Southampton

School of Electronics and Computer Science

ADHESIVE CATEGORIES, VAN KAMPEN SQUARES AND BICOLIMITS

Pawel Sobocinski (joint work with Steve Lack & Tobias Heindel) Grenoble, 26/11/09

PLAN OFTALK

Categories with structure

- extensive categories, adhesive categories
- Van Kampen colimits
- 2-categories, bicategories & bicolimits
- Van Kampen colimits as a universal property

EXTENSIVE CATEGORIES (elementary definition)

- A category is **extensive** when it has
 - finite coproducts
 - pullbacks (along coproduct injections)
 - for illustrated commutative diagram, TFAE
 - top row is a coproduct diagram
 - two squares are pullbacks

EXTENSIVE CATEGORIES (elementary definition)

- A category is **extensive** when it has
 - finite coproducts
 - pullbacks (along coproduct injections)
 - for illustrated commutative diagram, TFAE
 - top row is a coproduct diagram
 - two squares are pullbacks

Slogan: finite coproducts exist and are "well-behaved"

• General fact about monomorphisms: an arrow is mono iff the pullback with itself is consists of identities.

• General fact about monomorphisms: an arrow is mono iff the pullback with itself is consists of identities.

• General fact about monomorphisms: an arrow is mono iff the pullback with itself is consists of identities.

 Lemma: In an extensive category, coproducts are disjoint and coproduct injections are monomorphisms

• General fact about monomorphisms: an arrow is mono iff the pullback with itself is consists of identities.

 Lemma: In an extensive category, coproducts are disjoint and coproduct injections are monomorphisms

• A category is **distributive** when the canonical morphism $\delta_{X,Y,Z}: X \times Y + X \times Z \rightarrow X \times (Y + Z)$ is invertible

- A category is **distributive** when the canonical morphism $\delta_{X,Y,Z}: X \times Y + X \times Z \to X \times (Y + Z)$ is invertible
 - recently Steve Lack showed that any natural family of isomorphisms is enough

- A category is **distributive** when the canonical morphism $\delta_{X,Y,Z}: X \times Y + X \times Z \to X \times (Y + Z)$ is invertible
 - recently Steve Lack showed that any natural family of isomorphisms is enough

- A category is **distributive** when the canonical morphism $\delta_{X,Y,Z}: X \times Y + X \times Z \to X \times (Y + Z)$ is invertible
 - recently Steve Lack showed that any natural family of isomorphisms is enough
- Lemma: Extensive categories with products are distributive.

- A category is **distributive** when the canonical morphism $\delta_{X,Y,Z}: X \times Y + X \times Z \to X \times (Y + Z)$ is invertible
 - recently Steve Lack showed that any natural family of isomorphisms is enough
- Lemma: Extensive categories with products are distributive.

$$\begin{array}{c|c} A \times B \xrightarrow{A \times i_{1}} A \times (B + C) \xleftarrow{A \times i_{2}} A \times C \\ & & \downarrow & & \downarrow \\ \pi_{2} & & \downarrow & & \downarrow \\ B \xrightarrow{\pi_{2}} & & \downarrow & & \downarrow \\ B \xrightarrow{i_{1}} B + C \xleftarrow{i_{1}} C \end{array}$$

INITIAL OBJECTS IN EXTENSIVE CATS

- An initial object is strict if existence of arrow X→0 implies that X is initial
- Lemma: In extensive categories, the initial object is strict

EXAMPLES/ COUNTEREXAMPLES

- Set, Set, Graph, toposes, Cat, Top, C/C for extensive C
 - note: in Set every mono is a coproduct injection
- Non examples:
 - powerset P(X) ordered by inclusion considered as a category (sums not disjoint)
 - C/C in general (no strict initial object)

VAN KAMPEN SQUARES (elementary definition)

- Similar story to coproducts in extensive cats, for pushouts
 - pushout satisfies the Van Kampen property if when it is the bottom face of a commutative cube that has its rear faces pullbacks, tfae
 - the top face is a pushout
 - the front faces are pullbacks

NONVK PUSHOUT IN SET

- A category is **adhesive** when it has
 - pushouts along monos
 - pullbacks
 - pushouts along monos are VK squares

- A category is **adhesive** when it has
 - pushouts along monos
 - pullbacks
 - pushouts along monos are VK squares

