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0. Introduction

Our aim is to interpret constructively non-constructive classical algebraic proofs. The
idea is that there is a constructive content hidden in the proof of theorems like “a ring
with a non-trivial ideal has a prime ideal”, “a :eld can be embedded in an algebraically
closed :elds” even if their proof is based on Zorn’s lemma. The constructive content is
the following “rings with non-trivial ideal and :elds collapse simultaneously”, “:elds
and algebraically closed :elds collapse simultaneously”: if facts can be shown to be
contradictory inside the theory of algebraically closed :elds, using dynamical proofs,
they are contradictory as well inside the theory of non-trivial rings, and the second
contradiction can be explicitly constructed from the :rst one. Dynamical proofs are
particularly simple: you want to prove a fact in a :eld and you do not know whether
a given element is null or invertible. You just open branches corresponding to the
two possible cases and prove this fact in all subcases. It turns out that many classical
algebraic proofs have this very simple structure.

A similar example is the following “a real :eld can be embedded in an ordered
:eld”, to be replaced by “real :elds and ordered :elds collapse simultaneously”. Con-
structively, we are not able to say that there exists a model of the stronger theory
extending a model of the weaker one, but only that working with the stronger theory
does not create more contradiction than working with the weaker one.

In the particular cases that we consider here, simultaneous collapse takes very ex-
plicit forms, and produces algebraic certi:cates, which are precisely algebraic identities
given by various e&ective Nullstellens(atze and Positivstellens(atze. We consider Hilbert’s
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Nullstellensatz, and Stengle’s Positivstellensatz, as well as new Positivstellens(atze for
algebraically closed valued :elds and ordered groups, with the same method. Here is
the statement for valued :elds:

Theorem (Positivstellensatz for algebraically closed valued :elds). Let (K; A) be a
valued 8eld and let UA the invertible elements of A, IA the maximal ideal of A.
Suppose that (K ′; A′) is an algebraically closed valued 8eld extension of K (so that
A = A′∩K). Denote by UA′ the invertible elements of A′, IA′ the maximal ideal of A′.

Consider 8ve 8nite families (R=0; R�=0; RVr ; RRn ; RU) of elements of the polyno-
mial ring K[x1; x2; : : : ; xm] = K[x]. Let I=0 be the ideal of K[x] generated by R=0,
M�=0 the monoid of K[x] generated by R �=0, VVr the subring of K[x] generated by
RVr ∪ RRn ∪ RU ∪ A, IRn the ideal of VVr generated by RRn ∪ IA, MU the monoid
generated by RU ∪ UA.
De8ne S ⊂ K ′m as the set of points satisfying the following conditions: n(x) = 0

for n ∈ R=0, t(x) �= 0 for t ∈ R �=0, c(x) ∈ A′ for c ∈ RVr, v(x) ∈ UA′ for v ∈ RU,
k(x) ∈ IA′ for k ∈ RRn.
The set S is empty if and only if there is an equality

m(u + j) + i = 0

with m ∈ M �=0, u ∈ MU, j ∈ IRn and i ∈ I=0.

The statement has a trivial part: if there is an equality

m(u + j) + i = 0

with m ∈ M �=0, u ∈ MU, j ∈ IRn and i ∈ I=0 it is clear that S is empty. The
converse implication, from the geometric fact “S is empty” to the existence of an
algebraic identity

m(u + j) + i = 0

with m ∈ M �=0, u ∈ MU, j ∈ IRn and i ∈ I=0, is far from trivial. The fact that
moreover this algebraic identity can be explicitly constructed from a proof that S is
empty is the main point in the present paper.

The previous theorem is closely related to results of Prestel and Ripoli [30]. We
discuss this point in Section 4.4.

This paper is a :rst step in a general program of constructivization of classical
abstract algebra using dynamical methods (see also [20–26]).

Our theory has many connections with the following papers [6–15] based on [1, 3,
4, 14], and with the theory of coherent toposes as well.

1. Dynamical proofs

Consider the following proof of x3 − y3 = 0 � x − y = 0 in the theory of ordered
:elds.
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Suppose that x3 − y3 = 0. There are two cases to consider
• x = 0, then y3 = 0, and it follows y = 0, hence x − y = 0,
• x2 ¿ 0 then x3 −y3 = (x−y)(x2 + xy+y2) = (x−y)(3x2=4 + (y+ x=2)2) and since
x2 ¿ 0, (3x2=4 + (y+ x=2)2) ¿ 0. Introducing the inverse z of (3x2=4 + (y+ x=2)2)
and multiplying x3 − y3 by z we see that x − y = 0.
This proof is the prototype of a dynamical proof as we shall see soon.

1.1. Dynamical theories and dynamical proofs

We start from a language L with variables, constants, symbols of functions and
symbols of relations, including at least the equality. All the theories we shall consider
will allow the substitution of equal terms. A presentation in the language L is a couple
(G;R) where R is a set of atomic formulas and G is a set of variables containing the
variables appearing in R. The variables in G are called the generators and the atomic
formulas in R are called the relations of the presentation. The sets G and R are allowed
to be in:nite, but only a :nite part of them is used in proofs.

A fact in a presentation (G;R) is any atomic formula of L involving only variables
in G.

A model of a presentation (G;R) is a set-theoretic interpretation A of the language
L and a mapping f from G to A such that the relations of R are valid inside A after
substituting variables x in G by f(x).

We say that the presentation (G; R) contains the presentation (G′; R′) when G′ ⊂ G
and R′ ⊂ R. The union of two presentations (G;R) and (G′;R′) is the presentation
(G ∪G′;R∪R′) and will be also denoted by (G;R)∪ (G′;R′). More generally, we use
the notation (G;R) ∪ (G′;R′) in case that (G;R) is a presentation and relations in R′

are relations about terms constructed on G ∪ G′.
To a set-theoretic interpretation A of the language L one associates the diagram of

A, DG(A) which is the presentation where every element a of A is represented by a
variable Xa and the relations are all atomic formulas true inside A. Remark that DG(A)
does not contain negations of atomic formulas (it is often called the positive diagram
of A). So e.g. in the theory of rings, the fact that two elements a and b of a ring A
are distinct does not appear in the diagram of A.

A dynamical theory D has dynamical axioms, i.e. axioms of the form

H (x) � ∃y1 A1(x; y1) ∨ · · · ∨ ∃yk Ak(x; yk)

where H (x) and Ai(x; yi) are conjunctions of atomic formulas of L, x and yi are lists
of variables. These theories are also known in categorical logic under the name of
coherent theories, because of their connection with coherent toposes (see Section 1.3).

A special kind of dynamical axiom is an axiom with empty disjunction, denoted ⊥,
on the right-hand side. An axiom with ⊥ in the right-hand side and a conjunction of
variable-free atomic formulas on the left-hand side is called a collapse axiom.
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An algebraic theory T has only algebraic axioms, i.e. axioms of the form

H (x) � K(x)

where H (x) is a conjunction of atomic formulas and K(x) is an atomic formula of L.
A purely equational theory is an algebraic theory with only purely equational ax-

ioms, i.e. axioms of the form

� t = t′

where t and t′ are terms of the language.
For example the theory of commutative rings is a purely equational theory, the

theories of :elds, of algebraically closed :elds, of ordered :elds, or real closed :elds
are dynamical theories.

A covering of the presentation (G;R) in the dynamical theory D is a tree constructed
in the following way:
• at each node n of the tree, there is a presentation (Gn;Rn), where Gn is the disjoint

union of G and a :nite set of new generators, and Rn is the union of R and a :nite
set of new relations,

• at the root [0] of the tree, the presentation is (G;R0), where the new relations are
consequences of R under algebraic axioms of D,

• new nodes are created only in the following way: if t is a list of terms in the
variables of Gn, H (t) is a conjunction of relations in Rn and

H (x) � ∃y1A1(x; y1) ∨ · · · ∨ ∃yk Ak(x; yk)

is an axiom of D, then one can create k new nodes [n; 1]; : : : ; [n; k] (note that k may
be 0; 1 or ¿ 1) taking Gn;i = Gn ∪ {zi} (where variables zi are new in the branch),
and Rn;i contains R′

n;i = Rn ∪ {Ai(t; zi)} and some consequences of R′
n;i under the

algebraic axioms of D.
A dead branch of the tree is one ended by an empty disjunction ⊥. A leaf of the

tree is a terminal node of a non-dead branch.

De'nition 1. A dynamical proof in D of a fact B(t) in a presentation (G;R) is a
covering of (G;R) for the theory D where B(t) is a valid fact at every leaf of the
tree, i.e., B(t) is one of the relations in the presentation at this leaf. We say that this
is a dynamical proof in the theory D of R � B(t).

Note that a dynamical proof can be represented by a :nite object: it is suRcient to
keep in (G;R) only the generators and relations that are used in the proof. Remark
also that dynamical proofs involve only atomic relations of the language. Moreover, the
“logical part” of a dynamical proof is nothing but direct applications of the dynamical
axioms (where variables are replaced by terms). So there are some drastic restrictions
on dynamical proofs when compared to usual proofs. This is the reason why some
algebraic consequences are more easily deduced from dynamical proofs than from
usual ones.
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In dynamical proofs, we can use some valid dynamical rules, i.e., deduction rules
used in the same way as dynamical axioms, and provable from the axioms of the
dynamical theory. A valid dynamical rule is of the type

H (x) � ∃y1A1(x; y1) ∨ · · · ∨ ∃yk Ak(x; yk) :

It is provable in D if there is a covering of the presentation (x;H) in D such that
every leaf of this covering contains a valid fact Ai(x; ti), for some i and some list of
terms ti.

Let us construct the tree of our prototype dynamical proof of x3−y3 = 0 � x−y = 0
in ordered :elds. We use, in particular, the following properties of ordered :elds:

� x2 ¿ 0 P(1)

x ¿ 0; y ¿ 0 � x + y ¿ 0 P(2)

x2 = 0 � x = 0 P(3)

� x = 0 ∨ x2 ¿ 0 P(4)

x ¿ 0 � ∃z zx − 1 = 0 P(5)

The tree consists of four nodes:

• The root of the tree: [0] where the generators are (x; y) and the relations are (x3 −
y3 = 0). Under the root, there are two nodes [l] and [r], using P(4) (x = 0 or
x2 ¿ 0).
– [l] where the generators are (x; y) and the relations are (x3 − y3 = 0; x = 0;

−y3 = 0; y4 = 0; y2 = 0; y = 0; x−y = 0), (the last relations are a consequence
of the :rst two, using P(1); P(2); P(3) and computations in rings).

– [r] with presentation ((x; y); (x3 − y3 = 0; x2 ¿ 0; T ¿ 0)) where T = 3x2=4 +
(y+x=2)2 = x2 +xy+y2. The fact T ¿ 0 follows from P(1) and P(2). Under this
node there is another node [rd], where the inverse of T has been added according
to P(5).
◦ [rd] with presentation ((x; y; u); (x3−y3=0; x2¿0; T¿0; uT=1; x−y=0)),

since (x − y) = uT (x − y) = u(x3 − y3) = 0.
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Dynamical proofs prove facts and dynamical rules which are obviously valid in the
:rst order theory D. Actually they have the same strength as usual :rst order logic,
for what may be expressed in this fragment.

Theorem 1.1. Let D be a dynamical theory in the language L; (G;R) a presentation
and B(t) a fact of (G; R): There is a construction associating to every proof of
R � B(t) in the classical 8rst order theory D a dynamical proof of B(t).

Proof (Sketch). In a dynamical theory, some elementary predicates are given in the
language, but it is not possible to construct predicates using all logical connectives
and quanti:ers of :rst order logic. In order to get the full strength of usual :rst order
theories, it is necessary to allow these constructions of predicates and their use with
correct logical rules.

In this sketch of proof, we describe the introduction of new predicates corresponding
to disjunction, existential quanti:er and classical negation (with the law of the excluded
middle). In each case, we prove that the correct use of a new predicate does not
change provable facts. In classical logic (with the law of the excluded middle), all
the predicates can be introduced with only these three constructions. So, if we have a
classical proof of a fact, we shall consider two distinct dynamical theories, the :rst one
is the given dynamical theory, the second one is a dynamical theory where all predicates
used in the classical proof have a name as individual predicates. The classical proof
is a dynamical proof in the second theory (with convenient axioms). Then deleting
the new predicates one after the other, beginning by the more intricate ones, we see
that when dealing with facts of the :rst dynamical theory, the two dynamical theories
prove the same facts.

The :rst two lemmas about disjunction and existential quanti:cation are very easy.

Lemma 1.2. Assume that we have a dynamical theory D with some predicates
Q1; : : : ; Qk : Consider a new dynamical theory D′; with one more predicate Q; ex-
pressing the disjunction of Q1; : : : ; Qk and the following axioms:

Q1 � Q DisjIn;1(Q1; : : : ; Qk ; Q)

: : : � : : : : : :

Qk � Q DisjIn;k(Q1; : : : ; Qk ; Q)

Q � Q1 ∨ : : : ∨ Qk DisjEl(Q1; : : : ; Qk ; Q)

The dynamical theories D and D′ prove the same facts that do not involve the
predicate Q.

Proof. We remark that a fact Q(t) in a dynamical proof inside D′ can appear only after
an application of an axiom DisjIn;j(Q1; : : : ; Qk ; Q) for some j (1 6 j 6 k). Consider
the :rst use of the axiom DisjEl(Q1; : : : ; Qk ; Q) in the considered proof tree. It is clear
that, if the predicate Q had not been introduced, we could get a simpler proof with
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only the branch corresponding to Qj (replacing the k branches appearing after the use
of DisjEl(Q1; : : : ; Qk ; Q)).

Lemma 1.3. Assume that we have a dynamical theory D with some predicate R(x; y):
Consider a new dynamical theory D′; with one more predicate S(x); expressing
∃y R(x; y); and the following axioms; where t is an arbitrary term:

R(x; t) � S(x) ExisIn(R; y; S; t)

S(x) � ∃y R(x; y) ExisEl(R; y; S)

The dynamical theories D and D′ prove the same facts that do not involve the
predicate S.

Proof. We remark that a fact S(u) in a dynamical proof inside D′ can appear only
after an application of an axiom ExisIn(R; y; S; t). Consider the :rst use of the axiom
ExisEl(R; y; S) in the considered proof tree. It is clear that, if the predicate S had not
been introduced, we could get another proof by replacing y by the term t that allowed
its introduction.

The most diRcult part of the proof is the following lemma about negation.

Lemma 1.4. Assume that we have a dynamical theory D with some predicate T (x).
Consider a new dynamical theory D′; with one more predicate F(x); expressing the
negation of T (x) and the following axioms:

� T (x) ∨ F(x) NegIn(T; F)

T (x); F(x) �⊥ NegEl(T; F)

The dynamical theories D and D′ prove the same facts that do not involve the
predicate F.

Proof. Let us consider a fact � A(u) (where u is a list of terms) involving a predicate
A distinct from F . Let us assume it is proved in the dynamical theory D′. We have to
transform this dynamical proof of � A(u) in another one, with no use of the predicate
F . The proof tree of � A(u) has dead branches and branches ending with the fact
A(u). The predicate F is used in the proof by creating dead nodes, using the axiom
NegEl(T; F). Consider one such dead node, and assume w.l.o.g. that the use of this
axiom is the leftmost one in the proof-tree. (Here we assume that the tree is organized
in such a manner that at each use of the axiom NegIn(T; F) the branch with T is the
left-branch and the branch with F is the right-branch.) We call n the dead node, i.e.,
the node to which NegEl(T; F) is applied.

