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Context and Motivations



Categorical axiomatisation of QIP

• †-compact closed categories [Abramsky, Coecke, LiCS’04],
categorical axiomatisation of the teleportation underlying the
information flow.

• Basis structure [Pavlovic, Coecke,06], categorical semantics of State
transfer [Coecke, Paquette, Perdrix, MFPS’08]

• Unbiased basis [Coecke, Duncan, ICALP’08], proof of Shor
algorithm.
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Towards a categorical axiomatisation of entanglement

Graph states:

s

ss

s
s

q1 q2

q3

q4
q5

• Representation of entanglement

• Applications: One-way QC [Raussendorf, Briegel 00], Quantum
secret sharing [Markham, Sanders 08].

This talk: Abstract proof of the fundamental properties of graph states.

Objectives:

• Reveal the structures of entanglement.

• Refine the graphical language.



Diagrammatic language



Diagrammatic language

Definition
A diagram is a finite undirected open graph generated by the family of
vertices:

α H

where α ∈ [0, 2π).

α β

H

γ



• Composition (◦)

◦ =

• Tensor (⊗)

⊗ H = H

• Dagger (†)
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Spider

Diagrams form a †-compact closed category with basis structures.

α β

γ

= α + β + γ = α + β + γ
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Hadamard
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Red Spider

α β

γ

= α + β + γ = α + β + γ



Complementary basis

Copying

=

Bialgebra

=

π-Commutation

π π
=

π
π =



Interpretation in FdHilb

J K = 1√
2

(

1
1

)

J K = 1√
2

(

1 1
)

J K =
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



1 0
0 0
0 0
0 1
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
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J K =

(

1 0 0 0
0 0 0 1

)

J α K = Rz(α) =

(

1 0
0 eiα
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J H K = H = 1√
2
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1 1
1 −1

)

J α K = Rx(α) J H K = ΛZ =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1











Interpretation in FdHilb

J K = 1√
2

(

1
1

)

J K = 1√
2

(

1 1
)

J K =









1 0
0 0
0 0
0 1









J K =

(

1 0 0 0
0 0 0 1

)

J α K = Rz(α) =

(

1 0
0 eiα

)

J H K = H = 1√
2

(

1 1
1 −1

)

J α K = Rx(α) J H K = ΛZ =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1











H = H = H



H = H = H



Abstract Graph states



Abstract Graph states

Definition
An abstract graph state is a diagram composed of green dots and H
only such that:
– every green dot is connected to exactly one input or output
– every H is connecting two green dots
– there is no connection between two green dots

H H

H

J

H

H H K = |Gtriangle〉 :
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Property (Fixpoint)
Given a graph G and a vertex u ∈ V (G),

Rx(π)(u)Rz(π)(NG(u)) |G〉 = |G〉

π

H H

H

π π

= H H

H



Proof fixpoint

π

H H

H

π π

=

π π

H H

H

π π

=

H H

π π

H

π π

= H H

2π H 2π

= H H

H



Theorem (Van den Nest)
Given a graph G and a vertex u ∈ V (G),

Rx(π/2)(u)Rz(−π/2)(NG(u)) |G〉 = |G ∗ u〉 .

where G ∗ u = G∆KNG(u) is the graph obtained by applying a local
complementation on u in G [Bouchet85].

π/2

H H

-π/2 -π/2

= H H

H

Two locally equivalent graphs represent the same entanglement
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Euler decomposition

H =

-π/2

-π/2

-π/2



Lemma
The H-decomposition into π/2 rotations is not unique:
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Lemma
Each colour of π/2 rotation may be expressed in terms of the other
colour.

H =

-π/2

-π/2

-π/2

=⇒ π/2 =
-π/2

Proof:

-π/2

=

-π/2

H =

-π/2

-π/2

-π/2

-π/2

=

π -π/2

-π/2
=

-π/2

π

π/2
=

-π/2

π

π/2



Lemma
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Lemma
Local complementation implies the H-decomposition:

H H
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Theorem
Van den Nest’s theorem holds if and only if H has a Euler decomposition:

H =

-π/2

-π/2

-π/2

⇐⇒ H H

H

=

π/2

H H
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H-decomposition is a new rule

Let J·K♭ be exactly as J·K with the following change:

J α K♭ = Rz(2α)

This functor preserves all the axioms of the language, but

J H K♭ 6= J -π/2 K♭ ◦ J -π/2 K♭ ◦ J -π/2 K♭

hence the Euler decomposition is not derivable from the axioms of the
theory.



Conclusion

• Abstract proof of Van den Nest theorem.

• H Euler decomposition as a sufficient and necessary condition for
Van den Nest theorem.

• Refine the diagrammatic language and point out a structure of
entanglement.

Van den Nest Theorem: Locally equivalent graphs represent the same
entanglement.
There exist graphs which are representing the same entanglement but
which are not locally equivalent [Ji,Chen,Wei,Ying’08].

• Refine the language for capturing the previous case.

• Apply to states that cannot be represented by graphs.
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