d, v(pd))) verifying: two pairs (i, v(pi)) and (j, v(pj)) are two
consecutive vertices of the Newton polygon iff:

if 0 ≤ k < i then (v(pj)− v(pi))/(j − i) > (v(pi)− v(pk)/(i− k))
if i < k < j then (v(pk)− v(pi))/(k − i) ≥ (v(pj)− v(pi))/(j − i)
if j < k ≤ d then (v(pk)− v(pj))/(k − j) > (v(pj)− v(pi))/(j − i)

Let P (X) = pd

∏d
i=1(X − xi) in Kac[X]. It is easily shown that if (i, v(pi)) and (j, v(pj)) are

two consecutive vertices in the Newton polygon of the polynomial P , then the zeros of P in
Kac whose value in Γdh

K equals (v(pi)− v(pj))/(j − i) form a multiset with cardinality j − i .

Proof.
Order the xi’s in non-decreasing order of the values v(xi). We give the proof for an example.
Assume for instance that

ν1 = v(x1) = v(x2) < ν3 = v(x3) = v(x4) = v(x5) < ν6 = v(x6) · · ·

Let us express pd−j/pd as a symmetric function of the roots. We see immediately that

v(pd−1) ≥ v(pd) + ν1

v(pd−2) = v(pd) + 2ν1

v(pd−3) ≥ v(pd) + 2ν1 + ν3 > v(pd) + 3ν1

v(pd−4) ≥ v(pd) + 2ν1 + 2ν3

v(pd−5) = v(pd) + 2ν1 + 3ν3

v(pd−6) ≥ v(pd) + 2ν1 + 3ν3 + ν6 > v(pd) + 2ν1 + 4ν3

So the two last edges of the Newton polygon are ((d − 2, v(pd−2)), (d, v(pd))) with slope −2ν1

and ((d− 5, v(pd−5)), (d− 2, v(pd−2))) with slope −3ν3, giving the wanted result. 2

Now we can give an answer to the following problem.
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Computational problem 1.1 (Multiset of values of roots of polynomials)
Input: A polynomial P ∈ K[X] over a valued field (K,V).
Output: The multiset [v(x1), . . . , v(xn)] where [x1, . . . , xn] is the multiset of roots of P in Kac.

This problem is solved by the following algorithm, which is widely used in the sequel.

Newton Polygon Algorithm.
The number n∞ of roots equal to 0 (i.e., with infinite value) is read off from P . Let P0 :=
P/Xn∞ . Compute the Newton polygon of P0, compute the slopes of the edges and output the
answer. 2

1.3 Generalized Tschirnhaus transformation

We recall a well known way of computing in algebraic extensions, which we will use freely in
our paper. We call this method the generalized Tschirnhaus transformation.

Let K be a field, (Pj)j=1,...,r be a family of monic polynomials in K[X], and

Pj(X) = (X − ξj,1) · . . . · (X − ξj,dj
)

their factorizations in Kac[X]. Take Q(X1, . . . , Xr) ∈ K[X1, . . . , Xr], and let d = d1 · · · dr. We
claim that the polynomial

TQ(Z) = (Z −Q(ξ1,1, . . . , ξr,1)) · . . . · (Z −Q(ξ1,d1 , . . . , ξr,dr))

of degree d is the characteristic polynomial of AQ , where AQ is the matrix of the multiplication
by Q(x1, . . . , xr) inside the d-dimensional K-algebra

K[x] := K[X1, . . . , Xr]/ 〈P1(X1), . . . , Pr(Xr)〉 .

We give a proof of this well known fact, for which we found no reference. We prove a
slightly more general result, which deals with roots of so-called triangular systems. Moreover,
the computation works in arbitrary commutative rings.

Definition 1.2 Let A ⊂ B be commutative rings.

1. Take a system of polynomials

P = (P1, . . . , Pr) where P1(X1) ∈ A[X1],
P2(X1, X2) ∈ A[X1, X2], . . . , Pr(X1, . . . , Xr) ∈ A[X1, . . . , Xr] .

This system is called a triangular system if each Pi is monic w.r.t. Xi.

2. The quotient algebra is A[X1, . . . , Xr]/ 〈P1, . . . , Pr〉 = A[x1, . . . , xr] where xi is the class
of Xi. We denote it by AP . Let di = degXi

(Pi). Then AP is a free A-module of rank
d1d2 · · · dr with “monomial basis” (xµ1

1 · · ·xµr
r )µi<di

. Note that we may assume w.l.o.g.
that degXj

(Pk) < dj for k > j.

3. A vector α = (α1, . . . , αk) ∈ Br is called a root vector of P (or a solution of P ) if

P1(α1) = P2(α1, α2) = . . . = Pk(α1, . . . , αr) = 0 .
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4. Assume for simplicity that r = 3. We say that the system P fully splits in B if B contains
elements ξi (i ≤ d1), ξi,j (i ≤ d1, j ≤ d2), and ξi,j,k (i ≤ d1, j ≤ d2, k ≤ d3) such that

P1(X) =
∏

i≤d1
(X − ξi)

P2(ξi, Y ) =
∏

j≤d2
(Y − ξi,j) (i ≤ d1)

P3(ξi, ξi,j, Z) =
∏

k≤d3
(Z − ξi,j,k) (i ≤ d1, j ≤ d2)

 (1)

5. When A = K and B = Kac, two systems with the same variables are called coprime
systems if they have no common root vector.

In order to simplify notations, we give our result for the case r = 3.

Proposition 1.3 Let A ⊂ B be commutative rings and P = (P1, P2, P3) a triangular system
over A which fully splits in B with equations (1). Let Q(x1, x2, x3) ∈ AP , µQ be the A-linear
endomorphism of AP representing multiplication by Q, and CQ(Z) the characteristic polynomial
of µQ. Then we have

CQ(Z) =
∏

i≤d1, j≤d2, k≤d3

(Z −Q(ξi, ξi,j, ξi,j,k)) (2)

Proof.
Note that we could have chosen Q ∈ A[X1, X2, X3]. But if (α, β, γ) is a root vector of P in an
extension of A, it is clear that Q(α, β, γ) depends only of the class of Q in AP , so equation (2)
is meaningful.

By Cayley-Hamilton CQ(µQ) = 0 and since µQ(1) = Q, CQ(Q) = 0. This implies that
CQ(Q(α, β, γ)) = 0 each time we have a root vector (α, β, γ) of P in an extension of A since
A[α, β, γ] is a homomorphic image of AP .

So the proposition is proved in the “good case” where B is a domain and all the root vectors
in (1) give distinct values for Q(ξi, ξi,j, ξi,j,k): the RHS and LHS in (2) are monic univariate
polynomials with the same roots, all being distinct.

Now we give the proof for the “generic case” where the ξi, ξi,j, ξi,j,k and the coefficients qi,j,k

of Q are indeterminates. This means that B can be replaced by a ring generated over Z by
these indeterminates, and A can be replaced by the subring of B generated by the coefficients
of Q and by the coefficients of P1, P2, P3 which are defined by equations (1). In this generic
case, B is an integral domain and all the Q(ξi, ξi,j, ξi,j,k) are distinct. So the generic case is a
good case and we are done.

Finally, note that all non-generic cases are homomorphic images of the generic case. 2

We give another slight generalization, which can be proved in a similar way. Let Q, R ∈
A[X1, . . . , Xr] with R(ξ) invertible in B for all the root vectors in (1). Let F = Q/R. Then
AR is an invertible matrix (over B) and the polynomial

TF (Z) =
∏

i≤d1, j≤d2, k≤d3

(Z − F (ξi, ξi,j, ξi,j,k))

is the characteristic polynomial of AQ(AR)−1.

