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PLAN OF TALK

» Categories with structure
* extensive categories, adhesive categories
* Van Kampen colimits
» )-categories, bicategories & bicolimits
» Van Kampen colimits as a universal property




EXTENSIVE CATEGORIES

(elementary definition)

* A category Is extensive when
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X
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EXTENSIVE CATS ARE DISTRIBUTIVE

* A category is distributive when the canonical morphism

6X,Y,Z:X><Y—|—X><Z—>XX(Y—I—Z)
IS Invertible

* recently Steve Lack showed that any natural family of
Isomorphisms Is enough

* Lemma: bxtensive categories with products are distributive.
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INITIAL OBJECTS IN EX

* An inrtial object Is strict if existence of arrow X—0

implies that X is inrtial

I [SESTR@

* Lemma: In extensive categories, the inrtial objec

.
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EXAMPLES/
COUN TEREXAMPLES

- Set, Set;, Graph, toposes, Cat, Top, C/C for extensive C
* note: In Set every mono Is a coproduct injection

* Non examples:

» powerset P(X) ordered by inclusion considered as a
category (sums not disjoint)

- C/€ In general (no strict intial object)




VAN KAMPEN SQUARES

(elementary definition)

» Similar story to coproducts in
extensive cats, for pushouts

* pushout satisfies the Van
Kampen property it when it is
the bottom face of a commutative
cube that has Its rear faces
pullbacks, tfae

» the top face Is a pushout

» the front faces are pullbacks




NON VK PUSHOUT IN SET
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ADHESIVE CATEGORIES

* A category 1s adhesive when it has
bushouts along monos
bullbacks

bushouts along monos are VK squares
» Slogan: pushouts along monos exist and are “well-behaved”

« Theorem: Set is adhesive

» proof relies on the fact that Set is extensive, monos in Set are
coproduct injections and pushouts commute with coproducts




PROPERTIES OF ADHESIVE
CATEGORIES

e Lemma
* pushouts of monos are monos

* pushouts along monos are
bullbacks
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PROPERTIES OF ADHESIVE
CATEGORIES

e Lemma
* pushouts of mMonos are monos

* pushouts along monos are
bullbacks

- other properties:

* unique pushout complements
» effective unions

- distributive lattices of subobjects
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EXAMPLES

* Set, Graph, toposes, C/€, €/C for adhesive €

* Note: category of partial functions (1/Set) is adhesive but not
extensive (no strict inrtial object)

* Non examples: Pos, Cat, Top

2]<——1[1] not stable under pullback with

2] = 3]

0— 0
1~ 2




GENERALISING VAN KAMPEN
CONDITION

Definition:
A colimit diagram & : F — C isVan Kampen
ien for all unctors F' : J — @ cocones

k' : F' — C' and cartesian nat. trans.v: F/ —F

f’/
e
70 TFAE

i. x' is a colimit diagram
ii. 7/C'CF,; are all
pullback diagrams




EXAMPLE - STRICT INITIAL
OBJECT

* A colimit O of the empty diagram (initial object) 1s VK when for
all arrows X—=0, X is a colimit of the empty diagram

* In other words:
VK Initial object = strict inrtial object




EXAMPLE - VK COPRODUCT

» A coproduct diagram is VK when, given a commutative diagram:

X = Y

Voo

A?A——B%B

- TFEAE

» top row Is a coproduct diagram
* two squares are pullbacks

* Hence: coproducts in extensive categories are VK coproducts




ADHESIVEVS EXTENSIVE

 Theorem: An adhesive 0

category is extensive iff it has / N\
a strict initial object X Y
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ADHESIVEVS EXTENSIVE
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ADHESIVEVS EXTENSIVE

 Theorem: An adhesive 0

category is extensive iff it has / N\

a strict initial object X / 14
* well-known fact: “pushouts & Inrtial ZiR
objects give coproducts” +

+ here: “VK pushouts & VK initial .
objects give VK coproducts” i

o

5
* Is there a deeper meaning to ' -
being VK? -B
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MAIN RESULT

(Heindel & Sobocinski '09)

* Q. VWhere do such properties come from!?
- What does the Van Kampen definition really mean?

Theorem: a colimit isVan Kampen in € iff it 1s a2 bicolimit
in Span(€) (via canonical embedding).

