Homotopical methods in polygraphic rewriting # **Yves Guiraud and Philippe Malbos** Categorical Computer Science, Grenoble, 26/11/2009 #### References. - Higher-dimensional categories with finite derivation type, Theory and Applications of Categories, 2009. - Identities among relations for higher-dimensional rewriting systems, arXiv:0910.4538. ## **String Rewriting** String Rewriting System : X a set , $R \subseteq X^* \times X^*$ $$ulv \rightarrow_R urv$$ $\stackrel{u}{\longleftarrow} \stackrel{r}{\longleftarrow} (r,l) \in R \quad u,v \in X^*$ \rightarrow_R^* : reflexive symetrique closure of \rightarrow_R ### **Terminating:** $$w_0 \rightarrow_R w_1 \rightarrow_R \cdots \rightarrow_R w_n \rightarrow_R \cdots$$ #### Confluent ## **String Rewriting and word problem** ### **Word problem** $$w,w' \in X^*$$, is $w = w'$ in X^*/\leftrightarrow_R^* \leftrightarrow_R^* : derivation. **Normal form algorithm**: (X,R): finite + convergent (terminating + confluent) Fact. Monoids having a finite convergent presentation are decidable. ## **First Squier theorem** Rewriting is not universal to decide the word problem in finite type monoids. **Theorem.** (Squier '87) There are finite type decidable monoids which do not have a finite convergent presentation. #### **Proof:** • A monoid M having a finite convergent presentation (X,R) is of homological type FP_3 . $$\ker \textbf{J} \longrightarrow \mathbb{Z} \textbf{M}[R] \stackrel{\textbf{J}}{\longrightarrow} \mathbb{Z} \textbf{M}[X] \longrightarrow \mathbb{Z} \textbf{M} \longrightarrow \mathbb{Z}$$ i.e. module of homological 3-syzygies is generated by critical branchings. • There are finite type decidable monoids which are not of type FP₃. ### **Second Squier Theorem** **Theorem. Squier** '87 ('94) The homological finiteness condition FP₃ is not sufficient for a finite type decidable monoid to admit a presentation by a finite convergent rewriting system. **Proof**: \bullet (X, R) a string rewriting system. • S(X,R) Squier 2-dimensional combinatorial complex. 0-cells : words on X, 1-cells : derivations \leftrightarrow_R^* , 2-cells : Peiffer elements • (X, R) has **finite derivation type** (FDT) if X and R are finite and S(X,R) has a finite set of homotopy trivializer. - Property FDT is Tietze invariant for finite rewriting systems - A monoid having a finite convergent rewriting system has FDT. - There are finite type decidable monoids which do not have FDT and which are FP₃. ### Mac Lane's coherence theorem ### monoidal category is made of: - a category C, - functors \otimes : $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$ and $I : * \to \mathcal{C}$, - three natural isomorphisms $$\alpha_{x,y,z}: (x \otimes y) \otimes z \to x \otimes (y \otimes z)$$ $\lambda_x: I \otimes x \to x$ $\rho_x: x \otimes I \to x$ such that the following diagrams commute: $$(x\otimes(y\otimes z))\otimes t \xrightarrow{\alpha} x\otimes((y\otimes z)\otimes t) \qquad x\otimes(I\otimes y)$$ $$(x\otimes y)\otimes z)\otimes t \xrightarrow{\alpha} (x\otimes y)\otimes(z\otimes t) \xrightarrow{\alpha} x\otimes(y\otimes(z\otimes t)) \qquad (x\otimes I)\otimes y \xrightarrow{\rho} x\otimes y$$ Mac Lane's coherence theorem. "In a monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$, all the diagrams built from \mathcal{C} , \otimes , I, α , λ and ρ are commutative." ### **Program:** - General setting: homotopy bases of track n-categories. - Proof method: rewriting techniques for presentations of n-categories by polygraphs. - Algebraic interpretation: identities among relations. ### n-categories ### An n-category C is made of: - 0-cells - 1-cells: $x \xrightarrow{u} y$ with one composition $$u \star_0 v = x \xrightarrow{u} y \xrightarrow{v} z$$ • 2-cells: x y with two compositions $$f \star_0 g = x \underbrace{f \downarrow \qquad v}_{u'} y \underbrace{g \downarrow \qquad z}_{v'} z$$ and $f \star_1 g = x \underbrace{f \downarrow \qquad y}_{w} y$ ### Exchange relation: $$(f \star_1 g) \star_0 (h \star_1 k) = (f \star_0 h) \star_1 (g \star_0 k)$$ when $$\underbrace{\left. \begin{array}{c} f \\ g \\ \end{array} \right.