2 Dynamic computations in the algebraic closure

Dynamic computations in the algebraic closure of a valued field are an extension of dynamic
computations in the algebraic closure of a field as explained in [3, 4]. First let us recall these
ones.
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2.1 Dynamic algebraic closure

The following algorithms tell us how to compute dynamically in the algebraic closure of K
when we do not want to (or we cannot) use factorization algorithms in K[X].

First we examine the problem of adding one root of a monic polynomial without factoriza-
tion algorithm. If we are able to compute in the field so created, then we are able to compute
recursively in any finite extension given by adding one after the other roots of several polyno-
mials. In fact, since there is a priori an ambiguity about what root we have introduced (distinct
roots give in general non-isomorphic fields), we have to compute all possible cases.

Computational problem 2.1 (computational problem à la D5)
Input: Let P (of degree ≥ 2) and Q be polynomials in K[X].
Output: Give correct answers to the following questions:

(1) Is Q zero at each root of P in Kac?

(2) Is Q nonzero at each root of P in Kac?

(3) If the two answers are “No”, compute two factors P1 and P2 of P and two polynomials
U1, U2 such that:
— Q is zero at each root of P1 in Kac,
— Q is nonzero at each root of P2 in Kac,
— P1 and P2 are coprime, P1U1 + P2U2 = 1,
— each root of P in Kac is a root of P1P2.

We give two natural solutions of the previous problem.

Algorithm SquarefreeD5.
(solving computational problem 2.1 when P is a squarefree polynomial)
Assume that P is squarefree.
Compute the monic GCD P1 of P and Q.
If P1 = 1 then answer “Yes” to the second question;

else if lc(P )P1 = P then answer “Yes” to the first question;
else return P1, P2 := P/P1 and polynomials U1, U2 s.t. P1U1 + P2U2 = 1. 2

Algorithm BasicD5.
(solving computational problem 2.1)
Compute the monic GCD P1 of P and Q.
If P1 = 1 then answer “Yes” to the second question;

else compute the monic polynomial P2 such that:
P2 divides P , GCD(P1, P2) = 1 and P divides Pm

1 P2 (for some m);
if P2 = 1 then answer “Yes” to the first question, and replace P by P1;

else return P1, P2 and polynomials U1, U2 s.t. P1U1 + P2U2 = 1. 2

The replacement of P by P1 is not used in the algorithm itself, but is meant for use by subsequent
algorithms because if P2 = 1 then P1 has the same roots as P but possibly smaller degree.

Remark 2.2 Observe that P2 = P/ gcd(P k
1 , P ) = P/ gcd(Qk, P ) where k = 1 + deg(P ) −

deg(P1). We can also get P2 by iteration of the process: start with R = P ; replace R by
R/ gcd(R,Q) (here gcd(R,Q) means the monic GCD of R and Q), until the GCD is 1.

If P is monic and the ring S is normal then P1 and P2 are in S[X], but it is not always easy
to make this result explicit. Nevertheless we can always compute P1 and P2 using coefficients
in the quotient field of S: the GCD computation may use pseudo divisions instead of divisions.
The use of subresultant polynomials may improve the efficacity of the algorithm.
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We can understand the previous algorithms as breaking the set of roots of a polynomial in
distinct subsets anytime that some objective distinction may be done between the roots. Their
stupendous simplicity is certainly the main reason explaining their non-universal use in the
literature about algebraic extensions of fields.

Remark 2.3 If we see the roots of P as a multiset, and if we want to keep the information
concerning multiplicities, the output

• (P1, P2) with P1, P2 coprime and each root of P in Kac is a root of P1P2.

is not the good one. We need in this case one of the two following outputs:

• (P1, P2) with P1, P2 coprime and P1P2 = P .

or in a more economic way for future computations:

• (P1, P2) with P1, P2 coprime, P1P2 = P and a decomposition of each Pi as a product of
powers of coprime polynomials.

The computational problem corresponding to the first output can be solved by the following
slight variant of BasicD5.

Algorithm MultisetD5.
(solving a multiset variant of computational problem 2.1).
Input: Let P (of degree ≥ 2) and Q be polynomials in K[X].
Output: (P1, P2) with P1, P2 coprime, P1P2 = P , Q is zero at each root of P1 in Kac, Q is
nonzero at each root of P2 in Kac.
Compute the monic GCD R1 of P and Q.
If R1 = 1 then return P1 = 1, P2 = P

else compute the monic polynomial P2 such that:
P2 divides P , GCD(R1, P2) = 1 and P divides Rm

1 P2 (for some m).
return P2, P1 = P/P2 and polynomials U1, U2 such that P1U1 + P2U2 = 1. 2

We now explain the recursive use of algorithms SquarefreeD5 and BasicD5. Note that
root vectors of a triangular system P as in definition 1.2 form a multiset of cardinality d =∏

i degXi
(Pi).

Computational problem 2.4 (computing in extensions generated by several successive al-
gebraic elements)
Input:

• A triangular system of polynomials P = (P1, . . . , Pn):

P1(X1) ∈ K[X1], P2(X1, X2) ∈ K[X1, X2], . . . , Pk(X1, . . . , Xk) ∈ K[X1, . . . , Xk] .

• A finite list of polynomials Q1, . . . , Qr in K[X1, . . . , Xk].

Output:

• A list of coprime triangular systems S(1), . . . , S(`) whose root vectors form a partition of
the set of all solutions of the initial triangular system P , such that for each j, the r-tuple
of signs for the tuple (Q1(x), . . . , Qr(x)) (the sign of y is either 0 if y = 0 or 1 if y 6= 0),

is the same for every root vector x = (x1, . . . , xk) of S(j) .
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• For each triangular system S(j), this fixed r-tuple of signs.

In the general case, we can solve the previous problem in the following way.

Algorithm TriangularBasicD5.
(solving computational problem 2.4)
Use BasicD5 recursively. More precisely, consider that Q and Pk are polynomials in the
variable Xk with parameters (x1, . . . , xk−1). When making the computations of BasicD5 we
have to solve some tests

“ Is R(x1, . . . , xk−1) equal to zero or not ? ”
for some polynomials R given by the computation. So we have to solve the same kind of
problem with one variable less. Hence, a recursive computation will produce the answer. 2

In the case of a perfect field, we can use SquarefreeD5 recursively. To see why this works,
we have to recall how to compute the squarefree part of a polynomial in one variable in this
case.

Algorithm SquarefreePart.
(compute the squarefree part of a polynomial in one variable in the case of a perfect field)
We assume that K is a perfect field. In the characteristic p case we assume that getting p-th
roots is explicit inside S.

Input: A polynomial P ∈ S[X] .
Output: P1 the squarefree part of P .

If the characteristic is zero then P1 = P/ gcd(P, P ′).

If the characteristic is p then let P1 = 1 and:
Iterate the following process:

Beginning with R = P iterate the following process:
If R = Q(Xp) then replace R by R1/p else replace R by R/ gcd(R,R′)

until you find gcd(R,R′) = 1.
Replace P1 by P1 ·R
Iterate the following process:

Replace P by P/ gcd(P, R)
until you find gcd(P, R) = 1

until P = 1. 2

We suggest that the reader apply the algorithm to a polynomial of the form Q1(X
p)2Q2(X

p2
)

with p 6= 2, in order to see why the loops in this algorithm are necessary.

AlgorithmPerfectTriangularD5.
(solving computational problem 2.4 in the case of a perfect field)
We assume that K is a perfect field. In the characteristic p case we assume that getting p-th
roots is explicit inside S.