- A category is **adhesive** when it has
 - pushouts along monos
 - pullbacks
 - pushouts along monos are VK squares
- Slogan: pushouts along monos exist and are "well-behaved"

- A category is **adhesive** when it has
 - pushouts along monos
 - pullbacks
 - pushouts along monos are VK squares
- Slogan: pushouts along monos exist and are "well-behaved"

- A category is **adhesive** when it has
 - pushouts along monos
 - pullbacks
 - pushouts along monos are VK squares
- Slogan: pushouts along monos exist and are "well-behaved"
- Theorem: Set is adhesive
 - proof relies on the fact that Set is extensive, monos in Set are coproduct injections and pushouts commute with coproducts

- pushouts of monos are monos
- pushouts along monos are pullbacks

- pushouts of monos are monos
- pushouts along monos are pullbacks

- pushouts of monos are monos
- pushouts along monos are pullbacks

- pushouts of monos are monos
- pushouts along monos are pullbacks

- pushouts of monos are monos
- pushouts along monos are pullbacks
- other properties:
 - unique pushout complements
 - effective unions
 - distributive lattices of subobjects

• Set, Graph, toposes, C/C, C/C for adhesive C

- Set, Graph, toposes, C/C, C/C for adhesive C
- Note: category of partial functions (I/Set) is adhesive but not extensive (no strict initial object)

- Set, Graph, toposes, C/C, C/C for adhesive C
- Note: category of partial functions (I/Set) is adhesive but not extensive (no strict initial object)
- Non examples: Pos, Cat, Top

- Set, Graph, toposes, C/C, C/C for adhesive C
- Note: category of partial functions (I/Set) is adhesive but not extensive (no strict initial object)
- Non examples: Pos, Cat, Top

$$[n] = \{0 \le 1 \le \dots \le n-1\} \qquad \begin{bmatrix} 2 \end{bmatrix} \xleftarrow{0} [1]$$
$$\downarrow \qquad \qquad \downarrow 1$$
$$[3] \xleftarrow{0} [2]$$

- Set, Graph, toposes, C/C, C/C for adhesive C
- Note: category of partial functions (I/Set) is adhesive but not extensive (no strict initial object)
- Non examples: Pos, Cat, Top

$$[n] = \{0 \le 1 \le \dots \le n-1\}$$

$$[2] \xleftarrow{0} [1] \quad \text{not stable under pullback with}$$

$$[2] \xleftarrow{0} [1] \quad \text{not stable under pullback with}$$

$$[2] \rightarrow [3] \quad 0 \mapsto 0 \\ [3] \xleftarrow{-} [2] \quad 1 \mapsto 2$$

GENERALISING VAN KAMPEN CONDITION

Definition:

A colimit diagram $\kappa : \mathcal{F} \to C$ is Van Kampen when for all functors $\mathcal{F}': \mathbf{J} \to \mathbf{C}$, cocones $\kappa' : \mathcal{F}' \to C'$ and cartesian nat. trans. $\gamma : \mathcal{F}' \to \mathcal{F}$

EXAMPLE - STRICT INITIAL OBJECT

• A colimit 0 of the empty diagram (initial object) is VK when for all arrows $X \rightarrow 0, X$ is a colimit of the empty diagram

• in other words:

VK initial object = strict initial object

EXAMPLE - VK COPRODUCT

• A coproduct diagram is VK when, given a commutative diagram:

- TFAE
 - top row is a coproduct diagram
 - two squares are pullbacks
- Hence: coproducts in extensive categories are VK coproducts

• **Theorem**: An adhesive category is extensive iff it has a strict initial object

- **Theorem**: An adhesive category is extensive iff it has a strict initial object
- well-known fact: "pushouts & initial objects give coproducts"

- **Theorem**: An adhesive category is extensive iff it has a strict initial object
- well-known fact: "pushouts & initial objects give coproducts"
- here: "VK pushouts & VK initial objects give VK coproducts"

- **Theorem**: An adhesive category is extensive iff it has a strict initial object
- well-known fact: "pushouts & initial objects give coproducts"
- here: "VK pushouts & VK initial objects give VK coproducts"
- is there a deeper meaning to being VK?

• Q. Where do such properties come from?

• What does the Van Kampen definition really mean?

• Q. Where do such properties come from?