It suRces to prove that we can transform the proof tree and suppress this use of
NegEl(T; F). Remark :rst that, if F is present in the tree at the left of n, it is useless
in this part of the tree and it can be suppressed (i.e., the occurrences of NegIn(T; F) at
the left of n can be suppressed, keeping only the right branch).
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Since F(t) (where t is a list of terms) is valid at the node n, it has necessarily been
introduced by the use of axiom NegIn(T; F) at some node m above n. Two branches
have thus been opened at the node m: the left one with T (t), the right one with F(t).
The subtree A under T (t) contains no use of NegEl(T; F) and proves A(u) from T (t)
inside D. On the other hand, T (t) is a valid fact at the node n. So we proceed as
follows:
• Suppress the use of NegIn(T; F) at the node m and keep only the right branch,

suppressing F(t) on the path between m and n and at the left of this path.
• Introduce the use of NegIn(T; F) at the beginning of each branch opened at the right

of the path between m and n, gluing the subtree A as the left branch after this use
of NegIn(T; F).

• Suppress the use of NegEl(T; F) at the node n, and glue the subtree A under this
node.

These three lemmas complete the sketch of the proof of the theorem.

We give now an example of elimination of negation. We consider the theory of
ordered domains expressed with the only unary predicates x = 0 and x ¿ 0.

The axioms we use are:

x = 0 � xy = 0 Alg(1; x; y)

x = 0 � x ¿ 0 Alg(2; x)

x ¿ 0; −x ¿ 0 � x = 0 Alg(3; x)

x ¿ 0; y ¿ 0 � x + y ¿ 0 Alg(4; x; y)

x ¿ 0; y ¿ 0 � xy ¿ 0 Alg(5; x; y)

� x ¿ 0 ∨ −x ¿ 0 Dyn(1; x)

xy = 0 � x = 0 ∨ y = 0 Dyn(2; x; y)

The predicate x ¿ 0 is introduced as the predicate opposed to −x ¿ 0 by the two
de:ning axioms

� −x ¿ 0 ∨ x ¿ 0 NIn(x)

−x ¿ 0; x ¿ 0 � ⊥ NEl(x)

and it will be used to prove

x + y ¿ 0; xy ¿ 0 � x ¿ 0
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We want to transform the following proof (this is surely not a clever one):

We proceed in two steps. First, we suppress the leftmost occurrence of NEl(y).
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It is now possible to suppress the last occurrence of NEl(y) and not to use NIn(y)
anymore.

The Theorem 1.1 can be seen as a “cut elimination theorem”, with a constructive
sense: there is a procedure to transform any proof of a fact in a deduction system
for :rst order logic, into a dynamical proof. This seems very closely related to a
lemma of Troelstra–Schwichtenberg (cf. proposition p. 84 in [33]) concerning intu-
itionnistic proof systems. A non-constructive proof via topos theory will be outlined in
Section 1.3.

1.2. Collapse

We consider now dynamical theories with one or several collapse axioms. Collapse
axioms express that a particular fact (or conjunction of facts) involving only constants
cannot be true in a model of D. For example in an ordered :eld the collapse axiom is

0 ¿ 0 �⊥ :

De'nition 2. A presentation (G;R) collapses in the theory D when one has constructed
a covering of (G;R) in D where all branches :nish with a dead node. Such a covering
is a dynamical proof of R �⊥ in D, and will be called a collapse of (G; R).

Remark that a collapse of a presentation (G;R) gives a dynamical proof of any fact
B(t) in the presentation.

For example, the presentation ((x; y); (x3 − y3 = 0; (x − y)2 ¿ 0)) collapses in the
theory of ordered :elds: take the following dynamical proof
• [0] where the generators are (x; y) and the relations are (x3 −y3 = 0; (x−y)2 ¿ 0),

– [l] where the generators are (x; y) and the relations are (x3−y3=0; (x−y)2¿0;
x = 0; x − y = 0; 0 ¿ 0), so that it is a dead node,
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– [r] where the generators are (x; y) and the relations are (x3−y3=0; (x−y)2¿0;
x2 ¿ 0; (3x2=4 + (y + x=2)2) ¿ 0),
◦ [rd] where the generators are (x; y; z) and the relations are (x3 − y3 = 0; (x −
y)2 ¿ 0; x2 ¿ 0; (3x2=4 + (y + x=2)2) ¿ 0; z(3x2=4 + (y + x=2)2) − 1 = 0;
x − y = 0; 0 ¿ 0), so that it is a dead node too.

De'nition 3. Let D and D′ be two dynamical theories with the same language. We
say that D and D′ collapse simultaneously if for any presentation (G;R) it is possible
to construct a collapse of (G; R) in D from any collapse of (G; R) in D′, and vice
versa.

Some dynamical theories that are very di&erent may nevertheless, collapse simulta-
neously. For example, we are going to prove that the theory of commutative rings with
a proper monoid (see below Section 2.2) and the theory of algebraically closed :elds
collapse simultaneously.

A stronger connection between dynamical theories is the following:

De'nition 4. Let D and D′ be two theories with the same language. The theories D

and D′ prove the same facts if for any presentation (G;R) and any fact B(t) in this
presentation, it is possible to construct a dynamical proof of R � B(t) in D from any
dynamical proof of R � B(t) in D′, and vice versa.

For example, we are going to prove that the dynamical theories of ordered :elds
and of real closed :elds prove the same facts, when written in the language of rings
with three unary relations x = 0, x ¿ 0 and x ¿ 0.

1.3. Dynamical theories and coherent toposes

The concept of a dynamical theory has also been known in categorical logic under
the name of coherent theory, and it is related to coherent toposes. This subsection is
an extended remark to make this connection clear. Some familiarity with Grothendieck
topologies and toposes is useful to read this subsection.

See for instance [28] for the relations between toposes and coherent theories.
Let us consider a dynamical theory D in a language L, and let D0 be an algebraic

subtheory of D. We will associate to these data a site consisting of a category with :nite
projective limits, equipped with a Grothendieck topology generated by :nite coverings.
The category C(D0) depends only on the algebraic subtheory D0, while the topology
T(D) is associated to the extra dynamical axioms of D.

The objects of C(D0) are :nite presentations (G;R) in the language L. A mor-
phism from (G;R) to (F ;Q) will be a mapping ’ from F to the set of terms of L

built on G, such that for any relation A(x1; : : : ; xn) in Q (the xi’s are in F), the fact
A(’(x1); : : : ; ’(xn)) is a consequence of the relations R in the theory D0. This syntactic
description of C(D0) has obviously a semantic counterpart: C(D0) is (equivalent to)
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the dual of the category of :nitely presented models of D0. This shows by the way
that C(D0) has all :nite projective limits.

It is easy to see that for any morphism ’ : (G; R) → (F;Q), there is an isomorphism
(F ∪F ′; Q∪Q′) → (G; R) such that the composition of ’ with this isomorphism is the
canonical morphism (F ∪ F ′; Q ∪ Q′) → (F;Q).

Consider now an extra dynamical axiom of D :

H (x) � ∃y1 A1(x; y1) ∨ : : : ∨ ∃yk Ak(x; yk) :
To this axiom we associate the :nite family of the k obvious arrows in C(D0) with
common target (x;H) and sources (x∪yi;H ∪Ai) for i = 1; : : : ; k. These :nite families
associated to axioms generate the coverings of a topology T(D) on C(D0), according
to the following rules:
1. The identity f : M → M is a covering of M .
2. Let (gj : Nj → N )j=1;:::;k be a covering of N . Let ’ : M → N be any morphism,

and let

be cartesian squares for j = 1; : : : ; k. Then the family (fj : Mj → M)j=1;:::;k is a
covering of M .

3. Let (fi : Mi → M)i∈I be a covering of M , and for each i let (gi; j : Ni; j → Mi)j=1;:::;ki

be a covering of Mi. Then the family (fi ◦ gi; j : Ni; j → M)i; j is a covering of M .
4. Let (fi : Mi → M)i∈I be a covering of M . If (gj : Nj → M)j∈J is another family

such that there is an application . : I → J , and for each i a morphism /i : Mi →
N.(i) satisfying g.(i) ◦ /i = fi, then (gj)j∈J is also a covering of M .

It is easy to see that, in the generation of coverings for the topology, this fourth rule
can always be used in the last place.

Of course, these rules (at least the :rst three) parallel the rules of construction of
coverings of a presentation (G; R) in D. This implies that the family

(
(G ∪ Fj;R ∪ Qj) −→ (G;R)

)
j=1;:::;k

is a covering for the topology if and only if there is a covering of the presentation
(G;R) such that every leaf contains one of the presentations (G ∪ Fj;R ∪ Qj), for
j = 1; : : : ; k. Stated in another way, the “sequent”

H (x) � ∃y1 A1(x; y1) ∨ · · · ∨ ∃yk Ak(x; yk)
is a valid dynamical rule in D if and only if the family

((x ∪ yi;H ∪ Ai) −→ (x; H))i=1;:::;k

is a covering for the topology T(D).
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Once we have the category C(D0) and its topology T(D), we can de:ne the sheaves
on it. The category of these sheaves is a Grothendieck topos E(D), which is known
in categorical logic as the classifying topos of the theory D. It is a coherent topos
since the topology T(D) is generated by :nite coverings. There is a canonical functor
0 : C(D0) → E(D) which sends the object M of C(D0) to the sheaf associated to the
presheaf homC(D0)(−; M). A family (fi : Mi → M)i∈I is carried by 0 to a surjective
family if and only if it is a covering for the Grothendieck topology T(D).

It is possible to de:ne what is a model of a coherent (or dynamic) theory D in a
topos, and inverse images of geometric morphisms of toposes carry models of D to
models of D. The classifying topos E(D) comes equipped with a model M(D) of the
theory D, which is generic in the following sense: for any model M of D in any
topos E, there is a geometric morphism of toposes f : E → E(D) such that M is
isomorphic to f∗ (M(D)). It is easy to describe what is the generic model of D in
the presentation of the classifying topos we gave. The assignment, to any presentation
(G;R), of the model of D0 with this presentation de:nes a presheaf of models of D0

on C(D0). The sheaf associated to this presheaf for the topology T(D) is the generic
model of D. In other words, the generic model is the image by 0 of the presentation
(z; ∅) (where z is one variable).

It follows from the interpretation of the language in the generic model of D that a
“sequent”

H (x) � ∃y1 A1(x; y1) ∨ · · · ∨ ∃yk Ak(x; yk)
is valid in the generic model if and only if the family of morphisms

((x ∪ yi;H ∪ Ai) −→ (x; H))i=1;:::;k

in C(D0) is sent by 0 to a surjective family, i.e., if and only if it is a covering for
the topology T(D). By what was said before, this is equivalent to the fact that the
sequent is a valid dynamical rule in D. We can then get a non-constructive version of
Theorem 1.1 from a theorem of Deligne asserting that “a coherent topos has enough
points”. A point of the topos E(D) is a geometric morphism from the topos of sets
to E(D), so it corresponds to a set-theoretic model of D. Deligne’s theorem says that
the “sequent”

H (x) � ∃y1 A1(x; y1) ∨ · · · ∨ ∃yk Ak(x; yk)
is valid in the generic model of D if and only if it is valid in any set-theoretic model
of D. In conclusion, the sequents valid in every (set-theoretic) model of D are exactly
the valid dynamical rules.

A collapse axiom in a dynamical theory D gives, by the construction of the topology
T(D), an empty covering of a subobject U of the terminal object (∅; ∅) in C(D0). If
D consists of D0 plus a collapse axiom, then the classifying topos for D is a closed
subtopos of the topos of presheaves C(D0) ,̂ complement to 0(U ).

In the presentation of dynamical proofs and collapses, we have considered possibly
in:nite presentations (G;R) to start with. To deal with this situation, one may add
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to the language the generators in G as new constants and the relations in R as new
axioms to D (or D0). We denote by (G;R)=D the dynamical theory thus obtained
(whose models are those of D “under” (G;R)). We can then construct a site as above,
and a classifying topos E ((G;R)=D).

Now we can take into account, in this topos-theoretic setting, the non-constructive
aspects of the collapse of a presentation (G;R) in the theory D: it collapses if and
only if the classifying topos E

(
(G;R)=D

)
is the trivial topos, where the initial object

is also terminal. In case that the presentation (G;R) is :nite, it means also that the
object (G;R) has an empty covering in the topology T(D), or equivalently that its
image in the classifying topos of D is the initial object 0.

It is also possible to describe the simultaneous collapsing along the same lines. For
simplicity, we shall consider two dynamical theories D and D′ in the same language,
with D a subtheory of D′. This gives a geometric morphism f : E(D′) → E(D)
(T(D′) is :ner than T(D)). Forgetting the constructive aspects, we get:

Proposition 1.5. The theories D and D′ collapse simultaneously if and only if; for
every object X of E(D); f∗(X ) = 0 implies X = 0 (i.e.; f∗ re>ects the initial object).

So the simultaneous collapsing is in some sense independent of the syntax, since
it can be formulated only in terms of the classifying toposes. In the topos-theoretic
framework, the “syntax” means the choice of the site C(D0) de:ning the topos E(D)
(or more precisely its image in E(D) by the functor ”). In this sense, the stronger
relation of “proving the same facts” depends on the syntax. Let us take an ad-hoc ex-
ample. Consider the theories of commutative rings with a proper multiplicative monoid
whose elements are not zero divisors (resp. are invertible). If these two theories are
formulated in the language with one unary elation symbol for the monoid, they prove
the same facts: indeed, the morphism from a ring A to its ring of fractions M−1A is
injective if the monoid M contains no zero divisor. On the other hand, if one adds
another unary relation symbol interpreted as “being invertible”, the two theories no
longer prove the same facts.

Two theories D and D′ as in the proposition prove the same facts if and only if every
monomorphism in C(D0) which becomes an isomorphism in E(D′) already becomes
an isomorphism in E(D). If every monomorphism of C(D0) becomes complemented
in E(D), then simultaneous collapsing implies proving the same facts.

2. Hilbert’s Nullstellensatz

2.1. Direct theories

We begin this section by a discussion about the theory of rings.
The unary language of rings Lr has constants 0, 1, −1 and binary functions + and

× and only one unary relational symbol = 0. As usual, x × y will often be denoted
by xy, −t will stand for (−1) × t and s− t for s + (−t).
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The theory of rings, i.e., the purely equational theory of commutative rings, ex-
pressed in this language will be denoted Rr .

In this setting, a presentation in the language is nothing but a set of variables G
and a set of polynomials R=0 ⊂ Z[G], with relations p(G) = 0 for p(G) ∈ R=0. We
denote it by (G;R=0).

We see immediately that terms provably = 0 in Rr (for the presentation we consider)
are just the polynomials belonging to the ideal of Z[G] generated by R=0.

In other words:
• we manipulate polynomials in Z[G] rather than terms of the language Lr ,
• addition and multiplication are directly de:ned as operations on polynomials (this

hides logical axioms of rings behind algebraic computations in Z[G]),
• the only relation is the unary relation x = 0,
• we do not have the binary equality relation, x = y is only an abbreviation for
x − y = 0,

• the only axioms are three very simple algebraic axioms:

� 0 = 0 D(1)r

x = 0; y = 0 � x + y = 0 D(2)r

x = 0 � xy = 0 D(3)r

This reformulation of the theory of rings is exactly what we need for Nullstellens(atze
as we shall see soon.

This leads us to the notion of direct theory.
A direct algebraic axiom is an axiom of the form

A1(x1); : : : ; Ak(xk) � A(t(x1; : : : ; xk))

where the Ai and A are unary relation symbols, the xi are distinct variables and
t(x1; : : : ; xk) is a term of the language.

For example the axioms

x ¿ 0; y ¿ 0 � x + y ¿ 0 and � x2 ¿ 0

are direct algebraic axioms, while

x ¿ 0; x �= 0 � x ¿ 0 and x2 ¿ 0 � x �= 0

are not direct algebraic axioms: the :rst one because x appears twice on the left, the
second because x2 is not a variable.