In a first big step we replace the initial system by a disjunction of coprime systems that are
“squarefree”.
For each polynomial in the triangular system, we use SquarefreePart and (recursively)
SquarefreeD5 to replace it by a “squarefree” polynomial.
More precisely, first we replace P1 by its squarefree part S1.
Then we try to apply SquarefreePart to the polynomial P2 as if the quotient algebra
K[X1]/S1(X1) were a field. If this is not possible, SquarefreeD5 produces a splitting of S1.



10 2 DYNAMIC COMPUTATIONS IN THE ALGEBRAIC CLOSURE

In each branch so created the computation is possible and we can replace P2 by its squarefree
part.
For example, we may get three branches with the following properties. In the first one, the
squarefree polynomial P1,1 replaces P1 , and P2 is already squarefree, so that P2,1 = P2 . In the
second one, the squarefree polynomial P1,2 replaces P1 , and the squarefree part of P2 is given
by P2,2 with degree deg(P2) − 1. In the third one, P1,3 replaces P1 and the squarefree part of
P2 is given by P2,3 with degree deg(P2)− 4. Then we introduce P3 in every branch previously
created and try to apply SquarefreePart to the polynomial P3 as if the corresponding quotient
algebra K[X1, X2]/ 〈P1,i(X1), P2,i(X1, X2)〉 were a field. If this is not possible, SquarefreeD5
produces a splitting of P1,i or P2,i.
And so on.
When we have introduced all Pi’s, we get a tree. Each leaf of the tree corresponds to a new
triangular system where all successive polynomials replacing the Pi’s are “strongly squarefree”
(the squarefreeness is certified by a Bezout identity in the suitable quotient algebra). Distinct
leaves correspond to coprime triangular systems. So the set of root vectors of P is partitioned
into distinct subsets, each one corresponding to a leaf of the tree.

Now we describe the second “big step”. At each leaf of the tree we search for the signs of the
Qj’s using SquarefreeD5 as if the corresponding quotient algebra were a field. If this is not
possible, new splittings are produced. 2

Remark 2.5 Slight variants of the above algorithms give a partition of the multiset of solutions
of the triangular system P in disjoint multisets that are defined by coprime triangular systems
S ′(j), each Qi having a constant sign at the zeros of each S ′(j).

Remark 2.6 The above algorithms can be generalized in order to search systematically for
solutions of any system of sign conditions: equalities need not be in a triangular form. So they
can be seen as quantifier elimination algorithms in the first order theory of algebraically closed
extensions of some explicitly given field K.

In the following subsection we show that the same kind of computations are possible in the
case of valued fields.

2.2 Dynamic algebraic closure of a valued field

Roots of one polynomial

The valued algebraic closure of (K,V) is well determined up to isomorphism. So the following
computational problem makes sense.

Computational problem 2.7 (Simultaneous values)
Input: polynomials P (monic) and Q1, . . . , Qr in K[X]. Call [x1, . . . , xd] the multiset of roots
of P in Kac.
Output: The multiset [(v(xi), v(Q1(xi)), . . . , v(Qr(xi)))]i=1,...,d of (r + 1)-tuples of values.

This problem is solved by the following algorithm.

Algorithm SimVal.
(solving computational problem 2.7)
We start with the case r = 1. Assume w.l.o.g. that P (0) 6= 0. The multiset [νi]i=1,...,d of (finite)
values of the xi’s is given by the Newton Polygon Algorithm for P .
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For m, n ∈ N, the polynomial

Sm,n(X) = (X − xm
1 Q1(x1)

n) · . . . · (X − xm
d Q1(xd)

n)

is the characteristic polynomial of the matrix Am(Q1(A))n where A is the companion matrix
of P .
So, using the Newton polygon of Sm,n we know the multiset

[m v(xi) + n v(Q1(xi))]i=1,...,d = [m νi + n ν1,i]i=1,...,d

for any (m, n).
We compute first the multiset [ν1,i]i=1,...,d .
We want to compute the correct pairing between the two multisets [νi]i=1,...,d and [ν1,i]i=1,...,d .
Assume first that no ν1,i is infinite.
Let us call a bad coincidence for n1 an equality

νi + n1 ν1,h = νj + n1 ν1,k with νi 6= νj, i, j, h, k ∈ {1, . . . , d} .

If there is no bad coincidence for some n1 then we can state this fact by considering the two sets
{νi : i = 1, . . . , d} and {ν1,i : i = 1, . . . , d}. Note also that there are at most (d(d−1)/2)2 “bad
values” of n1. So we can find a “good” n1 by a finite number of computations. Fix a “good” n1.
From the multisets [νi]i=1,...,d and [ν1,i]i=1,...,d we deduce the multiset [νi + n1 ν1,j]i=1,...,d,j=1,...,d.
Now, n1 being “good”, the multiset [νi + n1 ν1,i]i=1,...,d (obtained by the Newton Polygon Algo-
rithm applied to S1,n1) can be read as a submultiset of [νi + n1 ν1,j]i=1,...,d,j=1,...,d . This gives us
the pairing between the multisets [νi]i=1,...,d and [ν1,i]i=1,...,d .
For example, assume that

[νi]i=1,...,9 = 3[α1] + 4[α2] + 2[α3], [ν1,i]i=1,...,9 = 2[β1] + 2[β2] + 2[β3] + 3[β4]

and that the number 5 is good, i.e., the twelve values αi + 5βk are distinct. Computing the
multiset [νi + 5 ν1,i]i=1,...,9, we find, e.g.,

[α1 + 5β1] + 2[α1 + 5β4] + [α2 + 5β4] + 2[α2 + 5β2]+
+[α2 + 5β3] + [α3 + 5β1] + [α3 + 5β3],

and we get the pairing

[(α1, β1)] + 2[(α1, β4)] + [(α2, β4)] + 2[(α2, β2)] + [(α2, β3)] + [(α3, β1)] + [(α3, β3)] .

Comment: the multiset [xi]i=1,...,d is, as a root multiset, made of “indiscernible elements”. The
knowledge of the multiset [νi]i=1,...,d introduces some distinction between the roots (if the νi’s
are not all equal). The knowledge of the multiset [νi +n1 ν1,i]i=1,...,d (with a “good” n1) induces
a finer distinction between the roots.

We remark that the case where some Q1(xi)’s equal zero can also be done correctly by a slight
modification of the previous algorithm. Nevertheless, when such a case appears, it seems more
natural to use the technique of dynamical evaluation (see [3] and section 2.1). If not all Q1(xi)’s
equal zero (which is a trivial case), then one can compute a factorization of P in a product of
two coprime polynomials P1 and P2 by applying algorithm BasicD5 to P and Q1. Then we
can study separately the roots of these two polynomials. Moreover, the following steps of the
algorithm are clearer if all Q1(xi)’s are distinct from zero.

Next we show that analogous arguments work for the general case. It will be sufficient to
show how the case r = 2 works. Set ν2,i = v(Q2(xi)). We have computed the correct pairing
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[(ν1, ν1,1), (ν2, ν1,2), . . . , (νd, ν1,d)] between the multisets [νi]i=1,...,d and [ν1,i]i=1,...,d. We know also
a “good” integer n1. We can assume w.l.o.g. that all ν1,i’s and ν2,i’s are finite. We compute
first the multiset [ν2,i]i=1,...,d. Let us call a bad coincidence for n2 an equality

νi + n1 ν1,i + n2 ν2,h = νj + n1 ν1,j + n2 ν2,k with νi + n1 ν1,i 6= νj + n1 ν1,j .

If there is no bad coincidence for some n2 then we can state this fact by considering the two
sets {νi + n1 ν1,i : i = 1, . . . , d} and {ν2,i : i = 1, . . . , d}. We choose such an integer n2. And
so on. 2

Remark 2.8 Assume that P is a squarefree polynomial, so the xi’s are in the separable clo-
sure Ksep of (K,V). Assume that algorithm SimVal has shown that some list of values
(νi, ν1,i, . . . , νr,i) corresponds to only one root of P . It is clear from the abstract definition of
the henselization that such a “discernible” element over (K,V) is inside the henselization Kh

of (K,V). A perhaps surprising computational consequence is that, since the henselization is
an immediate extension, when algorithm SimVal isolates (or discerns) some root of P , then
the corresponding list of values is made only of “integer values”, i.e., values of elements of K
“without integer denominator”. We can prove this constructively:
First, using computations in the henselization Kh as defined in [5], one can prove (cf. [6]) the
following lemma:

Lemma 2.9 If the polynomial P ∈ Kh[X] has roots x1, . . . , xd and if the d-tuple
[v(Q(x1)), . . . , v(Q(xd))] (provided by SimVal applied to P, Q or by any other way) is equal
to d1[α1]+ . . .+dk[αk], with αi 6= αj (for i 6= j), then one can factorize P = P1 . . . Pk in Kh[X]
(deg Pi = di), such that, if the roots of Pi are y1, . . . , ydi

the di-tuple [v(Q(y1), . . . , v(Q(ydi
))] is

equal to di[αi].

Then if some list of values (νi, ν1,i, . . . , νr,i) corresponds to only one root of P , we let
n0 = #{j : νj = νi},
n1 = #{j : νj = νi and ν1,j = ν1,i},
. . .
nr = #{j : νj = νi and νk,j = νk,i k = 1, . . . , r} = 1

The previous result applied to P (X) and Q(X) = X provides a factor P0 of P , with degree n0;
then applied to P0(X) and Q1(X), it provides a factor P1 with degree n1, and so on. Finally,
we obtain a factor Pr of degree nr = 1. So the corresponding root is in Kh. The computations
in Kh prove that the list of values is made only of “integer values”; one can compute explicitly
elements of K having the same value. More precisely, one can compute z0, z1, . . . , zr ∈ K, such
that xi = z0(1 + ν0), Q1(xi) = z1(1 + ν1), . . . , Qr(xi) = zr(1 + νr), with v(νi) > 0 for all i.

Root vectors of triangular systems

Algorithm SimVal says that “we can compute in K[x]” where x is a root of P satisfying
certain “compatible value conditions”. We know how many roots of P correspond to a system of
compatible value conditions. Computing in K[x] means that we can get “any brute information
concerning the valuation in this field”, more precisely, we can decide, for any new polynomial
Q, if the value of Q(x) is well determined or not. And we can compute the value(s). When
several possibilities for v(Q(x)) appear, choosing one possible value, we refine our description
of K[x].
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So even if K[x] is not a priori a completely well determined valued field, we can neverthe-
less always do as if it was completely well determined. And we get recursively the following
computations, exactly as in section 2.1.

More precisely, our computational problem is the following.

Computational problem 2.10
(computing in extensions generated by several successive algebraic elements)
Input:

• A triangular system of polynomials P = (P1, . . . , Pn):

P1(X1) ∈ K[X1], P2(X1, X2) ∈ K[X1, X2], . . . , Pk(X1, . . . , Xk) ∈ K[X1, . . . , Xk] .

• A finite list of polynomials Q1, . . . , Qr in K[X1, . . . , Xk].

Output:

• The multiset of (k + r)-tuples of values

[(v(x1), . . . , v(xk), v(Q1(x)), . . . , v(Qr(x)))]x=(x1,...,xk)∈R

where R is the multiset of root vectors of P (this multiset has cardinality d =∏
i degXi

(Pi)).

This problem is solved by the following algorithm.

Algorithm TriangularSimVal.
Use recursively algorithm SimVal. 2

Graph of roots

The following algorithm can be seen as a particular case of the previous one. We denote
by µ(P, a) the multiplicity of a as root of the univariate polynomial P (if P (a) 6= 0 we let
µ(P, a) = 0).

Computational problem 2.11
(computing the ultrametric graph of roots of a family of univariate polynomials)
Input:

• A finite family of univariate polynomials P = (P1, . . . , Ps) in K[X].

Output:

• The number N of distinct roots of P1 · · ·Pn.

• For some ordering (x1, . . . , xN) of these roots the finite family(
(µ(Pi, xj))i∈[1,s],j∈[1,N ], (v(xj − x`))1≤j<`≤N

)
.

Note that there are many possible answers, by changing the order of the roots. All correct
answers are isomorphic.
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Algorithm GraphRoots.
First a recursive use of BasicD5 allows to find a finite multiset of pairwise coprime polynomials
(R1, . . . , Rr) such that each Pi is a product of some Rk’s. So we can assume w.l.o.g. that the
Pi’s are pairwise coprime. If deg(Pi) = ni we introduce the roots xi,1, . . . , xi,ni

of Pi through
the triangular system

Pi,1(Xi,1) = Pi(Xi,1)

Pi,2(Xi,1, Xi,2) =
Pi,1(Xi,2)−Pi,1(Xi,1)

Xi,2−Xi,1

Pi,3(Xi,1, Xi,2, Xi,3) =
Pi,2(Xi,1,Xi,3)−Pi,2(Xi,1,Xi,2)

Xi,3−Xi,2

...
...

...

Pi,ni
(Xi,1, . . . , Xi,ni

) =
Pi,ni−1(Xi,1,...,Xi,ni−2,Xi,ni

)−Pi,ni−1(Xi,1,...,Xi,ni−2,Xi,ni−1)

Xi,ni
−Xi,ni−1

Pi,1(xi,1) = 0
Pi,2(xi,1, xi,2) = 0

Pi,3(xi,1, xi,2, xi,3) = 0
...

...
...

Pi,n(xi,1, . . . , xi,ni
) = 0

The Pi,k’s give all together a triangular system and we can apply TriangularSimVal for
finding the values v(xi,k − xi′,k′). We remark that we can use a simplified form of Triangular-
SimVal since all possible results are isomorphic and we need only one of these results. E.g.,
in the first step we compute the multiset [(v(x1,k− x1,k′)1≤k<k′≤n1 ] but we select arbitrarily one
value as the good one w.r.t. some ordering of the roots, and so on. 2

Remark 2.12 There are probably some shortcuts allowing to give this ultrametric graph in a
quicker way: for example, for a single polynomial, it is easy to compute the multiset of values
[v(xi − xj)]i6=j without knowing exactly to which edge each value corresponds; there might be
a way (at least in a great number of cases) to reconstruct the graph (up to isomorphism).

3 Quantifier elimination

The aim of this section is to give a transparent proof of the following well known theorem (cf.
[8]).

Theorem 3.1 The theory of algebraically closed valued fileds (with fixed characteristics) admits
quantifier elimination.

First we give a sketch of the proof of this theorem. Our algorithm is a kind of “cylindric
algebraic decomposition” (in the real closed case see, e.g., [1]). Given a finite set of multivariate
polynomials, we choose a variable as being the main variable and we consider the other ones
as parameters.

We settle in subsection 3.2 an existential decision procedure for a quantifier free formula
with only one variable: given a finite set S of univariate polynomials, we give a complete
description of the “valued line Kac” w.r.t. S.
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More precisely, we give first a formal name to each root of each polynomial in S, and
we compute the ultrametric distance between each pair of these roots. We compute also the
multiplicities of these roots and all the values v(Pi(xj)) for each root xj and each polynomial
Pi. This job is done by algorithm GraphRoots.

Next, from these datas, we are able to test if a given conjunction of elementary assertions
concerning the v(Pi(ξ))’s is realizable by some ξ of the line Kac. In order to make this test we
need a key geometric lemma, concerning ultrametric graphs. We explain this lemma in section
3.1.

The structure of our existential univariate decision procedure is very simple. This implies
a kind of uniformity in such a way that the algorithm can be performed “with parameters”,
exactly as BasicTriangularD5 is nothing but a parametrized version of Basic D5. This
gives a good way for eliminating the quantifier in a formula with only one existential quantifier.
So the work done in our final section 3.3 will be a careful verification of uniformity for the
algorithms used in section 3.2.

Finally, the general elimination procedure follows by usual tricks.

We now give general explanations about notations and technical tools needed in the algo-
rithms.

As in [8] we use a two-sorted language, L = (LF , LΓ, v). The language of fields LF =
{0, 1, +,−, .} is the F -sort. The language LΓ is the Γ-sort. There is one more symbol, v,
which is a function symbol for the valuation. The language LΓ consists of the language L′

Γ =
{0,∞, +,−, <} of ordered Abelian groups with last element∞ together with a family of symbols
{ ·

q
: q ∈ N∗}.
By convention a−∞ = 0 for all a ∈ Γ. But there are some ambiguities as a− (b− c) may

not be equal to a− b + c. In fact, it is possible to avoid the sign − for Γ-formulas, using case
distinctions. For example, we can replace a − b = c by (b = ∞∧ c = 0) ∨ a = b + c. So any
quantifier free formula Φ is equivalent to a formula written without the Γ-sign −. In the sequel
we assume w.l.o.g. that Γ-terms are always written without using the Γ-sign −.

Note also that we have no function symbol for the inverse of a nonzero element inside the
field. This is not a restriction. The introduction of this function symbol would imply some
trouble as the necessity of some strange convention as x/0 = 0 for any x.

The theory of algebraically closed non-trivial valued fields is ACVF(L). Recall that the
formal theory specifies the characteristic of the field and of the residue field. In our formulas
there are F -variables and Γ-variables, F -terms and Γ-terms, and, more important, F -quantifiers
and Γ-quantifiers.

The rules of building terms are the natural ones. We see that the F -terms are formal
polynomials in Z[x1, · · · , xn]. For the Γ-terms, we avoid the Γ-sign −. Take r1, . . . , rk ∈ Q>0,
and let f1, . . . , f` (with ` ≤ k) be F -terms; then

r1 · v(f1) + · · ·+ r` · v(f`) + r`+1 · a`+1 + · · ·+ rk · ak (3)

(where each ai is a Γ-variable or a Γ-constant) is a general Γ-term. Moreover we remark that
such a Γ-term can be easily rewritten as

1

N
(v(f) + s`+1 · a`+1 + · · ·+ sk · ak)

where N, sj ∈ Z>0.
When we want to make computations inside the algebraic closure of some explicitly given

valued field (K,V) we have to use the theory ACVF(K,V) where the elements of K and ΓK

are added as constants and the diagram of the valued field (K,V) is added as a set of axioms.
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The theory DOAG∞ of divisible ordered Abelian groups with last element ∞ admits quan-
tifier elimination; hence it is sufficient to eliminate the F -quantifiers from an L-formula φ: we
obtain an F -quantifier free L-formula φ′ (most of the time, this formula has more Γ-quantifiers
than φ), and we can conclude using the quantifier elimination of DOAG∞.

This strategy allows us to get a new algorithmic proof of theorem 3.1, which is the topic of
the third section of [8]: The theory ACVF(L) admits quantifier elimination.

3.1 Ultrametric Graphs

To prove theorem 3.1, we will need a lemma about ultrametric graphs. Let Γ be the divisible
ordered Abelian group ΓKac . A graph of vertices p1, . . . , pn is a subset G of {p1, . . . , pn}2 such
that if (pi, pj) ∈ G, then (pj, pi) ∈ G. If (pi, pj) ∈ G, then it is an edge of G. The graph will be
called complete if every pair (pi, pj) is an edge.

We consider graphs labeled by elements of Γ ∪ {∞}: to each edge (pi, pj) we associate an
element εij ∈ Γ∪{∞}, and we impose that εij = εji. Such a graph is called ultrametric if every
triangle in it is an ultrametric triangle, that is, has two vertices labeled by the same element
of Γ, and the third one is labeled by a greater or equal element. We can put εii = ∞ as a
convention, so that degenerated triangles are ultrametric.

If we define

t(εij, εik, εjk) :⇔ (εij = εik) ∧ (εij ≤ εjk) ,

then

T (εij, εik, εjk) :⇔ t(εij, εik, εjk) ∨ t(εik, εjk, εij) ∨ t(εjk, εij, εik)

is the formula asserting that (pi, pj, pk) is an ultrametric triangle inside the graph G.
The complete graph of vertices p1, . . . , pn with edges labeled by εij is ultrametric if the

following formula is true: ∧
i<j<k

T (εij, εik, εjk) .

In an algebraically closed valued field, let a1, . . . , an be fixed elements. Let εij = v(ai − aj).
Then the complete graph of vertices a1, . . . , an and of edges (ai, aj) labeled by εij is ultrametric.

Lemma 3.2 (Ultrametric graphs) In any formal theory of valued fields implying that the
residue field is infinite, the assertion

∃F x
∧

i=1,...,n

v(x− ai) = βi

is equivalent to the formula expressing that the complete graph of vertices a1, . . . , an and x, with
edges (ai, x) labeled by βi, is ultrametric. The triangles (ai, aj, ak) being ultrametric, this is
equivalent to

∧
i<j Tij where Tij is T (εij, βi, βj).

Proof.
Let Si(x) be the formula v(x− ai) = βi. We prove that(

∃F x
∧
i

Si(x)

)
⇐⇒

∧
i<j

Tij .

The implication =⇒ is clear.
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For the reverse implication ⇐=, we first note that

(Tij ∧ (βj < βi)) =⇒ βj = εij ,

and that

(βj = εij ∧ (βj < βi) ∧ Si(x)) =⇒ Sj(x) .

Thus we have the following implication:

(Tij ∧ (βj < βi) ∧ Si(x)) =⇒ Sj(x) . (4)

Hence we need to keep only those indices i for which βi is maximal among β1, . . . , βn. Let
β = max{β1, . . . , βn} and I1 = {i ∈ {1, . . . , n} : βi = β}. Assume w.l.o.g. that 1 ∈ I1. We
have ∧

i<j

Tij ∧
∧
i∈I1

Si(x) =⇒
∧

1=1,...,n

Si(x)

Note that for i, j ∈ I1, Tij is equivalent to εij ≥ β, and that Si(x) is the formula v(x− ai) = β.
We show that ∧

i<j, i,j∈I1

Tij =⇒ ∃F x
∧
i∈I1

v(x− ai) = β .

If β = ∞, we have Tij =⇒ (ai = aj) for all i, j ∈ I1, and in this case we take x = ai for any
i ∈ I1. Now assume that β < ∞. If εij > β, we obtain (Si(x) ∧ Tij) =⇒ Sj(x). We consider
the following case distinction:

• If εij > β for all i, j ∈ I1 then
(∧

i<j i,j∈I1
Tij ∧ S1(x)

)
=⇒

∧
i∈I1

Si(x). The formula

∃F x S1(x) being always true, we have
∧

i<j Tij =⇒ ∃F x
∧

i Si(x).
• Else, we take in I1 a subset I2 which is maximal for the property that εij = β for all indices
i, j ∈ I2. It suffices to show that ∃F x

∧
i∈I2

Si(x), since from the definition of I2 we have( ∧
i<j, i,j∈I1

Tij ∧
∧
i∈I2

Si(x)

)
=⇒

∧
i∈I1

Si(x) .

We can assume w.l.o.g. that 1 ∈ I2. We denote the natural map from Vac to Vac/MVac = Kac

by x 7→ res x. We fix z ∈ Kac such that v(z) = β. The field Kac is infinite since it is algebraically
closed; thus we can choose x ∈ Kac such that∧

i∈I2

res

(
x− a1

z

)
6= res

(
ai − a1

z

)
.

This x verifies v(x− ai) = β, for all i ∈ I2 . This concludes the proof. 2

Remark 3.3 We can give a geometric description of the set

S = {x ∈ Kac :
∧

i=1,...,n

v(x− ai) = βi} .

We use the notations of the proof. Set Cβ(a) = {x : v(x− a) = β}. We have

S =
⋂

i=1,...,n

Cβi
(ai) =

⋂
i∈I1

Cβ(ai) .
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If β = ∞, S is reduced to one element in K. Now suppose β < ∞. If εij > β for all i, j ∈ I1,
then S = Cβi

(ai) for all i ∈ I1. If for some i, j ∈ I1, εij = β, take I2 as in the proof. We have
S =

⋂
i∈I2

Cβ(ai). Suppose that 1 ∈ I2. The set Cβ(a1) is an infinite disjoint union of open
disks B◦

β(ζ) = {x : v(x− ζ) > β}, where v(ζ − a1) = β. There is a bijection between the disks
B◦

β(ζ) and the residue field of Kac, given by

B◦
β(ζ) 7→ f(ζ) = res

(
ζ − a1

z

)
.

We have the following equality:

S =
⋂
i∈I2

Cβ(ai) =
⋃

v(ζ−a1)=β
∀i∈I2\{1} f(ζ) 6=f(ai)

B◦
β(ζ) .

This union is nonempty because there are infinitely many values possible for f(ζ), but only
finitely many for f(ai).

Remark 3.4 Another formulation of lemma 3.2 is that we have a quantifier elimination for
linear formulas in ACVF(L): given a formula

∃F x
∧
i

v(x− xi) = βi

we put εij = v(xi − xj), and the above formula is equivalent to∧
i<j

T (εij, βi, βj) .

An easy consequence is the following lemma:

Lemma 3.5 Take any complete ultrametric graph of vertices p1, . . . , pn, with edges labeled by
εij ∈ Γ ∪ {∞}, and elements x1, . . . , xl ∈ Kac (with l < n), such that v(xi − xj) = εij for all
i, j ≤ l. Then there exist xl+1, . . . , xn ∈ Kac such that v(xi − xj) = εij for all i, j.

3.2 Univariate existential decision procedure

We are going to prove that existential problems in a single variable x can be solved in (Kac,Vac).

Definition 3.6 We define univariate F -conditions by

(i) For any P (X) ∈ K[X], the condition Φ(x) :⇔ P (x) = 0 is a univariate F -condition.

(ii) Take any γ, δ ∈ ΓK, q, r ∈ Q>0, and any P (X), Q(X) ∈ K[X]. The condition Φ(x) :⇔
v(P (x)) + q · γ 2 v(Q(x)) + r · δ, where 2 is either = or <, is a univariate F -condition.

(iii) Take any P (X) ∈ K[X]. The condition Φ(x) :⇔ v(P (x)) < ∞ is a univariate F -
condition.

(iv) If Φ(x), Ψ(x) are univariate F -conditions, then Φ(x)∧Ψ(x) and Φ(x)∨Ψ(x) are univariate
F -conditions.

Conditions of the form (i), (ii) and (iii) are called atomic F -conditions.
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Definition 3.7 We define Γ-conditions by

(i) For any δ ∈ ΓK ∪ {∞}, q1, . . . , qn ∈ Q>0, r ∈ {1, n}, the condition
Φ(a) :⇔ q1 · a1 + · · ·+ qr · ar 2 qr+1 · ar+1 + · · ·+ qn · an + δ,
where 2 is either =, > or <, is a Γ-condition on a.

(ii) If Φ(a), Ψ(a) are Γ-conditions on a, then so are Φ(a) ∧Ψ(a) and Φ(a) ∨Ψ(a).

Conditions of the form (i) are called atomic Γ-conditions.

It is well known that such conditions are equivalent to some condition of the following form,
which is by definition a disjunctive normal form:

n∨
i=1

mi∧
j=1

Φij ,

where the Φij are atomic conditions. Moreover, given any univariate condition Φ(x), there is
an algorithm which computes a disjunctive normal form for Φ(x).

We say that ξ ∈ Kac satisfies a univariate F -condition Φ(x) if Φ(ξ) holds in Kac, and that
α1, . . . , αn ∈ ΓKac satisfy a Γ-condition Φ(a) if Φ(α) holds in ΓKac .

We recall the following result without proof. See Theorem 5.6 in [2] or Corollary 3.1.17
in [7].

Proposition 3.8 (Existential Decision Procedure in DOAG∞)
Let Φ(a) be a Γ-condition. Then there is an algorithm to decide whether there are some
α1, . . . , αn ∈ ΓKac satisfying Φ(a) or not. If the answer is yes, the algorithm provides such
a n-tuple. We call it a witness of the condition.

We now prove the following theorem:

Theorem 3.9 (Univariate Existential Decision Procedure in ACVF) Let Φ(x) be a
univariate condition. Then we have an algorithm to decide whether there is some ξ ∈ Kac

satisfying Φ(x) or not. If the answer is yes, the algorithm gives a description of a witness
ξ ∈ Kac such that Φ(ξ) holds; the algorithm decides whether ξ is unique or not, and if this is
the case then ξ is in Kh.

Proof.
We give an existential decision procedure for a conjunction

Φ(x) :
n∧

i=1

Φi(x)

where the Φi’s are atomic conditions. It suffices to use it several times to obtain an existential
decision procedure for a univariate condition put in a disjunctive normal form, and hence for
every univariate condition.
• First case: One of the Φi(x) (let’s say Φ1(x)) is of the form P (x) = 0. Let k = deg P ,
and ξ1, . . . , ξk be the roots of P . Let Q1(x), . . . , Qr(x) ∈ K[x] be the polynomials appearing
in the other Φi(x)’s. We can use SimVal to obtain the multiset of (r + 1)-tuples of values
[(v(ξi), v(Q1(ξi)), . . . , v(Qr(ξi)))]i=1,...,k.

It suffices now to check, for each (ν, ν1, . . . , νr) in this list, whether the conditions Φ1, . . . , Φn

are verified:
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• for a Φk of the form Qi(x) = 0, test whether νi = ∞,

• for a Φk of the form v(Qi(x)) + q · γ 2 v(Qj(x)) + r · δ, test whether νi + q · γ 2 νj + r · δ
(where 2 is either =, > or <).

• for a Φk of the form v(Qi(x)) < ∞, test whether νi < ∞.

If there are no (r + 1)-tuples in this multiset such that these conditions are verified, then there
is no ξ ∈ Kac satisfying Φ(x); if there are m ≤ k of these multisets satisfying these conditions,
we know that m of the roots of P can be chosen for ξ.

If m = 1, then remark 2.8 shows that the corresponding root of P is in Kh.
• Second case: Assume now that there is no condition Φi(x) of the form P (x) = 0 among
the Φi(x). For each i, let Pi(x) and Qi(x) be the polynomials appearing in atomic formulas
Φi : v(Pi(x))+qi ·γi 2i v(Qi(x))+ri ·δi (where 2i is either =, > or <), and Φi : v(Pi(x)) < ∞
(in that case, set Qi = 1, qi = r1 = 1, γi = 0 and δi = ∞ for the sequel).

We construct the following formulas:

Φ′(x, c, d) :

(
n∧

i=1

v(Pi(x)) = ci ∧ v(Qi(x)) = di

)

Φ′′(c, d) :

(
n∧

i=1

ci + qi · γi 2i di + ri · δi

)
.

The variables c = c1, . . . , cn and d = d1, . . . , dn stand for elements of ΓKac . We have

∃x ∈ Kac Φ(x) ⇐⇒ ∃c, d ∈ ΓKac ∃x ∈ Kac Φ′(x, c, d) ∧ Φ′′(c, d) .

Consider a problem of the following form:

Ψ(x, b) : ∃x ∈ Kac

m∧
i=1

v(Ri(x)) = bi ,

where each Ri(X) is a polynomial of K[x], and the bi’s are indeterminates.
We introduce all the roots r1, . . . , rN of the polynomials R1, . . . , Rm. We can compute N

with the algorithm GraphRoots, as well as the values εij = v(ri − rj), for all i, j, and the
multiplicity µjk of rk as a root of Rj. We have an equivalence

Ψ(x, b) ⇐⇒ ∃x ∈ Kac ∃a1 · · · aN ∈ ΓKac

N∧
i=1

v(x− ri) = ai ∧Ψ1(a, b) ,

where Ψ1 is a conjuction of formulas of the form bj =
∑

k µjk · ak.
From the ultrametric graph lemma we have

∃x ∈ Kac

N∧
i=1

v(x− ri) = ai ⇐⇒
∧
i<j

T (εij, ai, aj) .

Hence we can write that Ψ(x, b) is equivalent to a problem in ΓKac :

Ψ(x, b) ⇐⇒ ∃a ∈ ΓKac

∧
i<j

T (εij, ai, aj) ∧Ψ1(a, b) .
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Now we can do that for Ψ = Φ′. We obtain that ∃x ∈ Kac Φ′(x, c, d) is equivalent to ∃a ∈
ΓKac Φ′′′(a, c, d), where Φ′′′(a, c, d) is a Γ-condition. We have proved

∃x ∈ Kac Φ(x) ⇐⇒ ∃a, c, d ∈ ΓKac Φ′′′(a, c, d) ∧ Φ′′(c, d) .

We can apply the existential decision procedure for DOAG∞ to this formula. If there is no
solution, then there is no ξ ∈ Kac satisfying Φ(x). If there is a solution, we can use it together
with lemma 3.2 to describe an element ξ ∈ Kac satisfying Φ(x). Of course, there is no unicity
in that case. 2

Remark 3.10 The first case of our proof can in fact be treated as a particular case of the
second, replacing P (x) = 0 by v(P (x)) = ∞: in that case the existential decision procedure in
DOAG∞ will give ai = ∞ for some i, and then v(x − ri) = ∞ implies ξ = ri. However, the
proof is clearer with this distinction. Moreover, it would be less easy to show that in the case
of unicity, the witness is in Kh.

3.3 Quantifier Elimination

Quantifier elimination algorithms very often come from existential decision procedures in the
one variable case. If such a decision procedure is “uniform” it can be performed “with pa-
rameters”. This gives a good way for eliminating the quantifier in a formula with only one
existential quantifier. For the real algebraic case see, e.g., [1] chapter 1. In the present section,
we will treat the case of algebraically closed valued fields.

Definition 3.11 Take n ∈ N, and denote by y an n-tuple (y1, . . . , yn) of F -variables. Let
C1(y), . . . , Cm(y) be atomic L-formulas with y1, . . . , yn as the only free variables.
1. We say that

∨
i Ci(y) is a finite exclusive disjunction if

∀F y
m∨

i=1

Ci(y) ∧
∧
i6=j

¬Ci(y) ∨ ¬Cj(y)

holds. In that case we write
Ci = {y ∈ Kn : Ci(y)} .

Then Kn is the disjoint union of C1, . . . ,Cm. The family Ci is a definable partition of the space
Kn. Note that we allow that some Ci may be empty.
2. Let Dij(y), for i = 1, . . . ,m and j = 1, . . . , `i, be atomic L-formulas such that

∨
ij Dij(y) is

a finite exclusive disjunction. We say that
∨

ij Dij is a refinement of
∨

i Ci if for all i, we have

Ci(y) ⇐⇒
`i∨

j=1

Dij(y) ,

or, equivalently

Ci =

`i⋃
j=1

Dij ,

where Dij = {y ∈ Kn : Dij(y)}. Note that this union is a disjoint union.

We denote by Y an n-tuple of indeterminates Y1, . . . , Yn. The ring K
[
Y
]

is K[Y1, . . . , Yn].
We can apply the algorithms given in the previous section to polynomials with parameters.
Consider P (Y ,X) ∈ K

[
Y ,X

]
as a polynomial in X with parameters Y .
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Proposition 3.12 (Algorithms with parameters)
1. The Newton Polygon Algorithm applied to P provides

(i) a finite exclusive disjunction
∨

i Ci(y),

(ii) for each i, an integer ki and a multiset [t1(y), . . . , tki
(y)], where each tj(y) is an LΓ-term,

such that for all y ∈ Ci, ki = degX P (y, X), and if [ξ1, . . . ξki
] denotes the multiset of roots of

P (y, X), then [t1(y), . . . , tki
(y)] is [v(ξ1), . . . , v(ξki

)]. In other words, in each case of the above
exclusive disjunction, the algorithm computes the values of the roots of P (y, X).
2. Keep the notation of the previous statement. Let Q1, . . . , Qr ∈ K

[
Y ,X

]
be polynomials in

X with parameters Y . The algorithm SimVal applied to P, Q1, . . . , Qr provides

(i) a refinement
∨

ij Dij(y) of
∨

i Ci(y),

(ii) for each case i, j (with j ∈ {1, . . . , `i}) a multiset of (r + 1)-tuples of LΓ-terms
[(ts(y), u1

s(y), . . . , ur
s(y))]s=1,...,ki

,

such that for all y ∈ Dij, if [ξ1, . . . ξki
] is the multiset of roots of P (y, X), then

[(ts(y), u1
s(y), . . . , ur

s(y))]s=1,...,ki
is [(v(ξs), v(Q1(ξs), . . . , v(Qr(ξs)))]s=1,...,ki

.

3. Take P1, . . . , Ps ∈ K
[
Y ,X

]
. The algorithm GraphRoots applied to P1, . . . , Ps provides

(i) a finite exclusive disjunction
∨

i Ci(y),

(ii) for each i, an integer Ni and a finite family(
(µjk)j∈[1,s],k∈[1,Ni], (tk,`(y))1≤j<`≤N

)
, where the µjk are integers and the tk,`(y) are LΓ-

terms,

such that for all y ∈ Ci, Ni is the number of roots of P1 · . . . · Ps, and for some ordering
(ξ1, . . . , ξNi

) of these roots, µjk is the multiplicity of ξk as a root of Pj, and tk,`(y) is v(ξk − ξ`).

Proof.
For the first statement, write P (Y ,X) = qn(y) · Xn + · · · + q0(y). Consider the exclusive
disjunction

(
q0(y) = . . . = qn(y) = 0

)
∨

n∨
i=0

(
v(qi(y)) < ∞ ∧

n∧
j=i+1

qn−j(y) = 0

)
.

In each case of this disjunction the degree in X of P (y, X) is fixed. We are going to refine it
to obtain the desired disjunction. Apply the Newton Polygon Algorithm in any fixed case of
this disjunction: its result depends naturally on a new disjunction, each case of it expressing a
different shape for the Newton Polygon of P . More precisely, if m > 0 is degX P (y, X), for each
` ≤ m+1 and each `-tuple (k1, . . . , k`) of non-negative integers such that 0 = k1 < · · · < k` = m,
we can write a formula Cm,`,k1,...,k`

(y) expressing that (k1, v(qk1(y))), . . . , (k`, v(qkell(y))) are the
consecutive vertices of the Newton Polygon of P . In each fixed case Cm,`,k1,...,k`

, the values of
the roots are the LΓ-terms 1

ki+1−ki
(v(qki

(y))− v(qki+1
(y))).