• What does the Van Kampen definition really mean?

Theorem: a colimit is Van Kampen in **C** iff it is a **bicolimit** in Span(**C**) (via canonical embedding).

• Q. Where do such properties come from?

• What does the Van Kampen definition **really** mean?

Theorem: a colimit is Van Kampen in **C** iff it is a **bicolimit** in Span(**C**) (via canonical embedding).

 A.VK condition is an elementary characterisation (in C) of a universal property (in Span(C)) !

PLAN OFTALK

- Categories with structure
 - extensive categories, adhesive categories
 - Van Kampen colimits
- 2-categories, bicategories & bicolimits
- Van Kampen colimits as a universal property

vertical composition

vertical composition

f $X \xrightarrow{g}{ \underset{ \downarrow \beta }{ \overset{ \downarrow \alpha }{ \overset{ \iota \alpha$ h

vertical composition

horizontal composition

vertical composition

horizontal composition

PROPERTIES OF COMPOSITIONS

- C(X,Y) is a category, so identities $1_f : f \Rightarrow f$ exist and vertical composition is associative
- $C(Y, Z) \times C(X, Y) \rightarrow C(X, Z)$ is a functor, so

PROPERTIES OF COMPOSITIONS

• C(X,Y) is a category, so identities $1_f : f \Rightarrow f$ exist and vertical composition is associative

• $C(Y, Z) \times C(X, Y) \rightarrow C(X, Z)$ is a functor, so

PROPERTIES OF COMPOSITIONS

• C(X,Y) is a category, so identities $1_f : f \Rightarrow f$ exist and vertical composition is associative

• $C(Y, Z) \times C(X, Y) \rightarrow C(X, Z)$ is a functor, so

- 2-categories: horizontal composition has identities
 - bicategories: identity laws only up to coherent isomorphisms

- 2-categories: horizontal composition is associative
 - bicategories: associativity only up to coherent isomorphisms

- 2-categories: horizontal composition has identities
 - bicategories: identity laws only up to coherent isomorphisms

$$X \underbrace{ \bigoplus_{f'} \alpha}_{f'} Y \underbrace{ \bigoplus_{id_Y} \alpha}_{id_Y} Y = X \underbrace{ \bigoplus_{f'} \alpha}_{f'} Y = X \underbrace{ \bigoplus_{id_X} \alpha}_{id_X} X \underbrace{ \bigoplus_{id_X} \beta}_{f'} Y$$

- 2-categories: horizontal composition is associative
 - bicategories: associativity only up to coherent isomorphisms

- 2-categories: horizontal composition has identities
 - bicategories: identity laws only up to coherent isomorphisms

$$X \underbrace{ \bigoplus_{f'} \alpha}_{f'} Y \underbrace{ \bigoplus_{id_Y} \alpha}_{id_Y} Y = X \underbrace{ \bigoplus_{f'} \alpha}_{f'} Y = X \underbrace{ \bigoplus_{id_X} \alpha}_{id_X} X \underbrace{ \bigoplus_{id_X} \beta}_{f'} Y$$

- 2-categories: horizontal composition is associative
 - bicategories: associativity only up to coherent isomorphisms

- 2-categories: horizontal composition has identities
 - bicategories: identity laws only up to coherent isomorphisms

$$X \underbrace{ \bigoplus_{f'} \alpha'}_{f'} Y \underbrace{ \bigoplus_{id_Y} \alpha'}_{id_Y} Y = X \underbrace{ \bigoplus_{f'} \alpha'}_{f'} Y = X \underbrace{ \bigoplus_{id_X} \alpha'}_{id_X} X \underbrace{ \bigoplus_{id_X} \beta'}_{f'} Y$$

- 2-categories: horizontal composition is associative
 - bicategories: associativity only up to coherent isomorphisms

BICATEGORY OF SPANS

- For any C with (chosen) pullbacks, Span(C) has
 - objects: those of **C**
 - arrows: spans of arrows in C
 - composition: by pullback
- Universal property of pullbacks gives associativity isomorphisms and implies coherence conditions
- There is an embedding $\Gamma: \mathbb{C} \rightarrow \text{Span}(\mathbb{C})$

