Graph rewriting with polarized cloning CCS - IC 2009

D. Duval and R. Echahed and F. Prost

LJK - LIG - Université de Grenoble

26 Nov. 2009

• Unlike term rewriting, there is no "natural" graph rewriting framework (tree vs graph).

- Unlike term rewriting, there is no "natural" graph rewriting framework (tree vs graph).
- Two streams:
 - ⇒ Algorithmic approaches.
 - ⇒ Algebraic approaches.

- Unlike term rewriting, there is no "natural" graph rewriting framework (tree vs graph).
- Two streams:
 - → Algorithmic approaches.
 - → Algebraic approaches.
- Pushouts everywhere:

Single pushout

• Pushouts are useful to glue together different parts.

• The rule $f(x) \rightarrow f(b)$ can be implemented in DPO by:

 Deletion of nodes can be done thanks to partial morphisms (deletion of incoming edges).

- Deletion of nodes can be done thanks to partial morphisms (deletion of incoming edges).
- Cloning nodes and edges with polarized graphs

- Deletion of nodes can be done thanks to partial morphisms (deletion of incoming edges).
- Cloning nodes and edges with polarized graphs
 - 0 clone stands for deletion.

$$f(x) \longleftarrow K \longrightarrow f(b)$$

$$\downarrow \qquad \qquad \downarrow$$

$$G[f(a)] \longleftarrow D[a] \longrightarrow H[a, b]$$

- Deletion of nodes can be done thanks to partial morphisms (deletion of incoming edges).
- Cloning nodes and edges with polarized graphs
 - 0 clone stands for deletion.
 - + clones : output clones.
 - clones : input clones.

One and a half pushout

- Our rewrite step is heterogeneous:
 - One pushback and one pushout
 - Pushback is done on polarized graphs, pushout on graphs.

One and a half pushout

- Our rewrite step is heterogeneous:
 - One pushback and one pushout
 - 2 Pushback is done on polarized graphs, pushout on graphs.

Rewriting is done through 4 steps:

Pushout

• Pushout : colimit of a span

 (r_1, h) is the pushout of (d, r).

Pushback

- Pullback : dual of a pushout
- Pushback: Final pullback complement.

 (d, I_1) is the pushback of (I, m)

Polarized Graphs

• A polarization X° of a graph X is a triple $(|X|^{+}, |X|^{-}, X_{\rightarrow}^{\star})$ such that $|X|^{+} \subseteq |X|$, $|X|^{-} \subseteq |X|$ and $X_{\rightarrow}^{\star} \subseteq X_{\rightarrow}$, such that each $n \stackrel{e}{\rightarrow} p$ in X_{\rightarrow}^{\star} has its source $n \in |X|^{+}$ and its target $p \in |X|^{-}$.

Polarized Graph induced by matching

Polarized Graph induced by matching

A complete rewrite step

A complete rewrite step

Contextual closure of rewrite rules

Contextual closure of rewrite rules

Contextual closure of rewrite rules

Node deletion

Node deletion

rewrites to

Node deletion

rewrites to

$$A \rightarrow \boxed{\mathsf{free}} \rightarrow \boxed{\mathsf{nil}}$$

$\boxed{update} \to old^-$	new_1^\pm	old_1^-	$g\{\mathit{new}_1,\mathit{old}_1\}$
$\stackrel{\psi}{\it new}^{\pm}$			

$\boxed{\begin{array}{c} \text{update} \rightarrow old^- \\ \downarrow \end{array}}$	ne w_1^\pm	old_1^-	$g\{new_1, old_1\}$
new [±]			
$j \longrightarrow \text{update}$ old $k \longrightarrow new \longleftarrow n$			

Spamming

Using both - and + cloning

- This framework allows a flexible approach to cloning.
- It subsumes many previous works

- This framework allows a flexible approach to cloning.
- It subsumes many previous works
 - Heterogeneous pushouts.

- This framework allows a flexible approach to cloning.
- It subsumes many previous works
 - Heterogeneous pushouts.
 - Sesqui-pushout.

- This framework allows a flexible approach to cloning.
- It subsumes many previous works
 - Heterogeneous pushouts.
 - Sesqui-pushout.
 - Adaptative star grammars.

- This framework allows a flexible approach to cloning.
- It subsumes many previous works
 - Heterogeneous pushouts.
 - Sesqui-pushout.
 - Adaptative star grammars.
- Termgraphs.