ADHESIVE CATEGORIES,VAN
 KAMPEN SQUARES AND BICOLIMITS
 Pawel Sobocinski
 (joint work with Steve Lack \& Tobias Heindel)
 Grenoble, 26/l I/09

PLAN OFTALK

- Categories with structure
- extensive categories, adhesive categories
- Van Kampen colimits
- 2-categories, bicategories \& bicolimits
- Van Kampen colimits as a universal property

EXTENSIVE CATEGORIES (elementary definition)

- A category is extensive when it has
- finite coproducts
- pullbacks (along coproduct injections)
- for illustrated commutative
 diagram, TFAE
- top row is a coproduct diagram
- two squares are pullbacks

EXTENSIVE CATEGORIES
 (elementary definition)

- A category is extensive when it has
- finite coproducts
- pullbacks (along coproduct injections)
- for illustrated commutative diagram, TFAE
- top row is a coproduct diagram

Slogan: finite coproducts exist and are "well-behaved"

- two squares are pullbacks

PROPERTIES OF EXTENSIVE CATEGORIES

PROPERTIES OF EXTENSIVE CATEGORIES

- General fact about monomorphisms: an arrow is mono iff the pullback with itself is consists of identities.

PROPERTIES OF EXTENSIVE CATEGORIES

- General fact about monomorphisms: an arrow is mono iff the pullback with itself is consists of identities.

PROPERTIES OF EXTENSIVE CATEGORIES

- General fact about monomorphisms: an arrow is mono iff the pullback with itself is consists of identities.

$$
\begin{gathered}
X \longrightarrow X \\
\downarrow \\
\\
\\
X \longrightarrow{ }_{m} \\
\\
\\
\downarrow^{m}
\end{gathered}
$$

- Lemma: In an extensive category, coproducts are disjoint and coproduct injections are monomorphisms

PROPERTIES OF EXTENSIVE CATEGORIES

- General fact about monomorphisms: an arrow is mono iff the pullback with itself is consists of identities.

$$
\begin{gathered}
X \longrightarrow X \\
\downarrow \\
\\
\\
X \longrightarrow{ }_{m} \\
\\
\\
\downarrow^{m}
\end{gathered}
$$

- Lemma: In an extensive category, coproducts are disjoint and coproduct injections are monomorphisms

EXTENSIVE CATS ARE DISTRIBUTIVE

- A category is distributive when the canonical morphism

$$
\delta_{X, Y, Z}: X \times Y+X \times Z \rightarrow X \times(Y+Z)
$$

is invertible

EXTENSIVE CATS ARE DISTRIBUTIVE

- A category is distributive when the canonical morphism

$$
\delta_{X, Y, Z}: X \times Y+X \times Z \rightarrow X \times(Y+Z)
$$

is invertible

- recently Steve Lack showed that any natural family of isomorphisms is enough

EXTENSIVE CATS ARE DISTRIBUTIVE

- A category is distributive when the canonical morphism

$$
\delta_{X, Y, Z}: X \times Y+X \times Z \rightarrow X \times(Y+Z)
$$

is invertible

- recently Steve Lack showed that any natural family of isomorphisms is enough

EXTENSIVE CATS ARE DISTRIBUTIVE

- A category is distributive when the canonical morphism

$$
\delta_{X, Y, Z}: X \times Y+X \times Z \rightarrow X \times(Y+Z)
$$

is invertible

- recently Steve Lack showed that any natural family of isomorphisms is enough
- Lemma: Extensive categories with products are distributive.

EXTENSIVE CATS ARE DISTRIBUTIVE

- A category is distributive when the canonical morphism

$$
\delta_{X, Y, Z}: X \times Y+X \times Z \rightarrow X \times(Y+Z)
$$

is invertible

- recently Steve Lack showed that any natural family of isomorphisms is enough
- Lemma: Extensive categories with products are distributive.

