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PLAN OF TALK

• Categories with structure
• extensive categories, adhesive categories
• Van Kampen colimits

• 2-categories, bicategories & bicolimits
• Van Kampen colimits as a universal property



EXTENSIVE CATEGORIES

• A category is extensive when 
it has
• finite coproducts
• pullbacks (along coproduct injections)

• for illustrated commutative 
diagram, TFAE
• top row is a coproduct 

diagram
• two squares are pullbacks
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Slogan: finite coproducts
exist and are “well-behaved”
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EXTENSIVE CATS ARE DISTRIBUTIVE

• A category is distributive when the canonical morphism               

is invertible
• recently Steve Lack showed that any natural family of 

isomorphisms is enough

• Lemma: Extensive categories with products are distributive.

δX,Y,Z : X × Y + X × Z → X × (Y + Z)
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INITIAL OBJECTS IN EXTENSIVE CATS

• An initial object is strict if existence of arrow X→0      
implies that X is initial 

• Lemma: In extensive categories, the initial object is strict
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EXAMPLES/
COUNTEREXAMPLES

• Set, Setf, Graph, toposes, Cat, Top, C/C for extensive C
• note: in Set every mono is a coproduct injection

• Non examples: 
• powerset P(X) ordered by inclusion considered as a 

category (sums not disjoint)
• C/C in general (no strict initial object)



VAN KAMPEN SQUARES

• Similar story to coproducts in 
extensive cats, for pushouts
• pushout satisfies the Van 

Kampen property if when it is 
the bottom face of a commutative 
cube that has its rear faces 
pullbacks, tfae
• the top face is a pushout
• the front faces are pullbacks

(elementary definition)
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NON VK PUSHOUT IN SET
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ADHESIVE CATEGORIES

• A category is adhesive when it has
• pushouts along monos
• pullbacks
• pushouts along monos are VK squares

• Slogan: pushouts along monos exist and are “well-behaved”

• Theorem: Set is adhesive
• proof relies on the fact that Set is extensive, monos in Set are 

coproduct injections and pushouts commute with coproducts
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PROPERTIES OF ADHESIVE 
CATEGORIES

• Lemma
• pushouts of monos are monos
• pushouts along monos are 

pullbacks

• other properties: 
• unique pushout complements
• effective unions
• distributive lattices of subobjects
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EXAMPLES

• Set, Graph, toposes, C/C, C/C for adhesive C

• Note: category of partial functions (1/Set) is adhesive but not 
extensive (no strict initial object)

• Non examples: Pos, Cat, Top

[2]

��

[1]0��

1

��
[3] [2]��

[n] = {0 ≤ 1 ≤ · · · ≤ n− 1}

not stable under pullback with
[2]→ [3]
0 �→ 0
1 �→ 2



GENERALISING VAN KAMPEN 
CONDITION

F �
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TFAE
i.      is a colimit diagram
ii.             are all 
pullback diagrams

κ�

F �
iC

�CFi

A colimit diagram  κ : F → C is Van Kampen
Definition:

when for all functors F � : J→ C
κ� : F � → C �

, cocones
γ : →F � Fand cartesian nat. trans.



EXAMPLE - STRICT INITIAL 
OBJECT

• A colimit 0 of the empty diagram (initial object) is VK when for 
all arrows X→0, X is a colimit of the empty diagram 

• in other words: 
VK initial object = strict initial object



EXAMPLE - VK COPRODUCT

• A coproduct diagram is VK when, given a commutative diagram:

• TFAE
• top row is a coproduct diagram
• two squares are pullbacks

• Hence: coproducts in extensive categories are VK coproducts
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ADHESIVE VS EXTENSIVE

• Theorem: An adhesive 
category is extensive iff it has 
a strict initial object
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ADHESIVE VS EXTENSIVE

• Theorem: An adhesive 
category is extensive iff it has 
a strict initial object

• well-known fact: “pushouts & initial 
objects give coproducts” 

• here: “VK pushouts & VK initial 
objects give VK coproducts”

• is there a deeper meaning to 
being VK?
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MAIN RESULT

• Q. Where do such properties come from?
• What does the Van Kampen definition really mean?

Theorem: a colimit is Van Kampen in C iff it is a bicolimit 
in Span(C) (via canonical embedding).

• A. VK condition is an elementary characterisation (in C) of a 
universal property (in Span(C)) ! 