• Span(C) is a bicategory: canonical notion of colimits are bicolimit

• Span(C) is a bicategory: canonical notion of colimits are bicolimit

- Span(C) is a bicategory: canonical notion of colimits are bicolimit
- categories: usually equality of objects does not make sense
 - limits, colimits etc are defined up to (unique) isomorphism
 - mediating morphisms are unique

- Span(C) is a bicategory: canonical notion of colimits are bicolimit
- categories: usually equality of objects does not make sense
 - limits, colimits etc are defined up to (unique) isomorphism
 - mediating morphisms are unique

- Span(C) is a bicategory: canonical notion of colimits are **bicolimit**
- categories: usually equality of objects does not make sense
 - limits, colimits etc are defined up to (unique) isomorphism
 - mediating morphisms are unique
- 2-categories and (especially) bicategories: usually one does not talk about equality of arrows
 - bilimits, bicolimits are defined up to equivalence
 - mediating morphisms are "essentially unique"

MORE CONCRETELY

Let J be an ordinary category and $\mathcal{M}\colon J\to \mathbb{B}$ a functor

- A bicolimit consists of the following data:
 - bic $\mathcal{M} \in \mathbb{B}$
 - pseudo-cocone $\kappa \colon \mathcal{M} \to \operatorname{bic} \mathcal{M}$

$$\begin{array}{cccc}
\mathcal{M}_{i} & \xrightarrow{\mathcal{M}_{u}} & \mathcal{M}_{j} \\
\kappa_{i} & & \swarrow & & \\
\kappa_{i} & & & & \\
\kappa_{i} & & & \\
\end{pmatrix} & \kappa_{id_{i}} = 1_{\kappa_{i}} \\
\kappa_{v \circ u} = (\kappa_{v} \circ \mathcal{M}_{u}) \bullet \kappa_{u}
\end{array}$$

UNIVERSAL PROPERTY (existence)

- for all pseudo-cocones $\lambda \colon \mathcal{M} \to X$ there exists a pseudo mediating morphism that consists of:
 - an arrow $h: \operatorname{bic} \mathcal{M} \to X$
 - isomorphic 2-cells $\varphi_i : \lambda_i \Rightarrow (\Delta h) \circ \kappa$
 - satisfying:

UNIVERSAL PROPERTY (essential uniqueness)

- for any $h, h' : \text{bic } \mathcal{M} \to X$, a modification $\psi : \Delta h \circ \kappa \to \Delta h' \circ \kappa$ is $(\Delta \xi) \circ \kappa$ for a unique 2-cell $\xi : h \Rightarrow h'$
- this implies that any mediating morphisms are essentially unique, ie any two are isomorphic via a unique isomorphism

PLAN OFTALK

- Categories with structure
 - extensive categories, adhesive categories
 - Van Kampen colimits
- 2-categories, bicategories & bicolimits
- Van Kampen colimits as a universal property

MAINTHEOREM

• Let **C** have pullbacks and **J**-colimits. Let $\Gamma: \mathbf{C} \rightarrow \text{Span}(\mathbf{C})$ be the usual embedding. Then:

$\kappa : \mathcal{F} \to C \text{ is Van Kampen in } \mathbb{C}$ iff $\Gamma \kappa$ is a bicolimit in Span(\mathbb{C})

- Proof sketch:
 - lemmas that allow to pass between C and Span(C)
 - restatement of the universal property of bicolimits so that it matches the VK condition.

SOME COROLLARIES

- C a category with pullbacks:
 - C has a strict initial object iff it has an initial object and it is preserved by the embedding into Span(C)
 - C is extensive iff it has binary sums and these are preserved by the embedding into Span(C)
 - C is adhesive iff it has pushouts along monos and these are preserved by the embedding into Span(C)

INTUITIONS

- Ordinary universal property of colimits is good enough for C
- With $\Gamma: \mathbb{C} \rightarrow \text{Span}(\mathbb{C})$ we pass into a wilder universe
- VK colimits are "reinforced" colimits that are ready for this shock

EXAMPLE - SYMMETRIES

• but only two mediating morphisms, so cannot be a bicolimit

• so VK bicolimits are "stable under symmetries"

FUTURE WORK

- Characterise the VK colimits in **Set**
 - or at least the VK pushouts!
- characterise weakenings of the VK condition by looking at universes between C and Span(C) (like Par(C) or Rel(C))
 - obtain (useful?) weakenings of adhesive categories etc