INITIAL OBJECTS IN EXTENSIVE CATS

- An initial object is strict if existence of arrow $X \rightarrow 0$ implies that X is initial
- Lemma: In extensive categories, the initial object is strict

EXAMPLES/ COUNTEREXAMPLES

- Set, Set ${ }_{f}$, Graph, toposes, Cat, Top, C/C for extensive \mathbf{C}
- note: in Set every mono is a coproduct injection
- Non examples:
- powerset $\mathrm{P}(\mathrm{X})$ ordered by inclusion considered as a category (sums not disjoint)
- C/C in general (no strict initial object)

VAN KAMPEN SQUARES
 (elementary definition)

- Similar story to coproducts in extensive cats, for pushouts
- pushout satisfies the Van Kampen property if when it is the bottom face of a commutative cube that has its rear faces pullbacks, tfae
- the top face is a pushout
- the front faces are pullbacks

NONVK PUSHOUT IN SET

ADHESIVE CATEGORIES

- A category is adhesive when it has
- pushouts along monos
- pullbacks
- pushouts along monos are VK squares

ADHESIVE CATEGORIES

- A category is adhesive when it has
- pushouts along monos
- pullbacks
- pushouts along monos are VK squares

ADHESIVE CATEGORIES

- A category is adhesive when it has
- pushouts along monos
- pullbacks
- pushouts along monos are VK squares
- Slogan: pushouts along monos exist and are "well-behaved"

ADHESIVE CATEGORIES

- A category is adhesive when it has
- pushouts along monos
- pullbacks
- pushouts along monos are VK squares
- Slogan: pushouts along monos exist and are "well-behaved"

ADHESIVE CATEGORIES

- A category is adhesive when it has
- pushouts along monos
- pullbacks
- pushouts along monos are VK squares
- Slogan: pushouts along monos exist and are "well-behaved"
- Theorem: Set is adhesive
- proof relies on the fact that Set is extensive, monos in Set are coproduct injections and pushouts commute with coproducts

PROPERTIES OF ADHESIVE CATEGORIES

- Lemma
- pushouts of monos are monos
- pushouts along monos are pullbacks

PROPERTIES OF ADHESIVE CATEGORIES

- Lemma
- pushouts of monos are monos
- pushouts along monos are pullbacks

PROPERTIES OF ADHESIVE CATEGORIES

- pushouts of monos are monos
- pushouts along monos are pullbacks

PROPERTIES OF ADHESIVE CATEGORIES

- pushouts of monos are monos
- pushouts along monos are pullbacks

PROPERTIES OF ADHESIVE CATEGORIES

- pushouts of monos are monos
- pushouts along monos are pullbacks
- other properties:
- unique pushout complements
- effective unions
- distributive lattices of subobjects

EXAMPLES

- Set, Graph, toposes, C/C, C/C for adhesive \mathbf{C}

EXAMPLES

- Set, Graph, toposes, C/C, C/C for adhesive \mathbf{C}
- Note: category of partial functions (I/Set) is adhesive but not extensive (no strict initial object)

EXAMPLES

- Set, Graph, toposes, C/C, C/C for adhesive \mathbf{C}
- Note: category of partial functions (I/Set) is adhesive but not extensive (no strict initial object)
- Non examples: Pos, Cat, Top

EXAMPLES

- Set, Graph, toposes, C/C, C/C for adhesive \mathbf{C}
- Note: category of partial functions (I/Set) is adhesive but not extensive (no strict initial object)
- Non examples: Pos, Cat, Top

$$
\begin{aligned}
& {[2]<{ }^{0}[1]}
\end{aligned}
$$

EXAMPLES

- Set, Graph, toposes, C/C, C/C for adhesive \mathbf{C}
- Note: category of partial functions (I/Set) is adhesive but not extensive (no strict initial object)
- Non examples: Pos, Cat, Top

$$
\begin{aligned}
& {[2]<{ }^{0}[1] \text { not stable under pullback with }} \\
& {[n]=\{0 \leq 1 \leq \cdots \leq n-1\}} \\
& \begin{aligned}
{[2] } & \rightarrow[3] \\
0 & \mapsto 0 \\
1 & \mapsto 2
\end{aligned}
\end{aligned}
$$

GENERALISING VAN KAMPEN

 CONDITION
Definition:

A colimit diagram $\kappa: \mathcal{F} \rightarrow C$ is Van Kampen when for all functors $\mathcal{F}^{\prime}: \mathbf{J} \rightarrow \mathbf{C}$, cocones $\kappa^{\prime}: \mathcal{F}^{\prime} \rightarrow C^{\prime}$ and cartesian nat. trans. $\gamma: \mathcal{F}^{\prime} \rightarrow \mathcal{F}$

TFAE

i. κ^{\prime} is a colimit diagram
ii. $\mathcal{F}_{i}^{\prime} C^{\prime} C \mathcal{F}_{i}$ are all
pullback diagrams

EXAMPLE - STRICT INITIAL OBJECT

- A colimit 0 of the empty diagram (initial object) is VK when for all arrows $X \rightarrow 0, X$ is a colimit of the empty diagram
- in other words:

VK initial object = strict initial object

EXAMPLE -VK COPRODUCT

- A coproduct diagram is VK when, given a commutative diagram:
- TFAE

- top row is a coproduct diagram
- two squares are pullbacks
- Hence: coproducts in extensive categories are VK coproducts

ADHESIVEVS EXTENSIVE

- Theorem: An adhesive category is extensive iff it has a strict initial object

ADHESIVEVS EXTENSIVE

- Theorem: An adhesive category is extensive iff it has a strict initial object
- well-known fact: "pushouts \& initial objects give coproducts"

ADHESIVEVS EXTENSIVE

- Theorem: An adhesive category is extensive iff it has a strict initial object
- well-known fact: "pushouts \& initial objects give coproducts"
- here: "VK pushouts \& VK initial objects give VK coproducts"

ADHESIVEVS EXTENSIVE

- Theorem: An adhesive category is extensive iff it has a strict initial object
- well-known fact: "pushouts \& initial objects give coproducts"
- here: "VK pushouts \& VK initial objects give VK coproducts"
- is there a deeper meaning to being VK?

MAIN RESULT
 (Heindel \& Sobocinski '09)

MAIN RESULT (Heindel \& Sobocinski '09)

- Q. Where do such properties come from?
- What does the Van Kampen definition really mean?

MAIN RESULT
 (Heindel \& Sobocinski '09)

- Q. Where do such properties come from?
-What does the Van Kampen definition really mean?

Theorem: a colimit is Van Kampen in \mathbf{C} iff it is a bicolimit in Span (\mathbf{C}) (via canonical embedding).

MAIN RESULT (Heindel \& Sobocinski '09)

- Q. Where do such properties come from?
-What does the Van Kampen definition really mean?

Theorem: a colimit is Van Kampen in \mathbf{C} iff it is a bicolimit in Span($\mathbf{C})$ (via canonical embedding).

- A.VK condition is an elementary characterisation (in \mathbf{C}) of a universal property (in $\operatorname{Span}(\mathbf{C})$)!

PLAN OFTALK

- Categories with structure
- extensive categories, adhesive categories
- Van Kampen colimits
- 2-categories, bicategories \& bicolimits
- Van Kampen colimits as a universal property

2-CATEGORIES \& BICATEGORIES

2-CATEGORIES \& BICATEGORIES

- vertical composition

$$
X \underset{{\underset{g}{\Downarrow}}_{\frac{f}{\Downarrow}}^{a}}{ }
$$

2-CATEGORIES \& BICATEGORIES

- vertical composition

$$
X \underset{{\underset{g}{\Downarrow}}_{\Downarrow_{1}}^{f} Y}{ }
$$

2-CATEGORIES \& BICATEGORIES

- vertical composition

$$
X \underset{{ }_{g}^{\Downarrow}}{\frac{f}{\Downarrow}}
$$

- horizontal composition

2-CATEGORIES \& BICATEGORIES

- vertical composition

$$
X \underset{{\underset{g}{\|}}_{\stackrel{f}{\Downarrow}}^{r}}{ }
$$

- horizontal composition

PROPERTIES OF COMPOSITIONS

- $\mathbf{C}(X, Y)$ is a category, so identities $1_{f}: f \Rightarrow f$ exist and vertical composition is associative
- $\mathbf{C}(Y, Z) \times \mathbf{C}(X, Y) \rightarrow \mathbf{C}(X, Z)$ is a functor, so