} \underbrace{\left. \begin{array}{c} h \\ k \\ \end{array} \right.} \underbrace{\left. \begin{array}{c} h \\ k \\ \end{array} \right.}$$ • 3-cells with three compositions \star_0 , \star_1 and \star_2 , etc. ## Track n-categories, cellular extensions and polygraphs A **track** n-category is an n-category whose n-cells are invertible (for \star_{n-1}). A cellular extension of \mathcal{C} is a set Γ of (n+1)-cells \bullet γ \bullet with f and g parallel n-cells in \mathcal{C} . An n-polygraph is a family $\Sigma = (\Sigma_0, \dots, \Sigma_n)$ where each Σ_{k+1} is a cellular extension of $\Sigma_0[\Sigma_1] \cdots [\Sigma_k]$. Free n-category $$\Sigma^* = \Sigma_{n-1}^*[\Sigma_n]$$ Free track n-category $$\Sigma^{\top} = \Sigma_{n-1}^*(\Sigma_n)$$ Presented (n-1)-category $$\overline{\Sigma} = \Sigma_{n-1}^* / \Sigma_n$$ ## **Graphical notations for polygraphs** #### We draw: • Generating 2-cells as "circuit components": • 2-cells as "circuits": Generating 3-cells as "rewriting rules": • 3-cells as "rewriting paths": ## **Example:** the 2-category of monoids Let Σ be the 3-polygraph with one 0-cell, one 1-cell, two 2-cells \forall and φ and three 3-cells: **Proposition.** The 2-category $\overline{\Sigma}$ is the theory of monoids. *i.e.*, there is an equivalence: $\text{Monoids } (X,\times,1) \text{ in a 2-category } \mathfrak{C} \quad \leftrightarrow \quad \text{2-functors } M:\overline{\Sigma} \to \mathfrak{C}$ $$M(|) = X$$ $M(\heartsuit) = X$ $M(\phi) = 1$ $$M(\buildrel \buildrel \b$$ ## **Example:** the track 3-category of monoidal categories Let Γ be the cellular extension of Σ^* with two 4-cells: **Proposition.** The track 3-category Σ^{\top}/Γ is the theory of monoidal categories, *i.e.*, there is an equivalence: Monoidal categories $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho) \leftrightarrow 3$ -functors $M : \Sigma^{\top}/\Gamma \to \mathbf{Cat}$ ### 3-category Cat: - one 0-cell, categories as 1-cells, functors as 2-cells, natural transformations as 3-cells - $-\star_0$ is \times , \star_1 is the composition of functors, \star_2 the vertical composition of natural transformations The equivalence is given by: $$M(|) = \mathcal{C}$$ $M(\forall) = \otimes$ $M(\phi) = I$ $M(\downarrow) = \alpha$ $M(\phi) = \lambda$ $M(\phi) = \rho$ $M(\downarrow) = \otimes$ $M(\forall) = \otimes$ ### Homotopy bases and finite derivation type A **homotopy basis** of an π -category \mathbb{C} is a cellular extension Γ such that: For every $$n$$ -cells \cdot in $\mathbb C$, there exists an $(n+1)$ -cell \cdot in $\mathbb C(\Gamma)$, *i.e.*, $\overline f=\overline g$ in $\mathbb C/\Gamma$. An n-polygraph Σ has **finite derivation type (FDT)** if it is finite and if Σ^{\top} admits a finite homotopy basis. **Theorem.** Let Σ and Υ be finite and *Tietze-equivalent* \mathfrak{n} -polygraphs, *i.e.*, $\overline{\Sigma} \simeq \overline{\Upsilon}$. Then: Σ has FDT iff Υ has FDT. Mac Lane's theorem revisited. Let Σ be the 3-polygraph $$(*,|, \checkmark, \diamond, , , , \diamond).$$ Then the cellular extension $\{ \checkmark , \checkmark \}$ of Σ^* is a homotopy basis of Σ^\top . ## Rewriting properties of an n-polygraph Σ : termination and confluence A **reduction** of Σ is a non-identity n-cell $u \xrightarrow{f} v$ of Σ^* . A normal form is an (n-1)-cell u of Σ^* such that no reduction $u \xrightarrow{f} v$ exists. The polygraph Σ terminates when it has no infinite sequence of reductions $u_1 \xrightarrow{f_1} u_2 \xrightarrow{f_2} u_3 \xrightarrow{f_3} (\cdots)$ Termination \Rightarrow Existence of normal forms - It is **local** when f and g contain exactly one generating n-cell of Σ_n . - It is **confluent** when there exists a diagram $\int_{f'}^{v} \int_{g'}^{w}$ The polygraph Σ is (locally) confluent when every (local) branching is confluent. Confluence ⇒ Unicity of normal forms ## Rewriting properties of an n-polygraph Σ : convergence The polygraph Σ is **convergent** if it terminates and it is confluent. **Theorem [Newman's lemma].** Termination + local confluence \Rightarrow Convergence. A branching is **critical** when it is "a minimal overlapping" of n-cells, such as: **Theorem.