- A.VK condition is an elementary characterisation (in €) of a
universal property (in Span(€)) !
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» Categories with structure

» extensive categories, adhesive categories

* Van Kampen colimits
* 2-categories, bicategories & bicolimits
» Van Kampen colimits as a universal property
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2-CATEGORIES &
BICATEGORIES

* horizontal composition
/ 8

| A £se
X\%;Y\{%ﬁ/(z Ba:gf = g'f
8




PROPERTIES OF
COMPOSITIONS
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PROPERTIES OF
COMPOSITIONS

* C(X)Y) Is a category, so identities 1 : f = f exist and vertical
composition Is assoclative

e CO< 1) > €(X Z) Is a functor, so

f
\L,a/ % ey
X—+f—1 —¢——7 ,BCL’ o
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EXTRA ASSUMPTIONS

» )-categories: horizontal composition has identities
: bicategcries: identity laws only up to coherent iIsomorphisms
ldy id f
X{LaY{JLdY— —X\@(X\l_yﬂy
ldy 1dX f’
» )-categories: horizontal composition Is associative
* bicategories: associativity only up to coherent isomorphisms
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BICATEGORY OF SPANS

* For any € with (chosen) pullbacks, Span(€) has

* objects: those of €
* arrows: spans of arrows in €
- composition: by pullback

» Universal property of pullbacks gives associativity
isomorphisms and iImplies coherence conditions

BRRcresis an embedding 1 : €2 5pan(€)
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BICOLIMITS

(Kelly & Street)

* Span(€) Is a bicategory: canonical notion of colimits are bicolimit

- categories: usually equality of objects does not make sense
* limits, colimits etc are defined up to (unique) Isomorphism
* mediating morphisms are unique

- 2-categories and (especially) bicategories: usually one
does not talk about equality of arrows

* bilimits, bicolimrits are defined up to equivalence
- mediating morphisms are “essentially unique”




MORE CONCRETELY

Let J be an ordinary category and M:J — B
a functor

* A bicolimit consists of the following data:
* bicM € B
* pseudo-cocone k: M — bic M

My,
./\/li B ./\/lj
Ry

/7 /{idi s 1/12'

Ryou = (’ffu O Mu) ® Ry




UNIVERSAL PROPERTY

(existence)

- for all pseudo-cocones A: M — X there exists a pseudo
mediating morphism that consists of:

* an arrow h: bicM — X
» isomorphic 2-cells ¢; : A; = (Ah) ok
* satistying:

M; 225 M, i

M| = bieM T M|, bic M
it 4

X X




UNIVERSAL PROPERTY

(essential uniqueness)

- for any h, A’ : bicM — X, a modification ¥ : Ahok — Ah' ok
s (A€) o k for a unique 2-cell € : h = A’

- this iImplies that any mediating morphisms are essentially
unique, ie any two are isomorphic via a unigque
isomorphism
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MAIN THEOREM

* Let € have pullbacks and J-colimits. Let 17: €—Span(€)
be the usual embedding. I hen:

k:F — C 1sVan Kampen in C
it
I'x Is a bicolimit in Span(€)

* Proof sketch:

* lemmas that allow to pass between € and Span(€)

* restatement of the universal property of bicolimits so that it
matches the VK condition.




SOME COROLLARIES

» € a category with pullbacks:

- € has a strict initial object iff it has an inrtial object and it Is
preserved by the embedding into Span(€)

- C is extensive Iff It has binary sums and these are preserved
by the embedding into Span(€)

€ is adhesive Iff 1t has pushouts along monos and these are
preserved by the embedding into Span(€)




INTUITIONS

* Ordinary universal property of colimits Is good enough for €
* With 1': €—=5pan(€) we pass into a wilder universe

» VK colimits are “reinforced” colimits that are ready for this
shock




EXAMPLE - SYMME TRIES

%
1/ \1
N
NotVK in Set

1 1 1 1

» but only two mediating morphisms, so cannot be a bicolimit
* so VK bicolimits are “'stable under symmetries”




U TURE WORK

* Characterise the VK colimits in Set
* or at least the VK pushouts!

» characterise weakenings of the VK condition by looking at
universes between € and Span(€) (like Par(€) or Rel(€))

» obtain (useful?) weakenings of adhesive categories etc