PROPERTIES OF COMPOSITIONS

- $\mathbf{C}(X, Y)$ is a category, so identities $1_{f}: f \Rightarrow f$ exist and vertical composition is associative
- $\mathbf{C}(Y, Z) \times \mathbf{C}(X, Y) \rightarrow \mathbf{C}(X, Z)$ is a functor, so

$$
X \underbrace{\overbrace{f}^{\| 1_{f}^{\prime}}}_{f} Y \underbrace{\overbrace{g}^{\Downarrow 1_{g}^{\prime}}}_{g} Z=X \underbrace{\overbrace{g f_{f}}^{g f}}_{g f} Z
$$

PROPERTIES OF COMPOSITIONS

- $\mathbf{C}(X, Y)$ is a category, so identities $1_{f}: f \Rightarrow f$ exist and vertical composition is associative
- $\mathbf{C}(Y, Z) \times \mathbf{C}(X, Y) \rightarrow \mathbf{C}(X, Z)$ is a functor, so

EXTRA ASSUMPTIONS

- 2-categories: horizontal composition has identities
- bicategories: identity laws only up to coherent isomorphisms
- 2-categories: horizontal composition is associative
- bicategories: associativity only up to coherent isomorphisms

EXTRA ASSUMPTIONS

- 2-categories: horizontal composition has identities
- bicategories: identity laws only up to coherent isomorphisms
- 2-categories: horizontal composition is associative
- bicategories: associativity only up to coherent isomorphisms

EXTRA ASSUMPTIONS

- 2-categories: horizontal composition has identities
- bicategories: identity laws only up to coherent isomorphisms
- 2-categories: horizontal composition is associative
- bicategories: associativity only up to coherent isomorphisms

EXTRA ASSUMPTIONS

- 2-categories: horizontal composition has identities
- bicategories: identity laws only up to coherent isomorphisms
- 2-categories: horizontal composition is associative
- bicategories: associativity only up to coherent isomorphisms

$$
\begin{aligned}
& X \underset{f^{\prime}}{\stackrel{\downarrow}{\Downarrow \alpha}} Y \underset{g^{\prime}}{\stackrel{g}{\Downarrow \beta}} Z \underset{h^{\prime}}{\stackrel{h}{\Downarrow v}} W
\end{aligned}
$$

BICATEGORY OF SPANS

- For any \mathbf{C} with (chosen) pullbacks, $\operatorname{Span}(\mathbf{C})$ has
- objects: those of \mathbf{C}
- arrows: spans of arrows in \mathbf{C}
- composition: by pullback
- Universal property of pullbacks gives associativity isomorphisms and implies coherence conditions
- There is an embedding $\Gamma: \mathbf{C} \rightarrow \operatorname{Span}(\mathbf{C})$

BICOLIMITS (Kelly \& Street)

- Span (\mathbf{C}) is a bicategory: canonical notion of colimits are bicolimit

BICOLIMITS (Kelly \& Street)

- Span (\mathbf{C}) is a bicategory: canonical notion of colimits are bicolimit

BICOLIMITS (Kelly \& Street)

- Span (\mathbf{C}) is a bicategory: canonical notion of colimits are bicolimit
- categories: usually equality of objects does not make sense - limits, colimits etc are defined up to (unique) isomorphism
- mediating morphisms are unique

BICOLIMITS (Kelly \& Street)

- Span (\mathbf{C}) is a bicategory: canonical notion of colimits are bicolimit
- categories: usually equality of objects does not make sense - limits, colimits etc are defined up to (unique) isomorphism
- mediating morphisms are unique

BICOLIMITS

(Kelly \& Street)

- Span (\mathbf{C}) is a bicategory: canonical notion of colimits are bicolimit
- categories: usually equality of objects does not make sense - limits, colimits etc are defined up to (unique) isomorphism
- mediating morphisms are unique
- 2-categories and (especially) bicategories: usually one does not talk about equality of arrows
- bilimits, bicolimits are defined up to equivalence
- mediating morphisms are "essentially unique"

