Homotopical methods in polygraphic rewriting

Yves Guiraud and Philippe Malbos

Categorical Computer Science, Grenoble, 26/11/2009

References.

- Higher-dimensional categories with finite derivation type, Theory and Applications of Categories, 2009.
- Identities among relations for higher-dimensional rewriting systems, arXiv:0910.4538.

String Rewriting

String Rewriting System : X a set , $R \subseteq X^* \times X^*$

$$ulv \rightarrow_R urv$$
 $\stackrel{u}{\longleftarrow} \stackrel{r}{\longleftarrow} (r,l) \in R \quad u,v \in X^*$

 \rightarrow_R^* : reflexive symetrique closure of \rightarrow_R

Terminating:

$$w_0 \rightarrow_R w_1 \rightarrow_R \cdots \rightarrow_R w_n \rightarrow_R \cdots$$

Confluent

String Rewriting and word problem

Word problem

$$w,w' \in X^*$$
, is $w = w'$ in X^*/\leftrightarrow_R^*

 \leftrightarrow_R^* : derivation.

Normal form algorithm: (X,R): finite + convergent (terminating + confluent)

Fact. Monoids having a finite convergent presentation are decidable.

First Squier theorem

Rewriting is not universal to decide the word problem in finite type monoids.

Theorem. (Squier '87) There are finite type decidable monoids which do not have a finite convergent presentation.

Proof:

• A monoid M having a finite convergent presentation (X,R) is of homological type FP_3 .

$$\ker \textbf{J} \longrightarrow \mathbb{Z} \textbf{M}[R] \stackrel{\textbf{J}}{\longrightarrow} \mathbb{Z} \textbf{M}[X] \longrightarrow \mathbb{Z} \textbf{M} \longrightarrow \mathbb{Z}$$

i.e. module of homological 3-syzygies is generated by critical branchings.

• There are finite type decidable monoids which are not of type FP₃.

Second Squier Theorem

Theorem. Squier '87 ('94) The homological finiteness condition FP₃ is not sufficient for a finite type decidable monoid to admit a presentation by a finite convergent rewriting system.

Proof: \bullet (X, R) a string rewriting system.

• S(X,R) Squier 2-dimensional combinatorial complex.

0-cells : words on X, 1-cells : derivations \leftrightarrow_R^* , 2-cells : Peiffer elements

• (X, R) has **finite derivation type** (FDT) if

X and R are finite and S(X,R) has a finite set of homotopy trivializer.

- Property FDT is Tietze invariant for finite rewriting systems
- A monoid having a finite convergent rewriting system has FDT.
- There are finite type decidable monoids which do not have FDT and which are FP₃.

Mac Lane's coherence theorem

monoidal category is made of:

- a category C,
- functors \otimes : $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$ and $I : * \to \mathcal{C}$,
- three natural isomorphisms

$$\alpha_{x,y,z}: (x \otimes y) \otimes z \to x \otimes (y \otimes z)$$
 $\lambda_x: I \otimes x \to x$ $\rho_x: x \otimes I \to x$

such that the following diagrams commute:

$$(x\otimes(y\otimes z))\otimes t \xrightarrow{\alpha} x\otimes((y\otimes z)\otimes t) \qquad x\otimes(I\otimes y)$$

$$(x\otimes y)\otimes z)\otimes t \xrightarrow{\alpha} (x\otimes y)\otimes(z\otimes t) \xrightarrow{\alpha} x\otimes(y\otimes(z\otimes t)) \qquad (x\otimes I)\otimes y \xrightarrow{\rho} x\otimes y$$

Mac Lane's coherence theorem. "In a monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$, all the diagrams built from \mathcal{C} , \otimes , I, α , λ and ρ are commutative."

Program:

- General setting: homotopy bases of track n-categories.
- Proof method: rewriting techniques for presentations of n-categories by polygraphs.
- Algebraic interpretation: identities among relations.

n-categories

An n-category C is made of:

- 0-cells
- 1-cells: $x \xrightarrow{u} y$ with one composition

$$u \star_0 v = x \xrightarrow{u} y \xrightarrow{v} z$$

• 2-cells: x y with two compositions

$$f \star_0 g = x \underbrace{f \downarrow \qquad v}_{u'} y \underbrace{g \downarrow \qquad z}_{v'} z$$
 and $f \star_1 g = x \underbrace{f \downarrow \qquad y}_{w} y$

Exchange relation:

$$(f \star_1 g) \star_0 (h \star_1 k) = (f \star_0 h) \star_1 (g \star_0 k)$$

when
$$\underbrace{\left. \begin{array}{c} f \\ g \\ \end{array} \right.} \underbrace{\left. \begin{array}{c} h \\ k \\ \end{array} \right.} \underbrace{\left. \begin{array}{c} h \\ k \\ \end{array} \right.}$$

• 3-cells with three compositions \star_0 , \star_1 and \star_2 , etc.