** Termination + confluence of critical branchings \Rightarrow Convergence. ### The homotopy basis of generating confluences A generating confluence of an n-polygraph Σ is an (n+1)-cell with (f, g) critical. **Theorem.** Let Σ be a convergent n-polygraph. Let Γ be a cellular extension of Σ^* made of one generating confluence for each critical branching of Σ . Then Γ is a homotopy basis of Σ^{\top} . **Corollary.** If Σ is a finite convergent n-polygraph with a finite number of critical branchings, then it has FDT. **Theorem, Squier '94.** If a monoid admits a presentation by a finite convergent word rewriting system, then it has FDT. **Theorem** There exists a 2-category that lacks FDT, even though it admits a presentation by a finite convergent 3-polygraph. • A 3-polygraph presenting the 2-category of pear necklaces. one 0-cell, one 1-cell, three 2-cells: Σ is finite and convergent but does not have FDT. • Four regular critical branching • One right-indexed critical branching • An infinite homotopy base : • The 3-polygraph is finite and convergent but does not have finite derivation type ### **Generating confluences: Mac Lane's coherence theorem** • Let Σ be the finite 3-polygraph $(*, |, \forall, \phi, \psi, \phi)$. **Lemma.** Σ terminates and is locally confluent, with the following five generating confluences: **Theorem.** The cellular extension $\{ \checkmark \checkmark \checkmark , \lor \uparrow \}$ is a homotopy basis of Σ^{\top} . Corollary (Mac Lane's coherence theorem). "In a monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$, all the diagrams built from $\mathcal{C}, \otimes, I, \alpha, \lambda$ and ρ are commutative." ## **Defining identities among relations** The **contexts** of an n-category \mathcal{C} are the partial maps $C:\mathcal{C}_n\to\mathcal{C}_n$ generated by: $$x \mapsto f \star_i x$$ and $x \mapsto x \star_i f$ The **category of contexts** of \mathcal{C} is the category $\mathbf{C}\mathcal{C}$ with: - − Objects: n-cells of C. - Morphisms from f to g: contexts C of \mathcal{C} such that C[f] = g. The **natural system of identities among relations** of an n-polygraph Σ is the functor $\Pi(\Sigma): \mathbf{C}\overline{\Sigma} \to \mathbf{Ab}$ defined as follows: • If u is an (n-1)-cell of $\overline{\Sigma}$, then $\Pi(\Sigma)_u$ is the quotient of $$\mathbb{Z}\left\{\left\lfloor f\right\rfloor \,\middle|\, \nu \text{ f in } \Sigma^\top, \overline{\nu} = \mathfrak{u}\right\}$$ by (with \star denoting \star_{n-1}): $$-\lfloor f\star g\rfloor = \lfloor g\star f\rfloor \text{ for every } v \overbrace{\downarrow}^f w \text{ with } \overline{v} = \overline{w} = u.$$ • If C is a context of $\overline{\Sigma}$ from $\mathfrak u$ to $\mathfrak v$, then $C \lfloor f \rfloor = \lfloor B[f] \rfloor$, with $\overline{B} = C$. ## **Generating identities among relations** A generating set of $\Pi(\Sigma)$ is a part $X \subseteq \Pi(\Sigma)$ such that, for every $\lfloor f \rfloor$: $$\lfloor f \rfloor = \sum_{i=1}^k \pm C_i[x_i], \quad \text{with } x_i \in X, C_i \in \mathbf{C}\overline{\Sigma}.$$ **Proposition.** Let Σ and Υ be finite Tietze-equivalent n-polygraphs. Then $\Pi(\Sigma)$ is finitely generated *iff* $\Pi(\Upsilon)$ is finitely generated. **Proposition.** Let Γ be a homotopy basis of Σ^{\top} and $\widetilde{\Gamma} = \big\{ \widetilde{\gamma} = f \star g^- \, \big| \, \gamma : f \to g \text{ in } \Gamma \big\}.$ Then $\left| \widetilde{\Gamma} \right|$ is a generating set for $\Pi(\Sigma)$. ### 3.2. Generating identities among relations **Theorem.** If a n-polygraph Σ has FDT, then $\Pi(\Sigma)$ is finitely generated. **Proposition.** If Σ is a convergent n-polygraph, then $\Pi(\Sigma)$ is generated by the generating confluences of Σ . **Example.** Let Σ be the 2-polygraph $(*,|, \forall)$. It is a finite convergent presentation of the monoid $\{1, \alpha\}$ with $\alpha \alpha = \alpha$. It has one generating confluence: Hence the following element generates $\Pi(\Sigma)$: $$\left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right]$$