MORE CONCRETELY

Let \mathbf{J} be an ordinary category and $\mathcal{M}: \mathbf{J} \rightarrow \mathbb{B}$ a functor

- A bicolimit consists of the following data:
- bic $\mathcal{M} \in \mathbb{B}$
- pseudo-cocone $\kappa: \mathcal{M} \rightarrow \operatorname{bic} \mathcal{M}$

$$
\begin{array}{ll}
\mathcal{M}_{i} \xrightarrow{\mathcal{M}_{u}} \mathcal{M}_{j} \\
\kappa_{u} \\
\kappa_{\mathrm{id}_{i}}=1_{\kappa_{i}} \\
\kappa_{v o u}=\left(\kappa_{v} \circ \mathcal{M}_{u}\right) \bullet \kappa_{u}
\end{array}
$$

UNIVERSAL PROPERTY

(existence)

- for all pseudo-cocones $\lambda: \mathcal{M} \rightarrow X$ there exists a pseudo mediating morphism that consists of:
- an arrow h : bic $\mathcal{M} \rightarrow X$
- isomorphic 2-cells $\varphi_{i}: \lambda_{i} \Rightarrow(\Delta h) \circ \kappa$
- satisfying:

$$
\begin{aligned}
& \mathcal{M}_{i} \xrightarrow{\mathcal{M}_{u}} \mathcal{M}_{j} \quad \mathcal{M}_{i} \xrightarrow{\mathcal{M}_{u}} \mathcal{M}_{j}
\end{aligned}
$$

UNIVERSAL PROPERTY (essential uniqueness)

- for any $h, h^{\prime}:$ bic $\mathcal{M} \rightarrow X$, a modification $\psi: \Delta h \circ \kappa \rightarrow \Delta h^{\prime} \circ \kappa$ is $(\Delta \xi) \circ \kappa$ for a unique 2-cell $\xi: h \Rightarrow h^{\prime}$
- this implies that any mediating morphisms are essentially unique, ie any two are isomorphic via a unique isomorphism

PLAN OFTALK

- Categories with structure
- extensive categories, adhesive categories
- Van Kampen colimits
- 2-categories, bicategories \& bicolimits
- Van Kampen colimits as a universal property

MAINTHEOREM

- Let \mathbf{C} have pullbacks and \boldsymbol{J}-colimits. Let $\Gamma: \mathbf{C} \rightarrow \operatorname{Span}(\mathbf{C})$ be the usual embedding. Then:

$$
\begin{gathered}
\kappa: \mathcal{F} \rightarrow C \\
\text { iff } \\
\text { iff }
\end{gathered}
$$

$\Gamma \kappa$ is a bicolimit in $\operatorname{Span}(\mathbf{C})$

- Proof sketch:
- lemmas that allow to pass between \mathbf{C} and $\operatorname{Span}(\mathbf{C})$
- restatement of the universal property of bicolimits so that it matches the VK condition.

SOME COROLLARIES

- C a category with pullbacks:
- C has a strict initial object iff it has an initial object and it is preserved by the embedding into $\operatorname{Span}(\mathbf{C})$
- \mathbf{C} is extensive iff it has binary sums and these are preserved by the embedding into Span(C)
- \mathbf{C} is adhesive iff it has pushouts along monos and these are preserved by the embedding into Span(C)

INTUITIONS

- Ordinary universal property of colimits is good enough for \mathbf{C}
- With $\Gamma: \mathbf{C} \rightarrow$ Span (\mathbf{C}) we pass into a wilder universe
- VK colimits are "reinforced" colimits that are ready for this shock

EXAMPLE - SYMMETRIES

NotVK in Set

- but only two mediating morphisms, so cannot be a bicolimit
- so VK bicolimits are "stable under symmetries"

FUTURE WORK

- Characterise the VK colimits in Set
- or at least the VK pushouts!
- characterise weakenings of the VK condition by looking at universes between \mathbf{C} and $\operatorname{Span}(\mathbf{C})($ like $\operatorname{Par}(\mathbf{C})$ or $\operatorname{Rel}(\mathbf{C}))$
- obtain (useful?) weakenings of adhesive categories etc