Now, we say that a purely equational theory is put in unary form when we have
replaced syntactical terms by objects of free algebraic structures (free w.r.t. equational
axioms), binary equality relation by a unary one (the old binary equality with a :xed
constant in right-hand side), and equational axioms by two ingredients: computations
in the free algebraic structure on the one hand and some direct algebraic axioms on
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the other hand (as we did for theory of rings). A simple collapse axiom is a collapse
axiom of the form

A(c) �⊥
where A is a unary relation symbol and c is a constant.

A direct theory is a dynamical theory based on a purely equational theory put in
unary form, allowing as other axioms only direct algebraic axioms and exactly one
simple collapse axiom.

We now write down the axioms of non-trivial rings.
A non-trivial ring is a ring where 1 = 0 is impossible. The corresponding theory,

expressed in the language Lr , is the direct theory extending Rr by adding only a
simple collapse axiom:

1 = 0 � ⊥ Cr

Proposition 2.1. Let (G;R=0) be a presentation in the language of rings. A collapse
of the presentation (G;R=0) in the theory of non-trivial rings produces an equality
1 = a1i1 + · · · + akik in Z[G] with ij in R=0. Reciprocally; such an equality produces
a collapse of (G;R=0).

Proof. In a direct theory, such as the theory of non-trivial rings, the only dynami-
cal axiom is the axiom of collapse. So proofs have a very simple structure “without
branches”. The elements of Z[G] which are provable = 0 without using the collapse
axiom (in the presentation (G;R=0)) are exactly elements of the form a1i1 + · · ·+ akik
with ij in R=0. This is clear by induction on the number of times the direct algebraic
axioms are used in the proof. We can apply the collapse axiom only after such a proof
of 1 = 0. So the presentation collapses in the theory of non-trivial rings if and only if
there exists an algebraic identity 1− (a1i1 + · · ·+ akik) = 0 in Z[G] with ij in R=0.

2.2. Some simultaneous collapses

We consider the unary language of 8elds Lf, which is the unary language of rings
with a new unary relation �= 0. A presentation in the language Lf consists of two
sets (R=0; R�=0) of polynomials in Z[G] with relations p(G) = 0 for p(G) ∈ R=0 and
p(G) �= 0 for p(G) ∈ R�=0. We denote it by (G;R=0; R�=0).

A ring with a proper monoid is a ring with a multiplicative monoid not containing
0. It is the same as a realization of the language Lf satisfying the axioms of rings
and the following axioms:

x = 0; y �= 0 � x + y �= 0 D(1)f
x �= 0; y �= 0 � xy �= 0 D(2)f

� 1 �= 0 D(3)f
0 �= 0 �⊥ Cf
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where the proper monoid is the realization of the unary relation �= 0. Note that a
non-trivial ring is a ring with a proper monoid, the proper monoid being {1}.

Direct algebraic axioms are denoted by D and collapse axioms by C. Remark that
axiom D(1)f is a disguised axiom of stability of the relation �= 0 for equality, written
using only unary predicates. Considering axiom D(3)f we see that the collapse axiom
of non-trivial rings is a valid dynamical rule in rings with proper monoid.

Adding three extra axioms we get the axioms of the theory of 8elds:

xy − 1 = 0 � x �= 0 S(1)f

x �= 0 � ∃y xy − 1 = 0 Dy(1)f

� x = 0 ∨ x �= 0 Dy(2)f

The :rst axiom is a simpli8cation axiom: an algebraic axiom but not a direct alge-
braic one. The two last ones are dynamical axioms.

The theory of algebraically closed 8elds is obtained by adding a scheme of axioms.
For every degree n we have the axiom

� ∃y yn + xn−1yn−1 + · · · + x1y + x0 = 0 Dyn(3)f

The theory of rings with proper monoid has been chosen because as we shall see
later it is a direct theory which collapses simultaneously with the theory of algebraically
closed :elds.

The collapse in the theory of rings with proper monoid has a very simple form:

Proposition 2.2. Let K = (G;R=0; R�=0) be a presentation in the language Lf. A
collapse of the presentation K in the theory of rings with proper monoid produces
an equality in Z[G] :

m1 · · ·m‘ + a1i1 + · · · + akik = 0

with mj in R�=0 and ij in R=0. Reciprocally; such an equality produces a collapse
of K.

Proof. First consider dynamical proofs of facts using only direct algebraic axioms.
These are algebraic proofs without branching. The elements of Z[G] which are provable
= 0 in the presentation (G;R=0) are exactly elements of the form a1i1 + · · · + akik
with ij in R=0. This is clear by induction on the number of times the direct algebraic
axioms are used in the proof. Then provably �= 0 elements are exactly elements of the
form m1 · · ·m‘ + a1i1 + · · ·+ akik with mj ∈ R �=0 and ij ∈ R=0 (same inductive proof).

Now, a proof of collapse is given by a proof of 0 �= 0 using only direct algebraic
axioms. It produces an equality m1 · · ·m‘ + a1i1 + · · · + akik = 0 in Z[G] with mj in
R�=0 and ij in R=0.

The content of the preceding proposition is that the collapse of a presentation in the
direct theory we consider may be certi:ed by an algebraic identity of some type. We
will try in the following remark to analyze the ingredients we used to establish this
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property, and we will check in the other sections that these ingredients are again at
work.

Remark 2.3. There is an ordering on the predicates, which appears in the proof of
Proposition 2.2. First comes = 0, then �= 0. This appears also in the syntactic de-
scription of the theory of rings with proper monoid. We can see the axioms D(i)r as
construction axioms for = 0, and the axioms D(i)f as construction axioms for �= 0.
The rule is that, in a construction axiom for a predicate Q (with Q appearing at the
right side of �), another predicate P may appear at the left of � only if P precedes
Q. The collapse of the direct theory involves the last predicate. It appears that, when
this scheme is present, a collapse of a presentation in the direct theory produces an
algebraic identity of a certain type, certifying the collapse.

So we have algebraic identities certifying collapses in a direct theory. We are not
interested in this theory, but in some of its extensions. It remains to obtain a result of
simultaneous collapsing.

Theorem 2.4. The theory of rings with a proper monoid; the theory of 8elds and the
theory of algebraically closed 8elds collapse simultaneously.

Proof. The proof is by induction on the number of times the axioms of algebraically
closed :elds S(1)f; Dy(1)f; Dy(2)f and Dyn(3)f are used in the proof. We have to
see that if after one use of such an axiom we get a collapse of the new presentations
in the theory of rings with a proper monoid then we can also get the collapse of the
preceding presentation in the same theory.

Thus the theorem is an immediate consequence of the following lemma.

Before stating and proving the lemma, we introduce some conventional abuse of
notations to be used when the context is clear.

Notation 2.5. Assume we have a presentation K = (G;R=0; R�=0), z is a new variable,
p, q are in Z[G], r(z) and s(z) are in Z[G][z], then the presentation (G ∪ {z};R=0 ∪
{p; r(z)}; R�=0 ∪ {q; s(z)}) will be denoted by K ∪ (p = 0; r(z) = 0; q �= 0; s(z) �= 0)

Lemma 2.6. Let K = (G;R=0; R�=0) be a presentation in the language Lf. Let p; r ∈
Z[G]. Let z be a new variable and q(z) a monic non-constant polynomial in Z[G][z].

(a) If the presentation K ∪ (p �= 0) collapses in the theory of rings with proper
monoid; so does the presentation K ∪ (pr − 1 = 0).

(b) If the presentation K ∪ (pz − 1 = 0) collapses in the theory of rings with
proper monoid; so does the presentation K ∪ (p �= 0).

(c) If the presentations K ∪ (p = 0) and K ∪ (p �= 0) collapse in the theory of
rings with proper monoid; so does the presentation K.

(d) If the presentation K∪ (q(z) = 0) collapses in the theory of rings with proper
monoid; so does the presentation K.
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Proof. Denote by I=0 the ideal of Z[G] generated by R=0 and by M �=0 the monoid
generated by R�=0.

(a) We have an identity pnm= i with m is in M �=0 and i ∈ I=0. We can multiply
it by rn. We can write 1 − (pr)n = (pr − 1)s so that m = (1 − (pr)n)m + irn =
(pr − 1)sm + irn, which produces a collapse of K ∪ (pr − 1 = 0)

(b) This is Rabinovitch’s trick. Suppose we have a collapse of the presentation
K ∪ (pz − 1 = 0). This is written in the form m = j(z) + (pz − 1)s(z), where m
is in M �=0, j is a polynomial with coeRcients in I=0 and s is a polynomial with
coeRcients in Z[G]. If n is the z-degree of j, multiply both sides by pn and replace
in pnj(z) all the pkzk by 1 modulo (pz − 1). After this transformation, we obtain an
equality pnm= i + (pz − 1)s1(z) in Z[G; z], where i ∈ I=0. We can assume that p
is not 0 ∈ Z[G], otherwise K ∪ (p �= 0) collapses trivially. It follows that pnm = i,
which is the collapse we are looking for.

(c) Since the presentation K ∪ (p �= 0) collapses, we have an equality mpn = i in
Z[G] with m ∈ M�=0 and i ∈ I=0. Similarly we have an equality v= i′ + pa in Z[G]
with v ∈ M�=0 and i′ ∈ I=0. So we get equalities in Z[G]

ian =mpnan =m(v− i′)n =mvn + i2

with i2 ∈ I=0, which gives mvn + i3 = 0 with mvn ∈ M �=0 and i3 = i2 − ian ∈ I=0.
(d) We suppose that there is an equality in Z[G; z] of the form

m +
∑

i

riai(z) + q(z)a(z) = 0; (2.1)

where the ri belong to R=0 and m belongs to M �=0, the monoid generated by R �=0.
Dividing the ai by the monic polynomial q, we get an algebraic identity

m +
∑

i

ribi(z) + q(z)b(z) = 0; (2.2)

where the bi are of degree smaller that deg(q) in z. So b(z) = 0 and

m +
∑

i

ribi(0) = 0 (2.3)

which is the collapse we are looking for.

Remark 2.7. This kind of result is particularly easy because we have stated an algebraic
form of collapse (in Proposition 2.2). The algebraic computation constructing a collapse
from several other ones is, in fact, present (and often hidden) in classical proofs of
“embedding theorems” as “every proper ideal is contained in a prime ideal” or “every
:eld is embeddable in an algebraically closed :eld”.
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The proofs of simultaneous collapsing that we will encounter in this paper will
always use this technique of lifting algebraic identities certifying the collapses along
the extra dynamical axioms.

All examples we give in this paper present simultaneous collapsing between a dy-
namical theory and some direct subtheory. It would be interesting to have general
criteria for such a simultaneous collapsing.

As an immediate consequence of Theorem 2.4 we get:

Corollary 2.8 (Constructive versions of non-constructive embedding theorems). Let A
be a ring. If the diagram of A collapses in the theory of algebraically closed 8elds;
then A is trivial. In particular we get:

(a) Let A be a non-trivial ring. The diagram of A does not collapse in the theory
of 8elds.

(b) Let K be a 8eld. The diagram of K does not collapse in the theory of alge-
braically closed 8elds.

In this proposition, claim (a) is a constructive version of the following result: “if a
ring is non-trivial, it has a prime ideal”.

In the same way, claim (b) is a constructive version of the fact that “every :eld can
be embedded in an algebraically closed :eld”.

Constructive versions of embedding results similar to the ones stated above are
announced in a note by Joyal [16]. They rely on a lattice-theoretic description of the
spectrum of a ring.

Theorem 2.4 can also be settled in the following form.

Proposition 2.9. Let K = (G;R=0; R�=0) be a presentation in the language Lf. A
collapse of the presentation K in the theory of algebraically closed 8elds produces
an equality m1 · · ·m‘ + a1i1 + · · · + akik = 0 with mj in R �=0 and ij in R=0.

We can deduce from this last result a non-constructive formal version of Hilbert
Nullstellensatz.

Proposition 2.10. Let A be a ring; and R=0 and R �=0 families of elements of A. Denote
by I=0 the ideal generated by R=0 and by M�=0 the monoid generated by R �=0. The
following properties are equivalent:

(i) There exist i ∈ I=0 and m ∈ M �=0 with i + m = 0:
(ii) There exists no homomorphism 6 : A → L with L an algebraically closed 8eld;

6(i) = 0 for i ∈ R=0 and 6(m) �= 0 for m ∈ R �=0.
(iii) There exists no prime ideal I containing I=0 and not intersecting M �=0.

Proof. Use the preceding result taking as presentation DG(A)∪(∅;R=0; R�=0), and apply
the non-constructive completeness theorem of model theory.
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2.3. Decision algorithm and constructive Nullstellensatz

Since the theory of algebraically closed :elds has a decision algorithm for deter-
mining emptiness of sets de:ned by equations and negations of equations which is
particularly simple, we are able to prove the following:

Proposition 2.11. Let K be a 8eld and R=0; R �=0 two 8nite families of polynomials
of K[x1; : : : ; xn]. There is a decision algorithm answering yes or no to the question
“does the presentation DG(K) ∪ ({x1; : : : ; xn};R=0; R�=0) implies ⊥ in the theory of
algebraically closed 8elds?” If the answer is yes; the algorithm produces a collapse
of the presentation in the theory of 8elds.

Proof. We assume that, from a constructive point of view, all our :elds are discrete.
This means that we have a way of deciding exactly if an element is zero or not.
Precisely, G1 being the :nite set of coeRcients of polynomials belonging to R=0∪R�=0,
we can decide for any Z-polynomial whether it vanishes or not when evaluated on G1

in K .
We give a sketch of an elementary decision algorithm, very near to dynamical eval-

uation in the dynamical constructible closure of a :eld (see [15]).
We deal :rst with only one variable x, and we show that any :nite set of constraints

(pi(x) = 0)16i6h; (qj(x) �= 0)16j6k (h and k are natural integers) is equivalent to
only one constraint. Moreover, the equivalence is provable by a dynamical proof within
the theory of :elds.

If h ¿ 0, the constraints (pi(x) = 0)16i6h are equivalent to a single one p(x) = 0
where p is some gcd of pi’s. We remark that the computation of p by Euclid’s
algorithm is a computation in the fraction :eld of the ring Z[G1] ⊂ K . Using pseudo-
remainders instead of remainders we have a computation within Z[G1]. We get a
Bezout relation 9p = a1p1 + · · · + ahph, and divisibility relations :ipi = bip (greek
letters mean non-zero elements of K). So dynamical proofs of

DG(K); p = 0 � (p1 = 0; : : : ; ph = 0)

and

DG(K); p1 = 0; : : : ; ph = 0 � p = 0

are very easy.
If k ¿ 0, the constraints (qj(x) �= 0)16j6k are equivalent to a single one, q �= 0

where q = q1 : : : qk . A dynamical proof for this equivalence is also very easy.
Finally, we have to see the case of a system of two constraints (p = 0; q �= 0). If

q = 0 or p = 0 in K[x], the system is equivalent to q �= 0. Else, we can compute within
the subring Z[G1] the part of p prime to q. More precisely, we get some equalities
involving polynomials in Z[G1] : ;p = p1p2; p1u + qv = :; p2q2 = 9qk . From these
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equalities we get dynamical proofs of

DG(K); p=0; q �=0 � p1=0 and DG(K); p1 = 0 � (p=0; q �= 0):

So we can always reduce the problem to only one constraint. After this reduction,
we get a collapse if we obtain as constraint t = 0 with a non-zero constant t of K ,
or a constraint q �= 0 with q = 0 in the case that h = 0 (this means that one qj is
actually 0).

We have to see that in the other cases the collapse is impossible.
In the case of only one constraint t(x) = 0 with deg(t) ¿ 0, we may assume that

t(x) is monic. Now Lemma 2.6(d) implies that if (DG(K); t(x) = 0) collapses, then
DG(K) collapses also, which is impossible.