(Heindel & Sobocinski ’09)
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• vertical composition

• horizontal composition
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PROPERTIES OF 
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composition is associative
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PROPERTIES OF 
COMPOSITIONS

• C(X,Y) is a category, so identities                exist and vertical 
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EXTRA ASSUMPTIONS

• 2-categories: horizontal composition has identities
• bicategories: identity laws only up to coherent isomorphisms

• 2-categories: horizontal composition is associative
• bicategories: associativity only up to coherent isomorphisms

X
f

!!

f ′
""

!!

!!

!!
α Y

idY
!!

idY
""

!!

!!

!!
1idY Y X

id
!!

idX
""

!!

!!

!!
1idX X

f
!!

f ′
""

!!

!!

!!
α YX

f
!!

f ′
""

!!

!!

!!
α Y ==

X
f

!!

f ′
""

!!

!!

!!
α Y

g
!!

g′
""

!!

!!

!!
β Z

h
##

h′
$$

!!

!!

!!
γ W X

f
!!

f ′
""

!!

!!

!!
α Y

hg
##

h′g′
$$

!!

!!

!!
γβ W X

g f
!!

g′ f ′
""

!!

!!

!!
βα Z

h
##

h′
$$

!!

!!

!!
γ W=



BICATEGORY OF SPANS

• For any C with (chosen) pullbacks, Span(C) has
• objects: those of C
• arrows: spans of arrows in C
• composition: by pullback 

• Universal property of pullbacks gives associativity 
isomorphisms and implies coherence conditions

• There is an embedding Γ: C→Span(C)
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BICOLIMITS

• Span(C) is a bicategory: canonical notion of colimits are bicolimit

• categories: usually equality of objects does not make sense
• limits, colimits etc are defined up to (unique) isomorphism
• mediating morphisms are unique

• 2-categories and (especially) bicategories: usually one 
does not talk about equality of arrows
• bilimits, bicolimits are defined up to equivalence
• mediating morphisms are “essentially unique”

(Kelly & Street)



MORE CONCRETELY

• A bicolimit consists of the following data:
•  
• pseudo-cocone 

M : J→ B
a functor

JLet be an ordinary category and 

bicM ∈ B
κ :M→ bicM

Mi
κu

������
����κi

��

Mu ��Mj

κj��bicM

κidi = 1κi

κv◦u = (κv ◦Mu) •κu



UNIVERSAL PROPERTY

• for all pseudo-cocones                  there exists a pseudo 
mediating morphism that consists of:
• an arrow 
• isomorphic 2-cells 
• satisfying:

λ :M→ X

h : bicM→ X

Mi

κu

������ ����
κi ����

��
��

λi

��

Mu ��Mj

κj
��

bicM

h��������

X

ϕi

��

Mi
λu

��
����

λi

��

Mu ��Mj

κj
��

λj

����
��

��
��

��
�

bicM

h��������

X

ϕj ��

=

ϕi : λi ⇒ (∆h) ◦ κ

(existence)



UNIVERSAL PROPERTY

• for any                          , a modification                            
is               for a unique 2-cell

• this implies that any mediating morphisms are essentially 
unique, ie any two are isomorphic via a unique 
isomorphism

(essential uniqueness)

h, h� : bicM→ X ψ : ∆h ◦ κ → ∆h� ◦ κ
(∆ξ) ◦ κ ξ : h⇒ h�
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MAIN THEOREM
• Let C have pullbacks and J-colimits. Let Γ: C→Span(C)                              

be the usual embedding. Then:

• Proof sketch: 
• lemmas that allow to pass between C and Span(C)
• restatement of the universal property of bicolimits so that it 

matches the VK condition.

κ : F → C is Van Kampen in C

Γκ is a bicolimit in Span(C)
iff



SOME COROLLARIES

• C a category with pullbacks:
• C has a strict initial object iff it has an initial object and it is 

preserved by the embedding into Span(C)
• C is extensive iff it has binary sums and these are preserved 

by the embedding into Span(C)
• C is adhesive iff it has pushouts along monos and these are 

preserved by the embedding into Span(C) 
• ...



INTUITIONS

• Ordinary universal property of colimits is good enough for C
• With Γ: C→Span(C) we pass into a wilder universe

• VK colimits are “reinforced” colimits that are ready for this 
shock



EXAMPLE - SYMMETRIES

• but only two mediating morphisms, so cannot be a bicolimit
• so VK bicolimits are “stable under symmetries”
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FUTURE WORK

• Characterise the VK colimits in Set 
• or at least the VK pushouts!

• characterise weakenings of the VK condition by looking at 
universes between C and Span(C) (like Par(C) or Rel(C))
• obtain (useful?) weakenings of adhesive categories etc


