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Part I. Two-dimensional Homotopy and String Rewriting



String Rewriting

String Rewriting System : X aset, R C X* x X*
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String Rewriting and word problem

Word problem

w,w’ e X isw = w'in X*/ &%

% : derivation.

Normal form algorithm : (X,R) : finite + convergent (terminating + confluent)
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Fact. Monoids having a finite convergent presentation are decidable.
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First Squier theorem

Rewriting is not universal to decide

the word problem in finite type monoids.

Theorem. (Squier '87) There are finite type decidable monoids which do not have a finite convergent
presentation.

Proof :
e A monoid M having a finite convergent presentation (X, R) is of homological type FP3.

kerJ — ZM[R] =5 ZM[X] — ZM — 7,

i.e. module of homological 3-syzygies is generated by critical branchings.

e There are finite type decidable monoids which are not of type FP3.



Second Squier Theorem

Theorem. Squier 87 (’94) The homological finiteness condition FP3 is not sufficient for a finite type
decidable monoid to admit a presentation by a finite convergent rewriting system.

Proof : e (X,R) a string rewriting system.
e S(X,R) Squier 2-dimensional combinatorial complex.
O-cells : words on X, 1-cells : derivations =%, 2-cells : Peiffer elements
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e (X,R) has finite derivation type (FDT) if

X and R are finite and S(X, R) has a finite set of homotopy trivializer.

Property FDT is Tietze invariant for finite rewriting systems

A monoid having a finite convergent rewriting system has FDT.

e There are finite type decidable monoids which do not have FDT and which are FPs.



Part ll. Two-dimensional Homotopy for higher-dimensional rewriting
systems



Mac Lane’s coherence theorem

monoidal category is made of:

e a category C,

e functors ®:CxC—CandI:x— C,
e three natural isomorphisms

Axyz: (xXQY)®z = xQ(Y®2) At I®Xx — x Px :x®I1 — x

such that the following diagrams commute:

(x®(yRz))®t —= 3 x@((yRz)St) x@(IQy) \
5 c ~, PR
(x®Y)Rz)®t ﬁ (x®Y)®(zxt) # xR (YR (z®t)) (x®1)Ry ﬁ XXy

Mac Lane’s coherence theorem. "In a monoidal category (G, ®,1, , A, p), all the diagrams built from C,
®, I, &, A and p are commutative."

Program:
— General setting: homotopy bases of track n-categories.

— Proof method: rewriting techniques for presentations of n-categories by polygraphs.

— Algebraic interpretation: identities among relations.



n-categories

An n-category C is made of:
e O-cells

e I-cells: x——y with one composition

jus A%
UkoV = x >y >z
u
o 2-cells: x@}y with two compositions
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jus
fxog = x f\H/ y 9 z and fx19 = x—v—y
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Exchange relation:

(fx1 g)x0 (hx1 k) = (fxoh)*x7 (g0 k)

e 3-cells with three compositions xg, x1 and x», etc.

when -



Track n-categories, cellular extensions and polygraphs

A track n-category is an n-category whose n-cells are invertible (for x,, _1).

f
A cellular extension of Cisaset ' of (n+1)-cells o v e with f and arallel n-cells in C.
(n+1) Qe gp
g

CII' C(m) ¢/T

An n-polygraph is a family ~ = (X,,...,X,,) where each Xy, 1 is a cellular extension of Zo[X1]---[Xy].

Free n-category Free track n-category Presented (n— 1)-category
=3 [X,] Y= (Z,) T = Xr /X

n—1 n—1



Graphical notations for polygraphs

We draw:

e Generating 2-cells as "circuit components™:

Y e A O W

e O =

e Generating 3-cells as "rewriting rules":
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e 2-cells as "circuits":




Example : the 2-category of monoids

Let X be the 3-polygraph with one 0-cell, one 1-cell, two 2-cells ¢’ and @ and three 3-cells:

x> SN o=

Proposition. The 2-category X is the theory of monoids.

I.e., there is an equivalence:

Monoids (X, x,1) in a 2-category €+ 2-functors M: £ — C

M) =X M(P)=x M@ =
M) =© MO =0 M@ =0



Example : the track 3-category of monoidal categories

<2 - P LY,
W - ¥ @/'H\v
&@% ¥

Proposition. The track 3-category £ ' /T is the theory of monoidal categories, i.e., there is an equivalence:

Monoidal categories (C,®,I,&,A,p) ¢« 3-functors M : X' /T'— Cat

3-category Cat :
— one O-cell, categories as 1-cells, functors as 2-cells, natural transformations as 3-cells

— %0 IS X, %1 is the composition of functors, x> the vertical composition of natural transformations

The equivalence is given by:
M)=¢ M= M@ =1
M) =a M@ =X M) =p
M~ =0 M(V)=0



Homotopy bases and finite derivation type

A homotopy basis of an n-category C is a cellular extension I' such that:

P
For every n-cells - - in G, there exists an (n+ 1)-cell @ in C(T"), i.e., f=gin C/T.
g

f
Y,
N

g
An n-polygraph X has finite derivation type (FDT) if it is finite and if £ admits a finite homotopy basis.