Track n-categories, cellular extensions and polygraphs

A **track** n-category is an n-category whose n-cells are invertible (for \star_{n-1}).

A cellular extension of \mathcal{C} is a set Γ of (n+1)-cells \bullet γ \bullet with f and g parallel n-cells in \mathcal{C} .

An n-polygraph is a family $\Sigma = (\Sigma_0, \dots, \Sigma_n)$ where each Σ_{k+1} is a cellular extension of $\Sigma_0[\Sigma_1] \cdots [\Sigma_k]$.

Free n-category

$$\Sigma^* = \Sigma_{n-1}^*[\Sigma_n]$$

Free track n-category

$$\Sigma^{\top} = \Sigma_{n-1}^*(\Sigma_n)$$

Presented (n-1)-category

$$\overline{\Sigma} = \Sigma_{n-1}^* / \Sigma_n$$

Graphical notations for polygraphs

We draw:

• Generating 2-cells as "circuit components":

• 2-cells as "circuits":

Generating 3-cells as "rewriting rules":

• 3-cells as "rewriting paths":

Example: the 2-category of monoids

Let Σ be the 3-polygraph with one 0-cell, one 1-cell, two 2-cells \forall and φ and three 3-cells:

Proposition. The 2-category $\overline{\Sigma}$ is the theory of monoids.

i.e., there is an equivalence:

 $\text{Monoids } (X,\times,1) \text{ in a 2-category } \mathfrak{C} \quad \leftrightarrow \quad \text{2-functors } M:\overline{\Sigma} \to \mathfrak{C}$

$$M(|) = X$$
 $M(\heartsuit) = X$ $M(\phi) = 1$

$$M(\buildrel \buildrel \b$$

Example: the track 3-category of monoidal categories

Let Γ be the cellular extension of Σ^* with two 4-cells:

Proposition. The track 3-category Σ^{\top}/Γ is the theory of monoidal categories, *i.e.*, there is an equivalence:

Monoidal categories $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho) \leftrightarrow 3$ -functors $M : \Sigma^{\top}/\Gamma \to \mathbf{Cat}$

3-category Cat:

- one 0-cell, categories as 1-cells, functors as 2-cells, natural transformations as 3-cells
- $-\star_0$ is \times , \star_1 is the composition of functors, \star_2 the vertical composition of natural transformations

The equivalence is given by:

$$M(|) = \mathcal{C}$$
 $M(\forall) = \otimes$ $M(\phi) = I$
 $M(\downarrow) = \alpha$ $M(\phi) = \lambda$ $M(\phi) = \rho$
 $M(\downarrow) = \otimes$ $M(\forall) = \otimes$

Homotopy bases and finite derivation type

A **homotopy basis** of an π -category \mathbb{C} is a cellular extension Γ such that:

For every
$$n$$
-cells \cdot in $\mathbb C$, there exists an $(n+1)$ -cell \cdot in $\mathbb C(\Gamma)$, *i.e.*, $\overline f=\overline g$ in $\mathbb C/\Gamma$.

An n-polygraph Σ has **finite derivation type (FDT)** if it is finite and if Σ^{\top} admits a finite homotopy basis.

Theorem. Let Σ and Υ be finite and *Tietze-equivalent* \mathfrak{n} -polygraphs, *i.e.*, $\overline{\Sigma} \simeq \overline{\Upsilon}$. Then:

 Σ has FDT iff Υ has FDT.

Mac Lane's theorem revisited. Let Σ be the 3-polygraph

$$(*,|, \checkmark, \diamond, , , , \diamond).$$

Then the cellular extension $\{ \checkmark , \checkmark \}$ of Σ^* is a homotopy basis of Σ^\top .

Rewriting properties of an n-polygraph Σ : termination and confluence

A **reduction** of Σ is a non-identity n-cell $u \xrightarrow{f} v$ of Σ^* .

A normal form is an (n-1)-cell u of Σ^* such that no reduction $u \xrightarrow{f} v$ exists.

The polygraph Σ terminates when it has no infinite sequence of reductions $u_1 \xrightarrow{f_1} u_2 \xrightarrow{f_2} u_3 \xrightarrow{f_3} (\cdots)$

Termination \Rightarrow Existence of normal forms

- It is **local** when f and g contain exactly one generating n-cell of Σ_n .
- It is **confluent** when there exists a diagram $\int_{f'}^{v} \int_{g'}^{w}$

The polygraph Σ is (locally) confluent when every (local) branching is confluent.

Confluence ⇒ Unicity of normal forms

Rewriting properties of an n-polygraph Σ : convergence

The polygraph Σ is **convergent** if it terminates and it is confluent.

Theorem [Newman's lemma]. Termination + local confluence \Rightarrow Convergence.

A branching is **critical** when it is "a minimal overlapping" of n-cells, such as:

Theorem. Termination + confluence of critical branchings \Rightarrow Convergence.

The homotopy basis of generating confluences

A generating confluence of an n-polygraph Σ is an (n+1)-cell

with (f, g) critical.

Theorem. Let Σ be a convergent n-polygraph. Let Γ be a cellular extension of Σ^* made of one generating confluence for each critical branching of Σ . Then Γ is a homotopy basis of Σ^{\top} .

Corollary. If Σ is a finite convergent n-polygraph with a finite number of critical branchings, then it has FDT.

Theorem, Squier '94. If a monoid admits a presentation by a finite convergent word rewriting system, then it has FDT.

Theorem There exists a 2-category that lacks FDT, even though it admits a presentation by a finite convergent 3-polygraph.

• A 3-polygraph presenting the 2-category of pear necklaces.

one 0-cell, one 1-cell, three 2-cells:

Σ is finite and convergent but does not have FDT.

• Four regular critical branching

• One right-indexed critical branching

• An infinite homotopy base :

• The 3-polygraph is finite and convergent but does not have finite derivation type

Generating confluences: Mac Lane's coherence theorem

• Let Σ be the finite 3-polygraph $(*, |, \forall, \phi, \psi, \phi)$.

Lemma. Σ terminates and is locally confluent, with the following five generating confluences:

Theorem. The cellular extension $\{ \checkmark \checkmark \checkmark , \lor \uparrow \}$ is a homotopy basis of Σ^{\top} .

Corollary (Mac Lane's coherence theorem). "In a monoidal category $(\mathcal{C}, \otimes, I, \alpha, \lambda, \rho)$, all the diagrams built from $\mathcal{C}, \otimes, I, \alpha, \lambda$ and ρ are commutative."

Defining identities among relations

The **contexts** of an n-category \mathcal{C} are the partial maps $C:\mathcal{C}_n\to\mathcal{C}_n$ generated by:

$$x \mapsto f \star_i x$$
 and $x \mapsto x \star_i f$

The **category of contexts** of \mathcal{C} is the category $\mathbf{C}\mathcal{C}$ with:

- − Objects: n-cells of C.
- Morphisms from f to g: contexts C of \mathcal{C} such that C[f] = g.

The **natural system of identities among relations** of an n-polygraph Σ is the functor $\Pi(\Sigma): \mathbf{C}\overline{\Sigma} \to \mathbf{Ab}$ defined as follows:

• If u is an (n-1)-cell of $\overline{\Sigma}$, then $\Pi(\Sigma)_u$ is the quotient of

$$\mathbb{Z}\left\{\left\lfloor f\right\rfloor \,\middle|\, \nu \text{ f in } \Sigma^\top, \overline{\nu} = \mathfrak{u}\right\}$$

by (with \star denoting \star_{n-1}):

$$-\lfloor f\star g\rfloor = \lfloor g\star f\rfloor \text{ for every } v \overbrace{\downarrow}^f w \text{ with } \overline{v} = \overline{w} = u.$$

• If C is a context of $\overline{\Sigma}$ from $\mathfrak u$ to $\mathfrak v$, then $C \lfloor f \rfloor = \lfloor B[f] \rfloor$, with $\overline{B} = C$.

Generating identities among relations

A generating set of $\Pi(\Sigma)$ is a part $X \subseteq \Pi(\Sigma)$ such that, for every $\lfloor f \rfloor$:

$$\lfloor f \rfloor = \sum_{i=1}^k \pm C_i[x_i], \quad \text{with } x_i \in X, C_i \in \mathbf{C}\overline{\Sigma}.$$

Proposition. Let Σ and Υ be finite Tietze-equivalent n-polygraphs. Then

 $\Pi(\Sigma)$ is finitely generated *iff* $\Pi(\Upsilon)$ is finitely generated.

Proposition. Let Γ be a homotopy basis of Σ^{\top} and $\widetilde{\Gamma} = \big\{ \widetilde{\gamma} = f \star g^- \, \big| \, \gamma : f \to g \text{ in } \Gamma \big\}.$ Then $\left| \widetilde{\Gamma} \right|$ is a generating set for $\Pi(\Sigma)$.

3.2. Generating identities among relations

Theorem. If a n-polygraph Σ has FDT, then $\Pi(\Sigma)$ is finitely generated.

Proposition. If Σ is a convergent n-polygraph, then $\Pi(\Sigma)$ is generated by the generating confluences of Σ .

Example. Let Σ be the 2-polygraph $(*,|, \forall)$.

It is a finite convergent presentation of the monoid $\{1, \alpha\}$ with $\alpha \alpha = \alpha$.

It has one generating confluence:

Hence the following element generates $\Pi(\Sigma)$:

$$\left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] = \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right]$$