In the case of only one constraint q(x) �= 0, the constraint is true in the :eld K(x)
of rational fractions.

This ends the proof of the one variable case. For the general case we need the
following lemma.

Lemma 2.12. Let K = (G;R=0; R�=0) be a presentation in the language Lf. Let z a
new variable and q(z) a monic non-constant polynomial in Z[G][z]. Let q1(z) be a
polynomial Z[G][z] with leading coe@cient p.

(i) If the presentation K∪ (q(z) �= 0) collapses in the theory of rings with proper
monoid; so does the presentation K.

(ii) If the presentation K∪ (q1(z) = 0; p �= 0) collapses in the theory of rings with
proper monoid; so does the presentation K ∪ (p �= 0).

(iii) If the presentation K ∪ (q1(z) �= 0; p �= 0) collapses in the theory of rings
with proper monoid; so does the presentation K ∪ (p �= 0).

Proof. (i) We suppose that there is an equality in Z[G; z] of the form

mq(z)n +
∑

i

riai(z) = 0;

where the ri belong to R=0 and m belongs to M �=0, the monoid generated by R �=0. Let
n′ be the z-degree of q. This equality in Z[G; z] = Z[G][z] gives for the coeRcient of
znn

′
in Z[G] exactly an equality in the form of the collapse we are looking for.

(ii) We get the result by combination of items (a), (b) and (d) of Lemma 2.6.
(iii) We get the result by combination of (i) and of items (a), (b) in Lemma 2.6.

We now turn to the multivariate case. Let us call S our system of polynomial
constraints. We consider the variables x1; : : : ; xn−1 as parameters and the variable xn
as our true variable. We try to make the same computations as in the one variable
case. Computations are essentially pseudo-remainder computations. With coeRcients
depending on parameters, such a computation splits in many cases, depending on the
degrees of the polynomials, i.e., depending on the nullity or non-nullity of polynomials
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in the parameters. This gives a (very big) :nite tree, which is precisely a covering of
the presentation DG(K) ∪ ({x1; : : : ; xn};R=0; R�=0) in the theory of :elds. At each leaf
L of this tree, we have a presentation with a system SL of polynomial constraints on
x1; : : : ; xn−1 and only one constraint sL on xn which is either pL = 0 or pL �= 0, where
pL is an xn-polynomial with coeRcients in K[x1; : : : ; xn−1].

If pL is not a “constant” (i.e., an element of K[x1; : : : ; xn−1]), the fact that the leading
xn-coeRcient of pL is �= 0 is given by a polynomial constraint in SL. Moreover, in
each case we have dynamical proofs for SL; sL � S and SL; S � sL.

If pL is a “constant” the system S ′L = (SL; sL) does not involve xn and the presen-
tation ((x1; : : : ; xn); (SL; S)) collapses if and only if the presentation ((x1; : : : ; xn−1); S ′L)
collapses.

If pL is not a “constant”, by Lemma 2.12 (ii) and (iii), the presentation ((x1; : : : ; xn);
(SL; sL)) collapses if and only if the presentation ((x1; : : : ; xn−1); SL) collapses. So, the
presentation ((x1; : : : ; xn); (SL; S)) collapses if and only if the presentation ((x1; : : : ; xn−1);
SL) collapses.

Finally, S collapses i& all the presentations ((x1; : : : ; xn); (SL; S)) at the leaves of the
big tree collapse. So we can :nish the proof arguing by induction.

Theorem 2.13 (Constructive version of Hilbert’s Nullstellensatz). Let K be a 8eld and
R=0; R �=0 two 8nite families of polynomials of K[x1; : : : ; xn]. There is an algorithm
deciding if the presentation DG(K) ∪ ({x1; : : : ; xn};R=0; R�=0) collapses in the theory
of algebraically closed 8elds. In case of positive answer one can produce an equal-
ity m = a1p1 + · · · + akpk with pj in R=0 and m in the monoid M �=0 generated
by R�=0.

Proof. We use Proposition 2.11, Theorem 2.4 saying that the theory of :elds collapses
simultaneously with the theory of rings with proper monoids, and :nally Proposition 2.2
describing collapse in rings with proper monoids.

In general, the algebraic closure of a :eld cannot be constructed. But in several
important particular cases, for example if the :eld K is discrete and enumerable, or
discrete and ordered, the algebraic closure can be constructed (see [29, 27]). The
e&ective Hilbert’s Nullstellensatz has a nicer formulation then.

Theorem 2.14. Let K be a 8eld contained in an algebraically closed 8eld L. Let
R=0 be a 8nite family of polynomials of K[x1; : : : ; xn]. One can decide whether a
polynomial q ∈ K[x1; : : : ; xn] is 0 on the common zeroes of polynomials pj ∈ R=0 in
Ln. In case of positive answer one can produce an equality qn = a1p1 + · · · + akpk ;
with pj in R=0. In case of negative answer; one can produce a point in Ln which is
a zero of all pj in R=0 and not of q.

Proof. Consider the algorithm in the proof of Proposition 2.11 with R �=0 = {q}. If
we are in the situation where the decision algorithm answers “yes”, we conclude by
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the preceding theorem. In the other case, we consider a leaf of the covering built
by induction on the number of variables in the proof of Proposition 2.11, such that
the “triangular system” at this leaf does not collapse: this system contains only one
constraint ri(x1; : : : ; xi) = 0 or �= 0 for each i, where degxi(ri) ¿ 0 in the case = 0
and the constraints involving x1; : : : ; xi−1 imply that the leading coeRcient of ri with
respect to xi is �= 0. So the construction of a point satisfying this triangular system is
easy.

So the constructive character of Hilbert Nullstellensatz comes in our approach from
two di&erent ingredients:
• the fact that, when the decision algorithm produces a proof of ⊥ in the theory of

algebraically closed :elds, the presentation collapses in the theory of :elds,
• the fact that a collapse in the theory of :elds gives rise to a construction of an

algebraic identity certifying this collapse.

2.4. Provable facts and algebraic theory of quasi-domains

We give now the axioms of the theory of quasi-domains: the axioms of rings with
a proper monoid and the following simpli8cation axioms:

x2 = 0 � x = 0 S(2)f

xy = 0; x �= 0 � y = 0 S(3)f

xy �= 0 � x �= 0 S(4)f

Remark that the simpli:cation axiom S(1)f is a valid dynamical rule in the theory
of quasi-domains.

Note also that a :eld is a quasi-domain. More precisely, axioms of quasi-domains
are axioms of :elds or valid dynamical rules in the theory of :elds. So quasi-domains
are between rings with proper monoid and :elds, and we get the following lemma.

Lemma 2.15. The theories of rings with proper monoid; quasi-domains; 8elds and
algebraically closed 8elds collapse simultaneously.

Proposition 2.16. The theories of quasi-domains; 8elds and algebraically closed 8elds
prove the same facts.

Proof. It is easy to see that in the theory of :elds a fact is provable (from a presenta-
tion) if and only if the “opposite” fact (obtained by replacing = 0 with �= 0 and vice
versa) produces a collapse (when added to the presentation). This is because we have
the axiom � x = 0 ∨ x �= 0 and the valid dynamical rule x = 0; x �= 0 �⊥. A fortiori
the same result is true for the theory of algebraically closed :elds.

For quasi-domains, the simpli:cation axioms imply the same result.
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Let us prove :rst that p = 0 has a dynamical proof from K = (G;R=0; R�=0) in
the theory of quasi-domains if and only if K ∪ (p �= 0) collapses. The “only if” part
follows from the valid dynamical rule (x = 0; x �= 0) �⊥. Suppose now that we
have mpn + i = 0 with m ∈ M �=0 and i ∈ I=0 where M �=0 is the monoid generated
by R�=0 and I=0 is the ideal generated by R=0. The presentation K proves −i = 0
since −i ∈ I=0, so it proves mpn = 0 since mpn = (mpn + i) + (−i). Then we deduce
pn = 0 using axiom S(3)f hence p = 0 using several times axiom S(2)f.

Finally, let us prove that p �= 0 has a dynamical proof from K in the theory of
quasi-domains if and only if K∪ (p = 0) collapses in the theory of rings with proper
monoid. Suppose that we have m + i + pa = 0 with m ∈ M and i ∈ I=0 We deduce
pa �= 0 and then p �= 0 using S(4)f.

So the theories of quasi-domains, :elds and algebraically closed :elds prove the
same facts since they collapse simultaneously.

Remark 2.17. If we take the theory of rings with proper monoid and add the axiom

� x = 0 ∨ x �= 0

we get the theory of domains. It is easy to see that axioms of quasi-domains are valid
dynamical rules for domains. Moreover, it is interesting to remark that the algorithm
in Proposition 2.11 gives a collapse in the theory of domains. The theories of quasi-
domains, domains, :elds and algebraically closed :elds prove the same facts. Moreover
they collapse simultaneously with the theory of rings with proper monoid.

This has interesting consequences for Heyting :elds (see [29]). Heyting :elds are a
weak notion of :eld: the equality relation x = 0 is equivalent to ¬(x �= 0) (where we
interpret x �= 0 as meaning the invertibility of x), but the law of the excluded middle
x = 0 ∨ x �= 0 is not assumed, Heyting :elds satisfy axioms of quasi-domains and
axioms of local rings

x �= 0 � ∃y yx − 1 = 0 and � x �= 0 ∨ 1 + x �= 0

but it seems that there is no purely dynamical description of an axiomatic for Heyting
:elds. This is because there are no dynamical axioms for saying that ¬P means P �⊥ .

A consequence of the Nullstellensatz is that any fact within a Heyting :eld which
can be proved in the theory of algebraically closed :elds can also be proved in the
theory of Heyting :elds. So, when dealing with facts in a Heyting :eld, we can use
freely all the axioms of algebraically closed :elds. In particular, the axiom Dy(2)f
meaning the decidability of equality to 0 causes no trouble with facts.

3. Stengle’s Positivstellensatz

We give in this section a new constructive proof of Stengle’s Positivstellensatz [32].
This new proof is close to [18].
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3.1. Some simultaneous collapses

The central theory we consider is the theory of ordered :elds. The unary language of
ordered 8elds Lof is the unary language of rings Lr with two more unary predicates
¿ 0 and ¿ 0.

Axioms of proto-ordered ring are axioms of rings and the following axioms.

� x2 ¿ 0 D(1)of

x = 0; y ¿ 0 � x + y ¿ 0 D(2)of

x ¿ 0; y ¿ 0 � x + y ¿ 0 D(3)of

x ¿ 0; y ¿ 0 � xy ¿ 0 D(4)of

� 1 ¿ 0 D(5)of

x = 0; y ¿ 0 � x + y ¿ 0 D(6)of

x ¿ 0; y ¿ 0 � x + y ¿ 0 D(7)of

x ¿ 0; y ¿ 0 � xy ¿ 0 D(8)of

x ¿ 0 � x ¿ 0 D(9)of

0 ¿ 0 � ⊥ Cof

Axioms of ordered 8elds are axioms of proto-ordered rings and the following axioms:

x ¿ 0; −x ¿ 0 � x = 0 S(1)of

xy − 1 = 0 � x2 ¿ 0 S(2)of

x2 ¿ 0 � ∃y xy − 1 = 0 Dy(1)of

� x ¿ 0 ∨ −x ¿ 0 Dy(2)of

� x = 0 ∨ x2 ¿ 0 Dy(3)of

Remark that if we introduce x �= 0 as an abbreviation for x2 ¿ 0 then the axioms of
rings with proper monoid are valid dynamical rules in the theory of proto-ordered rings.

The set of elements x of a proto-ordered ring satisfying x ¿ 0 is a proper cone.
Recall that a subset C of a ring A is called a cone if the squares of A are in C,
C + C ⊂ C and C C ⊂ C. A cone C is said to be proper if −1 �∈ C.

We write t ¿ t′ as an abbreviation for t − t′ ¿ 0, t ¿ t′ ¿ t ” as an abbreviation
for t ¿ t′; t′ ¿ t ” and t′ 6 t as another way of writing t ¿ t′.

A real closed 8eld is an ordered :eld with the extra axioms:

−p(a)p(b) ¿ 0 � ∃y p(y) = 0 Dyn(4)of

(a; b; y and coeRcients of the monic degree n polynomial p are distinct variables, and
there is an axiom for each degree). Of course,

−p(a)p(b) ¿ 0; b− a¿ 0 � ∃y (p(y) = 0; b− y ¿ 0; y − a¿ 0)

is a valid dynamical rule in the theory of real closed :elds.
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Notice that there are again direct algebraic axioms, collapse axioms, simpli:cation
axioms and dynamical axioms.

A presentation in the language Lof is a set of variables G and three subsets
R=0; R¿0; R¿0 contained in Z[G]. It is denoted by (G;R=0; R¿0; R¿0).

The theory of proto-ordered rings has been chosen because the collapse takes a very
simple form and is very easy to prove as we shall see immediately (this is due to the
fact that it is a direct theory), and because it collapses simultaneously with the theory
of real closed :elds as we shall see next.

Proposition 3.1. Let K=(G;R=0; R¿0; R¿0) be a presentation in the language Lof.
Let I=0 be the ideal of Z[G] generated by R=0; M¿0 the monoid generated by
R¿0 (M¿0 contains at least the element 1); C¿0 the cone generated by R¿0 ∪ R¿0.
A collapse of the presentation K in the theory of proto-ordered rings produces an
equality in Z[G] :

m + q + i= 0

with m ∈ M¿0; q ∈ C¿0 and i ∈ I=0. Reciprocally; such an equality produces a
collapse of K.

Proof. First consider dynamical proofs of facts using only direct algebraic axioms.
These are algebraic proofs without branching.

Arguing inductively on the number of times the direct algebraic axioms are used in
the proof we see successively that:
• provably = 0 elements, are exactly elements of I=0,
• provably ¿ 0 elements, are exactly elements of the form q + i with q ∈ C¿0 and
i ∈ I=0,

• provably ¿ 0 elements, are exactly elements of the form m+ q+ i with m ∈ M¿0,
q ∈ C¿0 and i ∈ I=0.
Now a proof of collapse is given by a proof of 0 ¿ 0 using only direct algebraic

axioms. Necessarily it produces an equality m + q + i= 0 in Z[G].

Remark 3.2. In the line of Remark 2.3, we can see in the preceding proof an order
between the unary predicates we have in the language: :rst comes =0, then ¿0,
and last ¿0, and the collapse is concerned with this last predicate ¿0. The axioms
D(1)of to D(4)of are construction axioms for ¿0, and the axioms D(5)of to D(8)of
are construction axioms for ¿0. Actually, the situation here is a little more complex,
since the remaining direct algebraic axiom D(9)of contains ¿0 at the left and ¿0 at
the right, which violates the order of construction. This axiom plays a special role: it
expresses the inclusion of ¿ 0 in ¿ 0. One can realize that any proof in the theory
of proto-ordered rings can be transformed into a proof where the axiom D(9)of is
only used at the beginning, i.e., before the application of any other axiom. Indeed, any
axiom D(i + 4)of of construction for ¿ 0 is doubled by an axiom D(i)of, and it is
easy to check that an application of D(9)of following an application of D(i)of can be
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transformed to an application of D(9)of preceding an application of D(i + 4)of. To
make things clearer, let us take an example. If s = 0 and t ¿ 0, then s + t ¿ 0 by
D(6)of and s + t ¿ 0 by D(9)of; but one could also use :rst D(9)of to have t ¿ 0,
then D(2)of to have s + t ¿ 0.

Another way of formulating this remark is to say that the axiom D(9)of may be
replaced by the stipulation that any presentation must satisfy R¿0 ⊂ R¿0. This reVects
the fact that the construction of the cone C¿0 starts with R¿0 ∪ R¿0. So we have to
distinguish between the direct algebraic axioms expressing construction of predicates,
and those expressing an inclusion of predicates (here D(9)of). The axioms of inclusion
violate the order of construction, but they can be lifted at the beginning of proofs. This
preserves the possibility of constructing the predicates one after the other.

Proposition 3.1 means that a collapse of a presentation in the theory of proto-ordered
rings can always be certi:ed by an algebraic identity of a very precise type.

Let us return to the example of the presentation (x3 −y3 = 0; (x−y)2 ¿ 0; x = 0)
which collapses in the theory of proto-ordered rings. This is certi:ed by the equality

(x − y)4 + y(x3 − y3) − (x3 − 3x2y + 6xy2 − 4y3)x = 0 (Ex1)

since (x − y)4 belongs to the monoid generated by (x − y)2 and y(x3 − y3) − (x3 −
3x2y + 6xy2 − 4y3)x belongs to the ideal generated by x3 − y3 and x.

Similarly, the presentation (x3 − y3 = 0; (x − y)2 ¿ 0; x2 ¿ 0) collapses in the
theory of proto-ordered rings and this is certi:ed by the equality

(x − y)2x2 + 2(x − y)2x2 + (x − y)2(2y + x)2 − 4(x − y)(x3 − y3) = 0 (Ex2)

since
• (x − y)2x2 belongs to the monoid generated by (x − y)2 and x2,
• 2(x − y)2x2 + (x − y)2(2y + x)2 belongs to the cone generated by (x − y)2,
• 4(x − y)(x3 − y3) belongs to the ideal generated by (x3 − y3).

Theorem 3.3. The theory of ordered 8elds and the theory of proto-ordered rings
collapse simultaneously.

Proof. We are going to prove the following lemma, with abuses of notations similar
to Notation 2.5.

Lemma 3.4. Let K=(G;R=0; R¿0; R¿0) be a presentation in the language Lof; p; r ∈
Z[G] and z a new variable.

(a) If the presentation K∪ (p = 0) collapses in the theory of proto-ordered rings;
then so does the presentation K ∪ (p¿ 0; −p¿ 0).

(b) If the presentation K∪(p2 ¿ 0) collapses in the theory of proto-ordered rings;
then so does the presentation K ∪ (pr − 1 = 0)
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(c) If the presentation K ∪ (pz − 1 = 0) collapses in the theory of proto-ordered
rings; then so does the presentation K ∪ (p2 ¿ 0).

(d) If the presentations K ∪ (p ¿ 0) and K ∪ (−p ¿ 0) collapse in the theory
of rings with proper cone; then so does the presentation K.

(e) If the presentations K ∪ (p = 0) and K ∪ (p2 ¿ 0) collapse in the theory of
proto-ordered rings; then so does the presentation K.

Lemma 3.4 proves that the :ve additional axioms of ordered :elds do not change
the collapse, which proves the theorem.

Let us prove now the lemma.
Let M¿0 be the monoid generated by R¿0 in Z[G], C¿0 the cone generated by

R¿0 ∪ R¿0 and I=0 the ideal generated by R=0.
(a) We start with one identity m + q + i = pb in Z[G] with m ∈ M¿0, q ∈ C¿0,

i ∈ I=0 and b ∈ Z[G]. Squaring, we get an identity m1 +q1 + i1 =p2b2 and we rewrite
it as m1 + q1 + (p)(−p)b2 + i1 = 0 which gives the collapse we are looking for.

(b) Left to the reader (see the analogous computation in Lemma 2.6(a))
(c) This is again Rabinovitch’s trick. We can assume that p is not 0 ∈ Z[G]. There

is an equality in Z[G; z] :

m +
∑

j

qjbj(z)2 + i(z) + (pz − 1)b(z) = 0

with m in M¿0, qj ∈ C¿0, bj and b in Z[G; z], and i(z) is a polynomial with coeR-
cients in I=0.

Multiply by p2n where 2n is bigger than the z degree of the polynomials i(z) and
bj(z)2. Replace in (pnbj(z))2 and in p2ni(z) all pkzk by 1 modulo (pz− 1). The new
polynomial b(z) is necessarily 0 and since there is no more z in what remains, we get
an equality which gives the collapse we are looking for.

(d) We start with two identities in Z[G]

m1 + q1 + q′1p + i1 = 0 (3.1)

and

m2 + q2 − q′2p + i2 = 0 (3.2)

with m1 and m2 ∈ M¿0, q1; q′1 and q2; q′2 ∈ C¿0 and i1 and i2 in I=0. From (3.1) we
deduce −q′1p=m1 + q1 + i1 and from (3.2) q′2p=m2 + q2 + i2. Multiplying these two
equalities we get −q′1q′2p2 = (m1 + q1 + i1)(m2 + q2 + i2) and since q′1q

′
2p

2 is in C¿0,
this can be rewritten m + q + i= 0 in Z[G] with m ∈ M¿0, q ∈ C¿0, i ∈ I=0.

(e) We start with two identities in Z[G]

p2nm1 + q1 + i1 = 0 (3.3)

and

m2 + q2 + ap + i2 = 0 (3.4)
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with m1 and m2 ∈ M¿0, q1 and q2 in C¿0 and i1 and i2 in I=0. Using (3.4), we get

a2np2n = (m2 + q2 + i2)2n =m3 + q3 + i3 (3.5)

with m3 in M¿0, q3 ∈ C¿0 and i3 ∈ I=0. Multiplying now (3.3) by a2n and substituting
p2na2n by m3 + q3 + i3 using (3.5), we obtain an equality m4 + q4 + i4 = 0 in Z[G].
This gives the collapse we are looking for.

The proof of the lemma gives very explicit methods for constructing identities cer-
tifying collapses. For instance, in our example, from the algebraic identities (Ex1)
and (Ex2) certifying that the presentations (x3−y3=0; (x−y)2¿0; x=0) and (x3−y3=0;
(x − y)2 ¿ 0; x2 ¿ 0) collapse in the theory of proto-ordered rings, we can deduce
an algebraic identity certifying that the presentation (x3 − y3 = 0; (x − y)2 ¿ 0)
collapses in the theory of proto-ordered rings as in the preceding lemma (e): since
(x3−3x2y+6xy2−4y3)x= (x−y)4 +y(x3−y3), (x3−3x2y+6xy2−4y3)2x2 = ((x−y)4

+ y(x3 − y3))2 and using (Ex2) multiplied by (x3 − (x2y + 6xy2 − 4y3)2

and replacing (x3 − 3x2y + 6xy2 − 4y3)2x2 by ((x − y)4 + y(x3 − y3))2 we get an
expression (x− y)6 + a sum of squares + (x3 − y3)A(x; y) = 0 which is the algebraic
identity we are looking for.

Corollary 3.5. Let K be a real 8eld (i.e.; −1 is not a sum of squares in K). The
diagram of K in the language Lof does not collapse in the theory of ordered 8elds.

Proof. Apply Theorem 3.3 with the presentation DG(K) ∪ (∅; ∅; C; ∅), where C is the
subset of sums of squares.

This corollary is a constructive version of the non-constructive theorem according
to which “every real :eld can be totally ordered”. Next theorem gives a constructive
version of the fact that “every ordered :eld can be embedded in a real closed :eld”.

Theorem 3.6. The theory of real closed 8elds and the theory of ordered 8elds collapse
simultaneously.

Proof. We prove that the use of the extra axiom of real closed :elds

−p(a)p(b) ¿ 0 � ∃z p(z) = 0

does not modify the collapse. This is the content of the following lemma. Due to the
induction procedure, we have to consider polynomials p(z) which may be non-monic.

Lemma 3.7. Let K=(G;R=0; R¿0; R¿0) be a presentation in the language Lof; a and
b elements of Z[G]; z a new variable and p(z) ∈ Z[G][z] (not necessarily monic).
If the presentation K ∪ (p(z) = 0) collapses in the theory of ordered 8elds; then so
does the presentation K ∪ (−p(a)p(b) ¿ 0).

Proof. Let M¿0 be the monoid generated by R¿0, C¿0 the cone generated by R¿0 ∪
R¿0 and I=0 the ideal generated by R=0.
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The proof is by induction on the formal degree of p in z (we say “formal” because
p(z) is not necessarily monic). For degree 0 and 1 it is easy. Suppose now that
deg(p) ¿ 2.

Consider :rst the case when p is monic. From the collapse of K∪ (p(z) = 0), we
obtain an equality of polynomials in the variable z:

m +
∑

i

pis2
i (z) +

∑

j

njtj(z) + p(z)t(z) = 0 (3.6)

with m ∈ M¿0, the pi in C¿0 and the nj in I=0. This is an algebraic identity in
Z[G; z]. We divide si and tj by p and obtain an equality:

m +
∑

i

pir2
i (z) +

∑

j

njqj(z) − p(z)q(z) = 0 (3.7)

with m ∈ M¿0, the pi in C¿0, the nj in I=0 and deg(q(z)) 6 p− 2.
This equality provides a collapse of the presentation K ∪ (q(z) = 0) in the theory

of ordered :elds. By induction hypothesis, we have thus a collapse of the presentation
K ∪ (−q(a)q(b) ¿ 0).

On the other hand, substituting a (resp. b) to z in equality (3.7), we obtain

m +
∑

i

pir2
i (a) +

∑

j

njqj(a) =p(a)q(a); (3.8)

m +
∑

i

pir2
i (b) +

∑

j

njqj(b) =p(b)q(b) (3.9)

Equalities (3.8) and (3.9) show that in the presentation K the atomic formulas
p(a)q(a)¿0 and p(b)q(b)¿0 are provable, hence also p(a)p(b)q(a)q(b))¿0. Thus
the presentation K∪ (−p(a)p(b)¿0) proves that −q(a)q(b)¿0 (it is easy to see that
the dynamical rule (xy ¿ 0; x¿0) � y ¿ 0 is valid in the theory or ordered :elds)
and collapses.

In the case that p is not monic, it is possible to open two branches. In the :rst
one, the leading coeRcient of p is zero, and the induction hypothesis can be used. In
the second branch, the leading coeRcient of p is invertible and we are reduced to the
monic case using the axiom Dy(1)of of ordered :elds.

Theorem 3.8. The theory of real closed 8elds and the theory of proto-ordered rings
collapse simultaneously.

Corollary 3.9. Let K = (G;R=0; R¿0; R¿0) be a presentation in the language Lof:
Let I=0 be the ideal of Z[G] generated by R=0; M¿0 the monoid generated by R¿0;
C¿0 the cone generated by R¿0∪R¿0. A collapse of the presentation K in the theory
of real closed 8elds produces an equality in Z[G]:

m + q + i= 0

with m ∈ M¿0; q ∈ C¿0 and i ∈ I=0.
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Proposition 3.10 (Non-constructive formal version of Stengle’s Positivstellensatz). Let
A be a ring; (R=0; R¿0; R¿0); three families of elements. Denote by M¿0 the monoid
generated by R¿0; C¿0 the cone generated by R¿0 ∪ R¿0; I=0 the ideal generated
by R=0. The following properties are equivalent:

(i) There exists i ∈ I=0; p ∈ C¿0 and m ∈ M¿0 with m + p + i = 0 in A.
(ii) There exists no homomorphism 6 :A → L with L real closed; 6(a) = 0 for

a ∈ R=0; 6(p) ¿ 0 for p ∈ R¿0 and 6(m) ¿ 0 for m ∈ R¿0.

Proof. Apply the preceding corollary to the presentation

DG(A) ∪ (∅;R=0; R¿0; R¿0)

and use the non-constructive completeness theorem of model theory.

3.2. Decision algorithm and constructive Positivstellensatz

In the next theorem, we mention the real closure of an ordered :eld. A constructive
proof of the existence and uniqueness (up to unique isomorphism) of this real closure
is for example given in [27]. So the situation is easier to describe than for algebraically
closed :elds and we can use more directly semantics.

Since the theory of real closed :elds has a decision algorithm for testing emptiness
with a very simple structure, we are able to prove the following:

Theorem 3.11. Let K be an ordered 8eld; R its real closure; and R=0; R¿0; R¿0

three 8nite families of K[x1; x2; : : : ; xn]=K[x]. The system of sign conditions [u(x)¿0;
q(x) ¿ 0; j(x) = 0] for u ∈ R¿0; q ∈ R¿0; j ∈ R=0 is impossible in Rn if and only if
the presentation

DG(K) ∪ ({x1; x2; : : : ; xn};R=0; R¿0; R¿0)

collapses in the theory of real closed 8elds.

Proof. We assume that from a constructive point of view, all our ordered :elds are
discrete, this means that we have a way of deciding exactly if an element is zero
or not. Precisely, G1 being the :nite set of coeRcients of polynomials belonging to
R=0; R¿0, and R¿0, we can decide for any Z-polynomial whether, when it is evaluated
on G1 in K , we get 0, ¿ 0 or ¡ 0.

We :rst deal with only one variable x. Recall Cohen–H(ormander algorithm. We call
H(ormander tableau of a :nite list of polynomials with coeRcients in the ordered :eld
K the tableau
• whose columns correspond to roots of the polynomials in the real closure of K and

to open intervals cut out by these roots, listed in the canonical order,
• and which has a line for each polynomial, whose entries are the sign (¿0, =0 or
¡0) which the polynomial has at each of the roots or on each of the intervals.
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Lemma 3.12. Let K be an ordered 8eld; sub8eld of a real closed 8eld R. Let L =
[P1; P2; : : : ; Pk ] be a list of polynomials of K[x]. Let P be the family of polynomi-
als generated by the elements of L and by the operations P �→ P′; and (P;Q) �→
Rem(P;Q). Then:
(1) P is 8nite.
(2) One can set up the HBormander tableau for P using only the following information:
• the degree of each polynomial in the family;
• the diagrams of the operations P �→P′; and (P;Q)�→Rem(P;Q) (where deg(P) ¿

deg(Q)) in P; and
• the signs of the constants of P.

Proof. Property (1) is easy.
(2) We number the polynomials in P so that the degree is non-decreasing. Let Pm

be the subfamily of P made of polynomials numbered 1 to m. Let us denote by Tm

the H(ormander tableau corresponding to the family Pm : i.e. the tableau where all the
real roots of the polynomials of Pm are listed in increasing order, and where all the
signs of the polynomials of Pm are indicated, at each root, and on each interval between
two consecutive roots (or between −∞ and the :rst root, or between the last root and
+∞). Then by induction on m it is easy to prove that one can construct the tableau
Tm from the allowed information.

When one inspects the details of the preceding construction, one sees that it means
an elementary proof of a big disjunction (all the systems of sign conditions for the
list L that appear when x is in R). This elementary proof leads directly to a cov-
ering of the presentation DG(K) ∪ ({x}; ∅; ∅; ∅) in the theory of real closed
:elds.

Now, if R=0, R¿0, R¿0 are three :nite sets whose union is L, and if the corresponding
sign conditions do not appear in the H(ormander tableau, we see that, considering the
preceding covering as a covering of DG(K)∪({x};R=0; R¿0; R¿0) we are able to “kill”
each leaf of the tree by a collapse, since we get at each leaf a pair of contradictory
sign conditions on at least one of the Pi’s.

Let us see now the multivariate case. We consider the variables x1,. . . , xn−1 as
parameters and the variable xn as our true variable. We try to make the same computa-
tions as in the one variable case. Computations for setting the family P are essentially
derivations and pseudo-remainder computations. With coeRcients depending on pa-
rameters, such a computation splits in many cases, depending on the degrees of the
polynomials (i.e., depending on the nullity or non-nullity of polynomials in the para-
meters). Finally, the construction of the H(ormander tableau depends also on the signs
of the “constants” (i.e., some polynomials in the parameters) of the family P. So, com-
puting all possible signs conditions for a :nite family of polynomials of K[x1; : : : ; xn]
depends on computing all possible signs conditions for another (much bigger) :nite
family of polynomials of K[x1; : : : ; xn−1].
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By induction we get a covering of the presentation

DG(K) ∪ ({x1; x2; : : : ; xn}; ∅; ∅; ∅)

in the theory of real closed :elds. At the leaves of our tree, we get all possible
sign conditions (when evaluated in Rn) for polynomials in R=0 ∪ R¿0 ∪ R¿0. So if
the system is impossible, the corresponding sign conditions give a collapse at each
leaf of our tree when we consider this covering as a covering of the presentation
DG(K) ∪ ({x1; x2; : : : ; xn};R=0; R¿0; R¿0)

Remark :nally that on the contrary, if one leaf of the tree has good sign conditions,
then we are able to explicit a point in Rn satisfying the sign conditions, and the
presentation cannot collapse in the theory of real closed :elds.

Remark 3.13. When we say that the correctness of the H(ormander tableau has a very
elementary proof, we mean that the proof is only made of direct application of our
real closed :elds axioms. The detailed inspection shows that only one argument is
“indirect”: the fact that a polynomial whose derivative is positive on an interval must be
increasing on the interval. This fact has a very simple proof based on algebraic identities
(see e.g. in [27] the “algebraic mean value theorem”). In the context of H(ormander
tableaux, these identities lead to “generalized Taylor formulas” (see [19]). Using these
formulas, one gets a direct way of constructing the covering from the H(ormander
tableau. We can summarize this remark as “H(ormander tableaux and generalized Taylor
formulas produce dynamical proofs of collapses”.

Theorem 3.14 (Positivstellensatz). Let K be an ordered 8eld; R its real closure; and
R=0; R¿0; R¿0 three 8nite families of K[x]=K[x1; x2; : : : ; xn].
De8ne M¿0 as the monoid generated by R¿0; C¿0 as the cone of K[x] generated

by R¿0 ∪ R¿0 ∪ K¿0 and I=0 as the ideal of K[x] generated by R=0.
If the system of sign conditions [u(x) ¿ 0; q(x) ¿ 0; j(x) = 0] for u ∈ R¿0;

q ∈ R¿0; j ∈ R=0 is impossible in Rn then one can construct an algebraic identity

m + p + i= 0;

where m ∈ M¿0; p ∈ C¿0 and i ∈ I=0:

Proof. Apply the preceding theorem and Corollary 3.9.

So the constructive character of Stengle’s Positivstellensatz comes in our approach from
two di&erent ingredients:
• the fact that the decision algorithm for testing emptiness produces, when the set

realizing the presentation is empty in the real closure, a collapse of the presentation,
• the fact that a collapse in the theory of real closed :elds gives rise to a construction

of algebraic identities certifying this collapse.
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3.3. Provable facts and generalized PositivstellensBatze

We give in the next theorem some classical variants of Stengle’s theorem. It is an
immediate consequence of Theorem 3.14.

Corollary 3.15. Let K be an ordered 8eld; R its real closure; R=0; R¿0; R¿0 three
8nite families of K[x] = K[x1; x2; : : : ; xn] and p another polynomial:
De8ne M¿0 as the monoid generated by R¿0; C¿0 as the cone of K[x] generated

by R¿0 ∪ R¿0 ∪ K¿0; and I=0 as the ideal of K[x] generated by R=0:
Let S the semialgebraic set of x ∈ Rn such that u(x) ¿ 0 for u ∈ R¿0; v(x) ¿ 0

for v ∈ R¿0; j(x) = 0 for j ∈ R=0

(a) The polynomial p is non-zero on S if and only if one can construct an algebraic
identity pb=m + q + i with m ∈ M¿0; i ∈ I=0; q ∈ C¿0 and b ∈ K[X ].

(b) The polynomial p is positive on S if and only if one can construct an algebraic
identity pq′ =m + q + i with m ∈ M¿0; i ∈ I=0 and q; q′ ∈ C¿0.

(c) The polynomial p is zero on S if and only if one can construct an algebraic
identity p2nm + q + i= 0 with m ∈ M¿0; i ∈ I=0 and q ∈ C¿0.

(d) The polynomial p is non-negative on S if and only if one can construct an
algebraic identity pq=p2nm + q′ + i with m ∈ M¿0; i ∈ I=0 and q; q′ ∈ C¿0.

Proof. It is easy to see that in the theory of ordered :elds a fact is provable (from a
presentation) if and only if the “opposite” fact produces a collapse (when added to the
presentation). This is because we have the valid dynamical rules � x = 0 ∨ x2 ¿ 0,
� x ¿ 0 ∨ −x ¿ 0, (x = 0; x2 ¿ 0) �⊥ and (x ¿ 0; −x ¿ 0) �⊥. So the
corollary is an easy consequence of Theorem 3.14.

We give now the axioms of quasi-ordered rings: it is the theory of proto-ordered
rings together with the following simpli:cation axioms:

x2 6 0 � x = 0 S(3)of

x ¿ 0; xy ¿ 0 � y ¿ 0 S(4)of

x ¿ 0; xy ¿ 0 � y ¿ 0 S(5)of

c¿ 0; x(x2 + c) ¿ 0 � x ¿ 0 S(6)of

Remark that simpli:cation axioms S(1)of and S(2)of (given for ordered :elds) are
valid dynamical rules in the theory of quasi-ordered rings. Note also that the theory of
quasi-ordered rings has only algebraic axioms and one collapse axiom.

An ordered :eld is a quasi-ordered ring. More precisely, axioms of quasi-ordered
rings are axioms of ordered :elds or valid dynamical rules in the theory of ordered
:elds. So quasi-ordered rings are between proto-ordered rings and ordered :elds, and
we get the following lemma.

Lemma 3.16. The theories of proto-ordered rings; quasi-ordered rings; ordered 8elds
and real closed 8elds collapse simultaneously:
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Proposition 3.17. The theories of quasi-ordered rings; ordered 8elds and real closed
8elds prove the same facts:

Proof. We have already said that, in the theory of ordered :elds, a fact is provable
(from a presentation) if and only if the opposite fact produces a collapse (when added
to the presentation). A fortiori the same result is true for the theory of real closed :elds.

For quasi-ordered rings, the simpli:cation axioms give the same result (note that the
two collapse axioms are easy).

We give the more tricky case and leave the other ones to the reader.
Assume that the presentation (G;R=0; R¿0; R¿0 ∪ {−p}) collapses in the theory of

proto-ordered rings. So we get an equality (−p)‘m+q+ i=pq′ in Z[G] with m in the
monoid M¿0 generated by R¿0, i in the ideal I=0 generated by R=0, and q and q′ in
the cone C¿0 generated by R¿0∪R¿0. We may assume that ‘ = 2n is even (if not, we
multiply by −p and rewrite the equality). So we have (pn)2m+ q=pq′ − i. We may
assume that n is odd (if not multiply by p2). Multiplying by pn, we get an equality
pn((pn)2m+q) = q1 + i1. Hence, pn((pn)2m+q) ¿ 0. Applying S(6)of we get pn ¿ 0
with n odd. A consequence of S(6)of is the simpli:cation rule x3 ¿ 0 � x ¿ 0, which
allows to deduce here p ¿ 0 (multiply pn by an even power of p in order to get
p3k ¿ 0).

So the theories of quasi-ordered rings, ordered :elds and real closed :elds prove the
same facts since they collapse simultaneously.

4. A Positivstellensatz for valued 'elds

We give in this section a new “Positivstellensatz” for valued :elds. As we obtained
in the last section a constructive analog of the classical theorem “every real :eld can
be totally ordered” we shall obtain here as a consequence a constructive version of the
following theorem “the intersection of valuation rings of a :eld K containing a subring
A is the integral closure of A” (Corollary 4.16).

4.1. Some simultaneous collapses

We need to consider a subring A of a :eld K . The language Lv will include the lan-
guage L1 with its two unary predicates = 0 and �= 0, and three more unary predicates
Vr(x), Rn(x) and U(x) corresponding respectively to the elements of the valuation ring,
the elements becoming zero in the residue :eld and the elements becoming invertible
in the residue :eld.

A presentation in the language Lv is a set of variables G and :ve subsets R=0; R�=0;
RVr ; RRn ; RU of Z[G]. It is denoted by (G;R=0; R�=0; RVr ; RRn ; RU).

The most basic notion is the notion of valued :eld. The structure of proto-valued
rings will be the simplest direct theory that we shall consider. We introduce this theory
because it is a direct theory which collapses simultaneously with the theory of valued
:elds.
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The axioms for proto-valued rings are axioms of rings and the following axioms:

� Vr(−1) D(1)v

x = 0; Vr(y) � Vr(x + y) D(2)v

Vr(x); Vr(y) � Vr(xy) D(3)v

Vr(x); Vr(y) � Vr(x + y) D(4)v

� Rn(0) D(5)v

x = 0; Rn(y) � Rn(x + y) D(6)v

Rn(x); Vr(y) � Rn(xy) D(7)v

Rn(x); Rn(y) � Rn(x + y) D(8)v

� U(1) D(9)v

x = 0; U(y) � U(x + y) D(10)v

U(x); U(y) � U(xy) D(11)v

Rn(x); U(y) � U(x + y) D(12)v

U(x) � x �= 0 D(13)v

x = 0; y �= 0 � x + y �= 0 D(14)v

x �= 0; y �= 0 � xy �= 0 D(15)v

U(x) � Vr(x) D(16)v

Rn(x) � Vr(x) D(17)v

(0 �= 0) � ⊥ Cv

We add now the following axioms for valued 8elds:

xu− 1 = 0 � x �= 0 S(1)v

Vr(xy); U(x) � Vr(y) S(2)v

x �= 0 � ∃u xu− 1 = 0 Dy(1)v

� x = 0 ∨ x �= 0 Dy(2)v

xy = 1 � Vr(x) ∨ Vr(y) Dy(3)v

Vr(x) � U(x) ∨ Rn(x) Dy(4)v

Finally, the theory of algebraically closed valued 8eld is obtained when adding
the axioms of algebraic closure

� ∃y yn + xn−1yn−1 + · · · + x1y + x0 = 0 Dyn(5)v

Remark 4.1. We can extend Remarks 2.3 and 3.2 to this new theory. Here the order of
the predicates is = 0, Vr, Rn, U, �= 0, and the collapse concerns this last predicate. The
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inclusion axioms are D(16)v and D(17)v. Any proof using direct algebraic axioms may
be transformed to a proof where the inclusion axioms are used only at the beginning.
The facts � Vr(1) and � Vr(0) can be proved from the construction axioms for Vr.
The construction axioms for Rn and U are doubled by construction axioms for Vr
which allow to lift the inclusions at the beginning.

The order on the predicates and the inclusion axioms that we have distinguished
agree with the characterization of the collapse of a presentation in the theory of proto-
valued rings, and its proof. This collapse is particularly simple.

Proposition 4.2. Let K = (G;R=0; R�=0; RVr ; RRn ; RU) be a presentation in the lan-
guage Lv. Let I=0 be the ideal of Z[G] generated by R=0, M �=0 the monoid
generated by R�=0, VVr the subring generated by RVr ∪ RRn ∪ RU, IRn the ideal
of VVr generated by RRn and MU the monoid generated by RU.
The presentation K collapses in the theory of proto-valued rings if and only if

there is an equality in Z[G]

m(u + j) + i= 0

with m ∈ M �=0; u ∈ MU; j ∈ IRn and i ∈ I=0.

Proof. First consider dynamical proofs of facts using only direct algebraic axioms.
These are algebraic proofs without branching.

Arguing inductively on the number of times the direct algebraic axioms are used in
the proof we see successively that:
• provably = 0 elements, are exactly elements of I=0,
• provably Vr-elements, are exactly elements of the form b + i with b ∈ VVr and
i ∈ I=0.

• provably Rn-elements, are exactly elements of the form j + i with j ∈ IRn and
i ∈ I=0.

• provably U-elements, are exactly elements of the form u + j + i with u ∈ MU,
j ∈ IRn and i ∈ I=0,

• provably �= 0-elements, are exactly elements of the form m(u+j)+ i with m ∈ M �=0,
u ∈ MU, j ∈ IRn and i ∈ I=0.
Now a proof of collapse is given by a proof of 0 �= 0 using only direct algebraic

axioms. Necessarily it produces an equality m(u + j) + i= 0 in Z[G].

Theorem 4.3. The theories of proto-valued rings; valued 8elds and algebraically closed
valued 8eld collapse simultaneously.

Proof. The theorem is proved by induction on the number of times that the extra
axioms for algebraically closed valued :elds are used. So it is enough to prove the
following lemma.
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Lemma 4.4. Let K = (G;R=0; R�=0; RVr ; RRn ; RU) be a presentation in the language
Lv; p; q ∈ Z[G]; z a new variable and r(z) a z-monic polynomial in Z[G][z].

(a) If the presentation K ∪ (p �= 0) collapses in the theory of proto-valued rings;
then so does the presentation K ∪ (pq− 1 = 0).

(b) If the presentation K ∪ (Vr(q)) collapses in the theory of proto-valued rings;
then so does the presentation K ∪ (Vr(pq);U(p)).

(c) If the presentation K ∪ (zp − 1 = 0) collapses in the theory of proto-valued
rings; then so does the presentation K ∪ (p �= 0).

(d) If the presentations K ∪ (p �= 0) and K ∪ (p = 0) collapse in the theory of
proto-valued rings; then so does the presentation K.

(e) If the presentations K ∪ (Vr(p)) and K ∪ (Vr(q)) collapse in the theory of
proto-valued rings; then so does the presentation K ∪ (qp− 1 = 0)

(f ) If the presentations K ∪ (U(p)) and K ∪ (Rn(p)) collapse in the theory of
proto-valued rings; then so does the presentation K ∪ (Vr(p)).

(g) If the presentation K∪ (r(z) = 0) collapse in the theory of proto-valued rings;
then so does the presentation K.

Proof. We take the following notations. Letters m; u; j; i; a; b (possibly with indices)
represent always, respectively, elements of M �=0;MU;IRn ;I=0;VVr ;Z[G] (de:ned as
in Proposition 4.2). The symbol b(z) stands for a polynomial with coeRcients in Z[G]
and so on.

(a) Left to the reader (see the analogous computation in Lemma 2.6(a)).
(b) There is an equality m(u + j(q)) + i= 0. If the polynomial j is of degree n,

multiplying the equality by pn gives m(pnu+ j1(p;pq)) + i1 = 0 which is the collapse
we want.

(c) This is Rabinovitch’s trick. There is an equality

m(u + j(z)) + i(z) + (zp− 1)b(z) = 0:

Multiply by pn where n is the maximum z-degree of the polynomials i(z) and j(z).
Replace in pni(z) and in pnj(z) all the pkzk by 1 modulo (zp − 1). We can assume
that p is not 0 ∈ Z[G]. The new polynomial b(z) is necessarily 0 and this gives the
equality pnm(u + j1) + i1 = 0 which is the collapse we want.

(d) There are two equalities in Z[G]:

pnm1(u1 + j1) + i1 = 0 and m2(u2 + j2) + i2 =pb2:

Raise the second one to the power n, multiply the result by m1(u1 + j1), multiply the
:rst one by bn2 and combine the two equalities so obtained in order to get the collapse
we want.

(e) There are two equalities in Z[G]:

m1(u1 + j1(p)) + i1 = 0 and m2(u2 + j2(q)) + i2 = 0:

Without loss of generality, we can suppose that m1 = m2 = m. If n is the degree in p of
j1 one multiplies the :rst equality by qn. Modulo (pq−1) the polynomial qn(u1+j1(p))
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can be rewritten as a nice polynomial in q, n1(q), i.e. its leading coeRcient is u1 + j1;0
(in MU + IRn) and the other coeRcients are in IRn. This gives an equality

mn1(q) + i3 + (pq− 1)b1 = 0 (4.1)

Doing the same manipulation with the second equality gives

mn2(p) + i4 + (pq− 1)b2 = 0 (4.2)

One can then compute two polynomials r1(p; q) and r2(p; q) with coeRcients in VVr

such that there is an equality n1(q)r1(p; q) + n2(p)r2(p; q) = n3(pq) where n3 is nice
too: take as n3 the general polynomial whose roots are the products of a root of n1

and a root of n2.
Multiplying (4.1) by r1(p; q) and (4.2) by r2(p; q) and adding, we obtain

mn3(pq) + i5 + (pq− 1)b5 = 0:

It remains to replace the pq in n3 by 1 modulo (pq−1) to :nd the wanted collapse:
m(u6 + j6) + i5 + (pq− 1)b6 = 0.

(f) There are two equalities

m1(pnu1 + j1(p)) + i1 = 0 and m2(u2 + j2 + pa2(p)) + i2 = 0 :

Rewrite the second equality in the form m2(u2 + j2) = − (m2pa2(p) + i2). Raise
it to the power n and multiply by m1u1, so that the right-hand side becomes
(−1)nm1mn

2p
nu1a

p
2 (n) + i3, and so on in order to get the collapse we want (last details

to the reader).
(g) We have an equality m(u+j(z))+ i(z) = r(z)b(z). Reduce i and j modulo r, the

right-hand side becomes identically zero and this gives an equality which is a collapse
of K.

Corollary 4.5. Let (K; A) be a valued 8eld and L a 8eld extension of K: Then the
presentation obtained from diagrams of (K; A) and L does not collapse in the theory
of valued 8elds.

Proof. A collapse would give an equality m(u+ j) = 0 in L, with u invertible in A, j
in the maximal ideal of A and m non-zero in L. But this implies u+ j = 0 in L, hence
in K and this is impossible.

Remark 4.6. The preceding corollary is a constructive version of the non-constructive
theorem saying that a valuation of a :eld K can always be extended to any :eld ex-
tension L of K . This non-constructive theorem is a direct consequence of the corollary,
obtained using completeness theorem of model theory.

In the same way we get a constructive version of the classical theorem saying that
a local subring of a :eld K is always dominated by a valuation ring of K .



244 M. Coste et al. / Annals of Pure and Applied Logic 111 (2001) 203–256

Corollary 4.7. Let K be a valued 8eld and A ⊂ K a local ring. Then the presentation
obtained from the diagram of (K; A) by adding Rn(a) when a is in the maximal ideal
of A does not collapse in the theory of valued 8elds.

In the same way we get a “formal Positivstellensatz for valued :elds”.

Proposition 4.8 (Formal non-constructive version of Positivstellensatz for valued :elds).
Let B be a ring and (R=0; R�=0; RVr ; RRn ; RU) subsets of B. Let I=0 be the ideal of B
generated by R=0; M �=0 the monoid of B generated by R �=0; VVr the subring of B
generated by RVr ∪RRn ∪RU; IRn the ideal of VVr generated by RRn ; MU the monoid
generated by RU.
The following properties are equivalent:

(i) There exists i ∈ I=0; s ∈ M �=0; u ∈ MU and j ∈ IRn with m(u + j) + i = 0
(ii) There exists no homomorphism 6 :B → L with (L; A; I; U ) an algebraically closed

valued 8eld; 6(n) = 0 for n ∈ R=0; 6(t) �= 0 for t ∈ R �=0; 6(c) ∈ A for c ∈ RVr ;
6(k) ∈ I for k ∈ RRn and 6(v) ∈ U for v ∈ RU.

Proof. Use the preceding results taking as presentation

DG(B) ∪ (∅;R=0; R�=0; RVr ; RRn ; RU)

and apply the non-constructive completeness theorem of model theory.

4.2. Decision algorithm and constructive Positivstellensatz

Theorem 4.9 (Positivstellensatz for algebraically closed valued :elds). Let (K; A) be
a valued 8eld and UA the invertible elements of A; IA the maximal ideal of A. Sup-
pose that (K ′; A′) is an algebraically closed valued 8eld extension of K (so that
A = A′ ∩ K). Denote by UA′ the invertible elements of A′; IA′ the maximal ideal
of A′.
Consider 8ve 8nite families (R=0; R�=0; RVr ; RRn ; RU) in the polynomial ring

K[x1; x2; : : : ; xm] = K[x].
Let I=0 be the ideal of K[x] generated by R=0; M �=0 the monoid of K[x] generated

by R�=0; VVr the subring of K[x] generated by RVr ∪ RRn ∪ RU ∪ A; IRn the ideal of
VVr generated by RRn ∪ IA; MU the monoid generated by RU ∪ UA.
Let S ⊂ K ′m be the set of points x satisfying the conditions: n(x) = 0 for n ∈ R=0;

t(x) �= 0 for t ∈ R�=0; c(x) ∈ A′ for c ∈ RVr ; v(x) ∈ UA′ for v ∈ RU; k(x) ∈ IA′ for
k ∈ RRn.
The set S is empty if and only if there is an algebraic identity

m(u + j) + i= 0

with m ∈ M �=0; u ∈ MU; j ∈ IRn and i ∈ I=0.
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Proof. We have the following result (see e.g. [34, Section 3], [17, Section 3]. The
formal theory V(K; A) of algebraically closed valued :elds extensions of a valued
:eld (K; A) is complete and has a decision algorithm using only computations inside
(K; A).

Consider now the presentation

P = DG(K; A) ∪ ({x1; : : : ; xm};R=0; R�=0; RVr ; RRn ; RU)

in the language Lv. Since the system of sign conditions we consider is impossible in
(K ′; A′), it is thus proved impossible in V(K; A). According to Theorem 1.1, the pre-
sentation P collapses in the theory of algebraically closed valued :elds. We conclude
by Theorem 4.3 and Proposition 4.2.

Note that the same proof could have been used in the cases of algebraically closed
:elds and real closed :elds, but there we were able to prove directly the existence of
dynamical proofs because of particular features of the decisions algorithms for testing
emptiness we used in these two cases. In fact, the proof in [17] can be transformed as
well into an algorithm producing a dynamical proof in a more direct way.

4.3. Provable facts and generalized PositivstellensBatze

We now discuss provability of facts in the theory of valued :elds.
We de:ne a quasi-valued ring as a proto-valued ring satisfying the following sim-

pli:cation axioms (the :rst one is an axiom of valued :elds).

Vr(xy); U(x) � Vr(y) S(2)v

U(xy);Vr(x);Vr(y) � U(y) S(3)v

Rn(xy); U(x) � Rn(y) S(4)v

Rn(x2) � Rn(x) S(5)v

xy �= 0 � x �= 0 S(6)v

xy = 0; x �= 0 � y = 0 S(7)v

x2 = 0 � x = 0 S(8)v

xn+1 −
n∑

k=0

akxk = 0;Vr(an); : : : ;Vr(a0) � Vr(x) S(9)v

The theory of quasi-valued rings is an algebraic theory and we shall see soon that
it proves the same facts as the theory of algebraically closed valued :elds.

It is easy to check the following lemmas.

Lemma 4.10. Axioms of quasi-valued rings are valid dynamical rules in the theory
of valued 8elds.
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Proof. Let us prove for example that S(9)v is a valid dynamical rule. Assume

xn+1 −
n∑

k=0

akxk = 0; Vr(an); : : : ;Vr(a0) : (4.3)

Open two branches using axiom Dy(2)v, the :rst one with x = 0 (so Vr(x)) and the
second one with x �= 0. Here use axiom Dy(1)v and introduce the inverse y of x (so
xy = 1). Then use axiom Dy(3)v and open two branches, the :rst one with Vr(x) (we
are done) and the second one with Vr(y). Multiply the equality in (4.3) by yn. Since
xy = 1, we get x =

∑n
k=0 aky

n−k and we deduce easily Vr(x).

Lemma 4.11. We have the following valid dynamical rules in the theory of quasi-
valued rings.

U(xy); U(x) � U(y) S(10)v

xn+1 −
n∑

k=0

akxk = 0;Vr(an); : : : ;Vr(a1); U(a0) � U(x) S(11)v

Lemma 4.12. The theories of proto-valued rings; quasi-valued rings; valued 8elds and
algebraically closed valued 8elds collapse simultaneously.

Lemma 4.13. Let K = (G;R=0; R�=0; RVr ; RRn ; RU) be a presentation in the language
Lv. Let p be an element of Z[G] and z a new variable.

(a) In the theory of valued 8elds; the fact p = 0 is provable from the presentation
K if and only if the presentation K ∪ (p �= 0) collapses.

(b) In the theory of valued 8elds; the fact p �= 0 is provable from the presentation
K if and only if the presentation K ∪ (p = 0) collapses.

(c) In the theory of valued 8elds; the fact Vr(p) is provable from the presentation
K if and only if the presentation K ∪ (zp− 1 = 0;Rn(z)) collapses.

(d) In the theory of valued 8elds; the fact Rn(p) is provable from the presentation
K if and only if the presentation K ∪ (zp− 1 = 0;Vr(z)) collapses.

(e) In the theory of valued 8elds; the fact U(p) is provable from the presentation
K if and only if the presentations K∪(zp−1 = 0;Rn(z)) and K∪(Rn(p)) collapse.

Remark that the last lemma is a fortiori true for algebraically closed valued :elds.
So theories of valued :elds and algebraically closed valued :elds prove the same facts
since they collapse simultaneously.

From the last lemma and the algebraic characterization of collapses of presentations
in the theory of valued :elds, one can prove the following proposition.

Proposition 4.14. Let K = (G;R=0; R�=0; RVr ; RRn ; RU) be a presentation in the lan-
guage Lv. Let p be an element of Z[G]. De8ne I=0; M �=0; VVr ; IRn and MU as in
Proposition 4.2.
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(a) In the theory of valued 8elds, a dynamical proof of the fact p = 0 from the
presentation K produces an equality in Z[G] of the following type:

pnm(u + j) + i= 0

with m ∈ M �=0; u ∈ MU; j ∈ IRn and i ∈ I=0.
(b) In the theory of valued 8elds; a dynamical proof of the fact p �= 0 from the

presentation K produces an equality in Z[G] of the following type:

m(u + j) + i + bp= 0

with m ∈ M �=0; u ∈ MU; j ∈ IRn ; i ∈ I=0 and b ∈ Z[G].
(c) In the theory of valued 8elds; a dynamical proof of the fact Vr(p) from the

presentation K produces an equality in Z[G] of the following type:

m((u + j)pn+1 + anpn + · · · + a1p + a0) + i= 0

with m ∈ M �=0; u ∈ MU; j ∈ IRn ; the ak ∈ VVr and i ∈ I=0.
(d) In the theory of valued 8elds; a dynamical proof of the fact Rn(p) from the

presentation K produces an equality in Z[G] of the following type:

m((u + j)pn+1 + jnpn + · · · + j1p + j0) + i= 0

with m ∈ M �=0; u ∈ MU; j and the jk in IRn and i ∈ I=0.
(e) In the theory of valued 8elds; a dynamical proof of the fact U(p) from the

presentation K produces an equality in Z[G] of the following type:

m((u + j)pn+1 + anpn + · · · + a1p + (u′ + j′)) + i= 0

with m ∈ M�=0; u; u′ ∈ MU; j; j′ ∈ IRn ; the ak in VVr and i ∈ I=0.

Proof. We use the same letter notations as in Lemma 4.4.
We get (a) and (b) as immediate consequences of Lemma 4.13(a) and (b).
In (c)–(e) the stated conditions are suRcient because valued :elds have good sim-

pli:cation axioms (cf. Lemmas 4.10 and 4.11). Let us see that they are necessary
conditions.

For (c), use Lemma 4.13(c) and write the collapse of the presentation K∪(zp−1=0;
Rn(z)). We get an equality (u1 + j1 + za1(z)) + i1(z) = (pz − 1)b1(z). Let n be the
maximum of the z-degrees of za1(z) and i1(z). Multiply the equality by pn and replace
in the left-hand side each pkzk by 1 modulo (zp − 1). After this transformation the
right-hand side becomes 0 and we get an equality m1((u1 + j1)pn + a2(p)) + i2 = 0
where the p-degree of a2 is 6 n. So we are done.

Same proof for (d).
For (e) we have two equalities from collapses: m1((u1 + j1)pn+1 + a1;npn + · · · +

a1;1p + a1;0) + i1 = 0 and m2(a2;mpm + · · · + a2;1p + (u2 + j2)) + i2 = 0 . We assume
w.l.o.g. that m1 = m2 = m, Multiply the :rst equality by a convenient power of p
(e.g. pn+1) and add the two equalities.
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Remark 4.15. From (c) we get as corollary a constructive version of the classical
theorem saying that the intersection of valuation rings containing the subring A of a
:eld K is the integral closure of A in K .

Corollary 4.16. Let A be subring of a 8eld K. Consider the presentation K obtained
from the diagram of K adding Vr(a) for each a ∈ A. Let u ∈ K . Then the fact Vr(u)
is provable from K in the theory of valued 8elds if and only if u is in the integral
closure of A in K.

Theorem 4.17. The theories of quasi-valued rings; valued 8elds and algebraically
closed valued 8elds prove the same facts.

Proof. Proposition 4.14 gives necessary and suRcient conditions for provable facts in
the theory of valued :elds. It is thus suRcient to see that the necessary conditions are
also suRcient in the theory of quasi-valued rings.

The case p = 0 is taken care of by the axioms

x �= 0; xy = 0 � y = 0

x2 = 0 � x = 0

The case p �= 0 is taken care of by xy �= 0 � x �= 0
The case Vr(p) is taken care of by

x �= 0; xy = 0 � y = 0

xn+1 −
n∑

k=0

akxk = 0;Vr(an); · · · ;Vr(a0) � Vr(x)

Vr(xy);U(x) � Vr(y)

The case Rn(p) is taken care of by

x �= 0; xy = 0 � y = 0

xn+1 −
n∑

k=0

akxk = 0;Vr(an); : : : ;Vr(a0) � Vr(x)

Rn(xy);U(x) � Rn(y)

Rn(x2) � Rn(x)
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The case U(p) is taken care of by

x �= 0; xy = 0 � y = 0

xn+1 −
n∑

k=0

akxk = 0;Vr(an); : : : ;Vr(a1);U(a0) � U(x)

U(xy);U(x) � U(y)

Finally, we get from Theorem 4.9 (with the same proof as in Proposition 4.14) the
following generalized Positivstellensatz.

Theorem 4.18 (Generalized Positivstellensatz for algebraically closed valued :elds). Let
(K; A) be a valued 8eld and let UA be the invertible elements of A; IA the maximal
ideal of A. Suppose that (K ′; A′) is an algebraically closed valued 8eld extension of
K (so that A = A′∩K). Denote by UA′ the invertible elements of A′; IA′ the maximal
ideal of A′.
Consider 8ve 8nite families (R=0; R�=0; RVr ; RRn ; RU) in the polynomial ring

K[x1; x2; : : : ; xm] = K[x].
Let I=0 be the ideal of K[x] generated by R=0; M �=0 the monoid of K[x] generated

by R�=0; VVr the subring of K[x] generated by RVr ∪ RRn ∪ RU ∪ A; IRn the ideal of
VVr generated by RRn ∪ IA; MU the monoid generated by RU ∪ UA.
Let S be the set of x ∈ K ′m such that n(x) = 0 for n ∈ R=0; t(x) �= 0 for t ∈ R �=0;

c(x) ∈ A′ for c ∈ RVr ; v(x) ∈ UA′ for v ∈ RU and k(x) ∈ IA′ for k ∈ RRn.
(a) The polynomial p is everywhere zero on S if and only if there is an equality

pnm(u + j) + i= 0

with m ∈ M �=0, u ∈ MU, j ∈ IRn and i ∈ I=0.
(b) The polynomial p is everywhere nonzero on S if and only if there is an equality:

m(u + j) + i + bp= 0

with m ∈ M �=0; u ∈ MU; j ∈ IRn ; i ∈ I=0 and b ∈ K[x].
(c) p(S) ⊂ A′ if and only if there is an equality

m((u + j)pn+1 + anpn + · · · + a1p + a) + i= 0

with m ∈ M �=0; u ∈ MU; j ∈ IRn ; the ak ∈ VVr and i ∈ I=0.
(d) p(S) ⊂ IA′ if and only if there is an equality

m((u + j)pn+1 + jnpn + · · · + j1p + j) + i= 0

with m ∈ M �=0; u ∈ MU; j and the jk in IRn and i ∈ I=0.
(e) p(S) ⊂ UA′ if and only if there is an equality:

m((u + j)pn+1 + anpn + · · · + a1p + (u′ + j′)) + i= 0

with m ∈ M�=0; u; u′ ∈ MU; j; j′ ∈ IRn, the ak in VVr and i ∈ I=0.
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4.4. Related results of Prestel–Ripoli

Our Positivstellensatz for valued :elds is closely related to some results of Prestel
and Ripoli (cf. [30]). The paper [5] of Coquand and Persson also contains another
kind of formal “IntegralvalueStellensatz”.

The direct part of Theorem 3:1 in [30] has the following consequence.

Theorem 4.19 (Integral-valued rational functions on algebraically closed valued :elds).
Let (K; A) be a valued 8eld; UA the group of invertible elements of A and IA the max-
imal ideal of A. Let (K ′; A′) be an algebraic closure of (K; A) as valued 8eld (so that
A = A′ ∩ K): Let us denote A[x1; x2; : : : ; xm] = A[x]; K(x1; x2; : : : ; xm) = K(x) and
IRn = IA[x] the ideal of A[x] generated by IA.
Assume that K is dense in K ′; i.e.; the residue 8eld is algebraically closed and the

value group is divisible. Consider a rational function f = f1=f2 ∈ K(x) with f1 and
f2 in A[x] (f2 �= 0):
Then the following two assertions are equivalent:

(a) Whenever > ∈ Am and f2(>) �= 0 then f(>) ∈ A (in this case we write
f(A) ⊂ A):

(b) There exists an algebraic identity in A[x] :

(1 + j)f1 = af2

with j ∈ IA[x] and a ∈ A[x] (in this case f(x) = a(x)=(1 + j(x)) and we write
f ∈ A[x]=(1 + IA[x])):

A. Prestel also told us that he had obtained a Nullstellensatz (characterizing poly-
nomials g s.t. g(>) = 0 whenever > ∈ Am and h1(>) = · · · = hm(>) = 0) when K is
algebraically closed, by using the same techniques as in [30].

We remark that in [30] the result is an abstract one, with no constructive proof. Let
us deduce this result (as an algorithmic one) from our Positivstellensatz.

First remark that it suRces to consider the case that K is algebraically closed.
In a more general case, with K not necessarily dense in K ′ we get the slightly more

general following result, which is a “rational version” of Theorem 4.19.

Theorem 4.20 (Integral-valued rational functions on valued :elds). Let (K; A) be a
valued 8eld; UA the group of invertible elements of A and IA the maximal ideal
of A. Let (K ′; A′) be an algebraic closed valued 8eld extension of (K; A) (so that
A = A′ ∩ K):
Let us denote A[x1; x2; : : : ; xm] = A[x]; K(x1; x2; : : : ; xm) = K(x) and IRn = IA[x] the

ideal of A[x] generated by IA.
Consider a rational function f = f1=f2 ∈ K(x) with f1 and f2 in A[x] (f2 �= 0):

Then the following two assertions are equivalent:
(a) Whenever > ∈ A′m and f2(>) �= 0 then f(>) ∈ A′ (i.e.; f(A′) ⊂ A′).
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(b) There exists an algebraic identity in A[x]:

(1 + j)f1 = af2

with j ∈ IA[x] and a ∈ A[x] (i.e.; f ∈ A[x]=(1 + IA[x]))

Proof. Clearly (b) implies (a). Assume now (a). The fact that f(A′) ⊂ A′ means the
same thing as the incompatibility of the following system of “sign conditions”:

Vr(>1); : : : ; Vr(>m); f2(>) �= 0; Rn(?); f2(>) = ?f1(>)

From Theorem 4.9 this implies an equality in K[x; z]

sfk
2(x)(u + j(x) + za(x; z)) = (f2(x) − zf1(x)) b(x; z)

with s �= 0 in K , u ∈ UA, j ∈ IA[x], a(x; z) ∈ A[x; z] and b ∈ K[x; z]. Multiplying by
(su)−1 we get an algebraic identity:

fk
2(x)[1 + j1(x) + za1(x; z)] = (f2(x) − zf1(x)) b1(x; z):

Let a1(x; z) = a1;0 + a1;1z + · · · + a1;p−1zp−1. Applying the Rabinowitch’s trick, we
multiply by fp

1 , replace in the left-hand side zhfh
1 by fh

2 modulo (f2(x) − zf1(x)),
and we get an algebraic identity:

fk
2(x)[(1+j1(x))fp

1 +a1;0(x)fp−1
1 f2+a1;2(x)fp−2

1 f2
2+ · · ·+a1;p−1(x)fp

2 ]=0:

We deduce:

(1 + j1(x))fp
1 + a1;0(x)fp−1

1 f2 + a1;2(x)fp−2
1 f2

2 + · · · + a1;p−1(x)fp
2 = 0;

i.e., f = f1=f2 is in the integral closure of A[x]S where S is the monoid 1 + IA[x].
It is well known that A[x] is integrally closed. So A[x]S is also integrally closed. And
we get what we want.

5. A Positivstellensatz for ordered groups

Our theory is based on the purely equational theory of abelian groups. The group
law is denoted additively. We have 0 as only constant. The purely equational theory
of abelian groups can be put in unary form. The free abelian group generated by a set
of generators G will be denoted by Ab(G). The unary predicate is x = 0. Terms are
replaced by elements of Ab(G). We call Lg the unary language of abelian groups.
There are three direct algebraic axioms:

� 0 = 0 D(1)g

x = 0; y = 0 � x + y = 0 D(2)g

x = 0 � −x = 0 D(3)g
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If H is an abelian group and x1; : : : ; xn are variables, the abelian group generated by
H and x1; : : : ; xn (i.e., the group of aRne forms with variables x1; : : : ; xn, constant part
in H and coeRcients in Z) will be denoted by H{x1; : : : ; xn}.

In the sequel we say group instead of abelian group.
The central theory we consider is the theory of (abelian) ordered groups.
The language Log of ordered groups is the unary language of abelian groups Lg

with two more unary predicates x ¿ 0 and x ¿ 0.
Axioms of proto-ordered groups are the following.

x = 0; y ¿ 0 � x + y ¿ 0 D(1)og

x ¿ 0; y ¿ 0 � x + y ¿ 0 D(2)og

� 0 ¿ 0 D(3)og

x = 0; y ¿ 0 � x + y ¿ 0 D(4)og

x ¿ 0; y ¿ 0 � x + y ¿ 0 D(5)og

x ¿ 0 � x ¿ 0 D(6)og

0 ¿ 0 � ⊥ Cog

Axioms of ordered groups are axioms of proto-ordered groups and the three axioms:

x ¿ 0; −x ¿ 0 � x = 0 S(1)og

� x ¿ 0 ∨ −x ¿ 0 Dy(1)og

x ¿ 0 � x = 0 ∨ x ¿ 0 Dy(2)og

Remark 5.1. Here also we can see a structure similar to that outlined in Remark 5.1.
The order on the predicates is = 0, ¿0, ¿0. The axiom D(6)og is an inclusion axiom,
and the other direct algebraic axioms are construction axioms.

A divisible ordered group is an ordered group satisfying the following dynamical
axioms (one for each integer n ¿ 1):

� ∃y ny = x Dyn(3)og

We have easily the following results.

Proposition 5.2. Let H = (G;R=0; R¿0; R¿0) be a presentation in the language Log.
Let H=0 be the subgroup of Ab(G) generated by R=0; and P¿0 the additive monoid
in Ab(G) generated by R=0 ∪ R¿0. A collapse of the presentation H in the theory
of proto-ordered groups produces an equality in G

s + q + i= 0

with s ∈ R¿0, q ∈ P¿0 and i ∈ H=0.
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Lemma 5.3. Let H=(G;R=0; R¿0; R¿0) be a presentation in the language Log; p ∈
Ab(G) and y a new variable.

(a) If the presentation H∪(p = 0) collapses in the theory of proto-ordered groups;
then so does the presentation H ∪ (p¿ 0;−p¿ 0).

(b) If the presentations H ∪ (p ¿ 0) and H ∪ (−p ¿ 0) collapse in the theory
of proto-ordered groups; then so does the presentation H.

(c) If the presentations H ∪ (p ¿ 0) and H ∪ (p = 0) collapse in the theory of
proto-ordered groups; then so does the presentation H ∪ (p¿ 0).

(d) If the presentation H ∪ (ny− p = 0) collapses in the theory of proto-ordered
groups; then so does the presentation H.

Proposition 5.4. The theories of proto-ordered groups, ordered groups and divisible
ordered groups collapse simultaneously.

Proposition 5.5 (Non-constructive formal Positivstellensatz). Let H be an abelian
group; R=0; R¿0 and R¿0 three families of elements of H. Let H=0 be the sub-
group of H generated by R=0; and P¿0 the additive monoid in H generated by
R¿0 ∪ R¿0. Then the following properties are equivalent:

(i) There exist s ∈ R¿0; q ∈ P¿0 and i ∈ H=0 with s + q + i = 0 in H
(ii) There exists no homomorphism 6 :H → L with L a divisible ordered group;

6(a) = 0 for a ∈ R=0; 6(p) ¿ 0 for p ∈ R¿0 and 6(s) ¿ 0 for s ∈ R¿0.
(iii) There exists no ordering of any quotient group H=H0 with R=0 ⊂ H0, R¿0+H0 ⊂

(H=H0)¿0 and R¿0 + H0 ⊂ (H=H0)¿0.

The next theorem is easily obtained by a close inspection of a decision algorithm
for testing emptiness in the theory of divisible ordered groups.

Theorem 5.6. Let H be an ordered group; D its divisible ordered closure, and R=0; R¿0;
R¿0 three 8nite families of H{x1; x2; : : : ; xm} = H{x}. The system of sign conditions
[u(x) ¿ 0; q(x) ¿ 0; j(x) = 0] for u ∈ R¿0; q ∈ R¿0; j ∈ R=0 is impossible in Dn

if and only if the presentation DG(H) ∪ ({x1; x2; : : : ; xm};R=0; R¿0; R¿0) collapses in
the theory of divisible ordered groups.

Proof (sketch). Call x the variable you want to eliminate in an existential assertion
for a system of signs conditions. Call y the other variables considered as parameters.
Write every sign condition in form nx = t(y) with n ∈ Z¿0 and t(y) ∈ H{y}, or
nx ¿ t(y) with n ∈ Z and t(y) ∈ H{y}, or nx ¿ t(y) with n ∈ Z and t(y) ∈ H{y}.
Any sign condition is equivalent to the same one multiplied by a positive integer.

If there is one sign condition of the :rst type and n ¿ 0, multiply all other conditions
by n and then substitute nx by the value given by the :rst sign condition. So you get
an equivalent system with x in only the :rst equality. The existence of x in D is
equivalent to the other conditions without x.
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In the other case, you may assume w.l.o.g. that you have, for all sign conditions with
n �= 0 the same absolute value for n. For example you have the system (t1 ¿ nx; t2 ¿
nx; t3 ¿ nx; nx ¿ t4; nx ¿ t5) (S) (and other conditions without x). The existence of
an x in D verifying (S) is equivalent to a big disjunction of systems “without x”, each
disjunct saying in what order are the ti. E.g. one of these disjuncts is (t1 ¿ t2; t2 ¿ t3;
t3 ¿ t5; t5 ¿ t4). Clearly there is a covering of DG(H) ∪ ({y; x};R=0; R¿0; R¿0) in
the theory of divisible ordered groups corresponding to this equivalence.

So eliminating one variable after the other, you get a covering where every leaf
contains only conditions in H . If the system is impossible you have a collapse of
the presentation in the theory of divisible ordered groups. In the other case you may
construct a point in Dm corresponding to a leaf of your tree.

Then, gluing Theorem 5.6 and Propositions 5.4 and 5.2 we get the “baby Positivstel-
lensatz”.

Theorem 5.7. Let H be an ordered group, D its divisible ordered closure, and R=0;
R¿0; R¿0 three 8nite families of H{x1; x2; : : : ; xn} = H{x}. Let H=0 be the subgroup
of H{x} generated by R=0, and P¿0 the additive monoid in H{x} generated by
R¿0 ∪ R¿0 ∪ H¿0.

The system of sign conditions [u(x) ¿ 0; q(x) ¿ 0; j(x) = 0] for u ∈ R¿0; q ∈
R¿0; j ∈ R=0 is impossible in Dn if and only if there is an equality in H{x}

s + q + i = 0

with s ∈ R¿0 ∪ H¿0, q ∈ P¿0 and i ∈ H=0.
We give now a variant.

Theorem 5.8. Let H be an ordered group; D its divisible ordered closure; and R=0;
R¿0; R¿0 three 8nite families of H{x1; x2; : : : ; xn} = H{x} and p ∈ H{x}. Let H=0

be the subgroup of H{x} generated by R=0; and P¿0 the additive monoid in H{x}
generated by R¿0 ∪ R¿0 ∪ H¿0.
Let S ⊂ Dn the “semialgebraic” set {x ∈ Dn; u(x) ¿ 0; q(x) ¿ 0; j(x) = 0 for

u ∈ R¿0; q ∈ R¿0; j ∈ R=0}.
(a) p is positive on S if and only if there is an equality in H{x}

s + q + i = mp

with s ∈ R¿0 ∪ H¿0; q ∈ P¿0; i ∈ H=0 and m a non-negative integer.
(b) Assume S to be non-empty; then p is non-negative on S if and only if there

is an equality in H{x}

q + i = mp

with q ∈ P¿0; i ∈ H=0 and m a positive integer.
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(c) Assume S to be non-empty; then p is null on S if and only if there are two
equalities in H{x}

q + i = mp and − q′ + i′ = mp

with q; q′ ∈ P¿0; i; i′ ∈ H=0 and m a positive integer.
(d) p is non-zero on S if and only if there is an equality in H{x}

s + q + i = mp

with s ∈ R¿0 ∪ H¿0; q ∈ P¿0; i ∈ H=0 and m an integer.

Finally we give an algebraic theory, the theory of quasi-ordered groups which proves
the same facts as theories of ordered groups and ordered divisible groups.

Axioms are those of proto-ordered groups and the following simpli:cation axioms:

x ¿ 0; −x ¿ 0 � x = 0 S(1)og

nx ¿ 0 � x ¿ 0 Sn(2)og

nx ¿ 0 � x ¿ 0 Sn(3)og

Remark 5.9. Previous results are closely related to well known theorems in linear
programming over Q. E.g., applying Theorem 5.7 with H = Q and R=0 = ∅ we get
the Motzkin’s transposition theorem (see [31, Corollary 7.1k, p. 94]). Similarly, when
H = Q and R=0 = R¿0 = ∅ we get a variant of Farka’s lemma (see [31, Corollary
7.1e, p. 89]).
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