Example: Set R(Y ,X) = a(Y )X2+b(Y )X+c(Y ); we omit the parameters Y in the sequel:
a stands for a(Y ), and so on.

• If v(a) < ∞, and 2v(b) ≥ v(a) + v(c), then ξ1, ξ2 ∈ Kac, the roots of R considered as a
polynomial in X, both have value 1

2
(v(c)− v(a)).
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• If v(a) < ∞, and 2v(b) < v(a) + v(c), then there is one root of value v(b)− v(a) and the
other of value v(c)− v(b).

• If a = 0 and v(b) < ∞, then there is a single root, of value v(c)− v(b).

• If a = 0 and b = 0 and v(c) < ∞, then there is no root.

• If a = b = c = 0, then ∀x ∈ Kac, R(y, x) = 0.

Now we turn to the second statement. The algorithm SimVal applies the Newton Polygon
Algorithm to P : this is our first disjunction. Then it computes some Tschirnhaus transforma-
tion of P . The degree of P being fixed in each case of the disjunction, this can be done without
refining it. The results of this computations are new polynomials in K

[
Y ,X

]
. We apply the

Newton Polygon Algorithm to each of these polynomials, after refining the disjunction. We
obtain some lists of LΓ-terms, from which we can construct the list we want, under a few con-
ditions to eliminate “bad coincidences” (cf. 2.7); these conditions give rise to a new refinement
of the disjunction.

For the third statement, just note that GraphRoots uses SimVal iteratedly; then the
result comes from the second statement. 2

Now we are able to prove theorem 3.1.

Proof of theorem 3.1.
We recall that there are classical and easy arguments ([8]) showing that it suffices to eliminate
an F -quantifier ∃F x in a formula such as ∃F x

∧
k=1,...,n Φk(y, x), where each Φk(y, x) is either

an atomic F -formula like P (y, x) = 0 with P (y, x) ∈ Z[y, x], or an atomic Γ-formula. Note that
an atomic F -formula P (y, x) 6= 0 can be replaced by the Γ-formula v(P (y, x)) < ∞. So we are
done if we prove the following proposition. 2

Proposition 3.13 There is an algorithmic procedure that computes, from a formula
∃F x

∧
k=1,...,n Φk(y, x) (where each Φk(y, x) is either an atomic F -formula like P (y, x) = 0

with P (y, x) ∈ Z[y, x], or an atomic Γ-formula), an equivalent quantifier free formula Ψ(y).

A geometric form of this proposition is the following (for the real algebraic case see, e.g.,
theorem 2.2.1 of [1]). Let K be a subfield of L. A basic v-constructible set defined over K in Ln

is a set of the form {x ∈ Ln : Φ(x)} where Φ(x) is either an atomic F -formula like P (x) = 0 with
P (x) ∈ K[x], or an atomic Γ-formula (which is built by using only constants in K and v(K)).
A v-constructible set defined over K in Ln is any boolean combination of basic v-constructible
sets defined over K.

Proposition 3.14 Let L be an algebraically closed valued field, and K a subfield. Then the
image π(S) of a v-constructible set S defined over K under the canonical projection from Ln

onto Ln−1 is again a v-constructible set defined over K. Moreover, there is an algorithmic
procedure that uses only computations inside K to get a description of π(S) from a description
of S.

Proof of proposition 3.13.

We can apply our univariate decision procedure (theorem 3.9) with parameters in order to
eliminate x. This procedure uses SimVal and GraphRoots with parameters: it will provide
an exclusive disjunction

∨
i Ci(y), and in each case of this exclusive disjunction, a formula
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Ψi(y) without F -quantifiers (but perhaps with some new Γ-quantifiers if for y ∈ Ci we are in
the second case of the proof of 3.9) such that

∀y ∈ Ci, ∃F x
∧

k=1,...,n

Φk(y, x) ⇐⇒ Ψi(y) .

Thus we have
∃F x

∧
k=1,...,n

Φk(y, x) ⇐⇒
∨
i

Ci(y) ∧Ψi(y) .

This concludes the proof. 2

Remark 3.15 The strategy used in [8] was first to give an elimination for linear formulas, and
then a procedure which decreases the degrees of polynomials. There was no geometric idea at
first sight, although there may be a geometric content hidden in the proof. We believe that the
two procedures are in fact different.

When we use this quantifier elimination with the theory ACVF(K,V) we get as a particular
case a decision procedure for a closed formula with coefficients in a valued field K given as in
the introduction.

Theorem 3.16 Take a formula

Θ(y) : Q1
F x1 . . . Qn

F xn Φ(α, y, x)

where each Qi
F is ∀F or ∃F and α = α1, . . . , αm are elements of K. We have an algorithm for

computing a quantifier free formula Ψ(y) equivalent to Θ(y). As a particular case, when y is the
empty sequence, we can decide whether the formula Θ(y) is true in Kac or not. Moreover, if the
formula is purely existential, i.e., Q1

F , . . . , Qn
F are existential quantifiers ∃F , then the algorithm

provides a witness ξ ∈ (Kac)n such that Φ(ξ) is true. If we have a result of unicity such as

∀F x, y (Φ(α, x) ∧ (Φ(α, y) =⇒ x = y) ,

then this witness is in (Kh)n.

Proof.
Let us explain how we get the test point. We apply the quantifier elimination procedure to

Q1
F x1 . . . Qn

F xn Φ(a, x)

obtained after replacement of each αi by a new indeterminate ai. The result is a quantifier-free
formula Ψ(a), such that

Q1
F x1 . . . Qn

F xn Φ(a, x) ⇐⇒ Ψ(a) .

It suffices to test whether Ψ(α) is true or not.
If all quantifiers Qi

F are existential, we can find formulas Ψk(a, x1, . . . , xk) for k = 1 to n−1,
such that

∃F x1 . . . ∃F xn Φ(a, x1, . . . , xn)
⇐⇒ ∃F x1 . . . ∃F xn−1 Ψn−1(a, x1, . . . , xn−1)

...
...

⇐⇒ ∃F x1 Ψ1(a, x1)
⇐⇒ Ψ(a)
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If Ψ(α) is true and we apply the decision procedure of theorem 3.9 to the sentence
∃F x1 Ψ1(α, x1), we find ξ1 ∈ Kac such that Ψ1(α, ξ1) holds. We apply again the decision
procedure to ∃F x2 Ψ2(α, ξ1, x2) and we find ξ2 ∈ Kac such that Ψ2(α, ξ1, ξ2) holds, and so on.
In this way, we find ξ1, . . . , ξn ∈ Kac such that Φ(α, ξ1, . . . , ξn) holds.

If the n-tuple (ξ1, . . . , ξn) satisfying Φ(α, x1, . . . , xn) is unique, then ξ1 satisfying Ψ1(α, x1)
is unique and theorem 3.9 shows that ξ1 ∈ Kh. Repeating this argument n times, we conclude
that, in this case, ξ1, . . . , ξn ∈ Kh. 2
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[7] D. Marker: Model Theory: An Introduction, Graduate Texts in Mathematics 217, Springer
(2002) 19

[8] V. Weispfenning: Quantifier elimination and decision procedure for valued fields, in: Mod-
els and sets, Springer Lecture Notes in Math. 1103 (1984), 419–472 14, 15, 16, 23, 24


	Basic material
	Multisets
	The Newton Polygon
	Generalized Tschirnhaus transformation

	Dynamic computations in the algebraic closure
	Dynamic algebraic closure
	Dynamic algebraic closure of a valued field

	Quantifier elimination
	Ultrametric Graphs
	Univariate existential decision procedure
	Quantifier Elimination