Theorem. Let ¥ and Y be finite and Tietze-equivalent n-polygraphs, i.e., ~ ~ Y. Then:

2 has FDT iff Y has FDT.

Mac Lane’s theorem revisited. Let X be the 3-polygraph

(+1,9,0.~".9.9).

Then the cellular extension { <= '§'} of Z* is a homotopy basis of L.



Part lll. Computation of homotopy bases



Rewriting properties of an n-polygraph X: termination and confluence

A reduction of X is a non-identity n-cell w5y of £*.

A normal form is an (n— 1)-cell u of £* such that no reduction w—5y exists.

f f f
The polygraph X terminates when it has no infinite sequence of reductions 1 luy Zyuy 2 (--+)

Termination = Existence of normal forms

u
A branching of X is a diagram / & in 2%,
v w

— It is local when f and g contain exactly one generating n-cell of ¥,,.

v w
— It is confluent when there exists a diagram ;\ //
g
LL/

The polygraph X is (locally) confluent when every (local) branching is confluent.

Confluence = Unicity of normal forms



Rewriting properties of an n-polygraph X: convergence

The polygraph X is convergent if it terminates and it is confluent.

Theorem [Newman’s lemma]. Termination 4+ local confluence = Convergence.

A branching is critical when it is "a minimal overlapping" of n-cells, such as:
> v

Theorem. Termination 4 confluence of critical branchings = Convergence.



The homotopy basis of generating confluences

A generating confluence of an n-polygraph £ is an (n+1)-cell

with (f, g) critical.

Theorem. Let X be a convergent n-polygraph. Let I" be a cellular extension of 2* made of one generating
confluence for each critical branching of £. Then T is a homotopy basis of £ .

Corollary. If X is a finite convergent n-polygraph with a finite number of critical branchings, then it has FDT.



Generating confluences : pear necklaces

Theorem, Squier ’94. If a monoid admits a presentation by a finite convergent word rewriting system, then
it has FDT.

Theorem There exists a 2-category that lacks FDT, even though it admits a presentation by a finite
convergent 3-polygraph.

e A 3-polygraph presenting the 2-category of pear necklaces.

one 0-cell, one 1-cell, three 2-cells :

¢ N U

four 3-cells :
5

Q30 sl U N3

v G w8 B

e X is finite and convergent but does not have FDT.



Generating confluences : pear necklaces

e Four regular critical branching
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e One right-indexed critical branching
{# ‘e{% AL U 0¢“}



Generating confluences : pear necklaces




klaces

ating confluences :




Generating confluences : pear necklaces

e An infinite homotopy base :
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e The 3-polygraph is finite and convergent but does not have finite derivation type



Generating confluences : Mac Lane’s coherence theorem

e Let X be the finite 3-polygraph (x,|,'¥,@, ¢ 8,9).

Lemma. X terminates and is locally confluent, with the following five generating confluences:
%‘ ~ &
~ ’ ~ o
e &V Y=

o

A\ ﬁﬂ w7
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Theorem. The cellular extension { <& 9} is a homotopy basis of '.

Corollary (Mac Lane’s coherence theorem). "In a monoidal category (€, ®, 1, &, A, p), all the diagrams
built from €, ®, I, &, A and p are commutative."



Part IV. Identities among relations



Defining identities among relations

The contexts of an n-category C are the partial maps C : €,, — €,, generated by:

X — fxix and X — x*x; T

The category of contexts of C is the category CC with:
— Objects: n-cells of C.

— Morphisms from f to g: contexts C of C such that C[f] = g.

The natural system of identities among relations of an n-polygraph £ is the functor TT1(Z) : CZ — Ab
defined as follows:

e Ifuisan (n—1)-cell of £, then IT(Z),, is the quotient of

Z { ]| w2 )t in ZT,v:u}
by (with x denoting x,_1):

— |[fxg| = |[f]+ |g] for every vaQ g withv=mu.

— [fxg] = [g*f] forevery v(éjw with v = W = .

o If Cisacontext of Z fromutov, then C|f| = |B[f]|, with B = C.



Generating identities among relations

A generating set of TT(Z) is a part X C IT(X) such that, for every |f|:

K
[f] = ) +Cilxil, withx; €X, Cy € CL.
=1

Proposition. Let 2 and Y be finite Tietze-equivalent n-polygraphs. Then
T1(X) is finitely generated iff TI(Y') is finitely generated.
Proposition. Let I' be a homotopy basis of £ and ' = {(v="fxg |y:f—ginT}.

~

Then LFJ is a generating set for TT(X).



3.2. Generating identities among relations

Theorem. If a n-polygraph X has FDT, then T1(X) is finitely generated.
Proposition. If £ is a convergent n-polygraph, then TT(X) is generated by the generating confluences of Z.

Example. Let X be the 2-polygraph (x,|,9).

It is a finite convergent presentation of the monoid {1, a} with aa = a.

WE

Hence the following element generates TT(X):

It has one generating confluence:



