Categorical Quantum Computing: the necessity of Euler decomposition

Simon Perdrix

CNRS, Laboratoire d'Informatique de Grenoble

Joint work with Ross Duncan (U. Oxford)

Categorical Computer Science'09, Grenoble

Context and Motivations

Categorical axiomatisation of QIP

- †-compact closed categories [Abramsky, Coecke, LiCS'04], categorical axiomatisation of the teleportation underlying the information flow.
- Basis structure [Pavlovic, Coecke,06], categorical semantics of State transfer [Coecke, Paquette, Perdrix, MFPS'08]

Categorical axiomatisation of QIP

- †-compact closed categories [Abramsky, Coecke, LiCS'04], categorical axiomatisation of the teleportation underlying the information flow.
- Basis structure [Pavlovic, Coecke,06], categorical semantics of State transfer [Coecke, Paquette, Perdrix, MFPS'08]

• Unbiased basis [Coecke, Duncan, ICALP'08], proof of Shor algorithm.

Categorical axiomatisation of QIP

- †-compact closed categories [Abramsky, Coecke, LiCS'04], categorical axiomatisation of the teleportation underlying the information flow.
- Basis structure [Pavlovic, Coecke,06], categorical semantics of State transfer [Coecke, Paquette, Perdrix, MFPS'08]

• Unbiased basis [Coecke, Duncan, ICALP'08], proof of Shor algorithm.

8 informatics

An Example Computation

The heart of Shor's algorithm for factorisation is the Quantum Fourier Transform.

Lucas Dixon (U. Edinburgh) (photo by Dan Oi, U. Strathclyde at QUISCO Inaugural Meeting)

Towards a categorical axiomatisation of entanglement

Graph states:

- Representation of entanglement
- Applications: One-way QC [Raussendorf, Briegel 00], Quantum secret sharing [Markham, Sanders 08].

This talk: Abstract proof of the fundamental properties of graph states.

Objectives:

- Reveal the structures of entanglement.
- Refine the graphical language.

Diagrammatic language

Diagrammatic language

Definition

A *diagram* is a finite undirected open graph generated by the family of vertices:

• Composition (°)

• Tensor (⊗)

Dagger (†)

Spider

Diagrams form a [†]-compact closed category with basis structures.

Spider

Diagrams form a [†]-compact closed category with basis structures.

Hadamard

Hadamard

Red Spider

Complementary basis

Interpretation in FdHilb

Interpretation in FdHilb

Abstract Graph states

Abstract Graph states

Definition

An **abstract graph state** is a diagram composed of green dots and H only such that:

- every green dot is connected to exactly one input or output
- every H is connecting two green dots
- there is no connection between two green dots

Abstract Graph states

Definition

An **abstract graph state** is a diagram composed of green dots and H only such that:

- every green dot is connected to exactly one input or output
- every H is connecting two green dots
- there is no connection between two green dots

Property (Fixpoint)

Given a graph G and a vertex $u \in V(G)$,

$$R_x(\pi)^{(u)}R_z(\pi)^{(N_G(u))}|G\rangle = |G\rangle$$

Proof fixpoint

Theorem (Van den Nest)

Given a graph G and a vertex $u \in V(G)$,

$$R_x(\pi/2)^{(u)}R_z(-\pi/2)^{(N_G(u))}|G\rangle = |G * u\rangle$$
.

where $G * u = G\Delta K_{N_G(u)}$ is the graph obtained by applying a local complementation on u in G [Bouchet85].

Two locally equivalent graphs represent the same entanglement

Theorem (Van den Nest)

Given a graph G and a vertex $u \in V(G)$,

$$R_x(\pi/2)^{(u)}R_z(-\pi/2)^{(N_G(u))}|G\rangle = |G * u\rangle$$
.

where $G * u = G\Delta K_{N_G(u)}$ is the graph obtained by applying a local complementation on u in G [Bouchet85].

Two locally equivalent graphs represent the same entanglement

Euler decomposition

Lemma

The *H*-decomposition into $\pi/2$ rotations is not unique:

Proof:

Lemma

Each colour of $\pi/2$ rotation may be expressed in terms of the other colour.

Proof:

Proof

Lemma Local complementation implies the *H*-decomposition:

Theorem Van den Nest's theorem holds if and only if H has a Euler decomposition:

H-decomposition is a new rule

Let $[\![\cdot]\!]^\flat$ be exactly as $[\![\cdot]\!]$ with the following change:

$$\llbracket \boldsymbol{\alpha} \rrbracket^{\flat} = R_z(2\alpha)$$

This functor preserves all the axioms of the language, but

$$\llbracket \begin{bmatrix} H \\ H \end{bmatrix}^{\flat} \neq \llbracket \textcircled{\bullet} \end{bmatrix}^{\flat} \circ \llbracket \textcircled{\bullet} \rrbracket^{\flat} \circ \llbracket \textcircled{\bullet} \end{bmatrix}^{\flat}$$

hence the Euler decomposition is not derivable from the axioms of the theory.

Conclusion

- Abstract proof of Van den Nest theorem.
- *H* Euler decomposition as a sufficient and necessary condition for Van den Nest theorem.
- Refine the diagrammatic language and point out a structure of entanglement.

Van den Nest Theorem: Locally equivalent graphs represent the same entanglement.

There exist graphs which are representing the same entanglement but which are not locally equivalent [Ji,Chen,Wei,Ying'08].

- Refine the language for capturing the previous case.
- Apply to states that cannot be represented by graphs.

Conclusion

- Abstract proof of Van den Nest theorem.
- *H* Euler decomposition as a sufficient and necessary condition for Van den Nest theorem.
- Refine the diagrammatic language and point out a structure of entanglement.

Van den Nest Theorem: Locally equivalent graphs represent the same entanglement.

There exist graphs which are representing the same entanglement but which are not locally equivalent [Ji,Chen,Wei,Ying'08].

- Refine the language for capturing the previous case.
- Apply to states that cannot be represented by graphs.

Lucas Dixon & Ross Duncan & Aleks Kissinger

http://dream.inf.ed.ac.uk/projects/quantomatic

