Hirschowitz

Algebra

Multicategorie

2-categories

Conclusion

Algebraic structures from shapes

Tom Hirschowitz

CNRS, Université de Savoie

CCS '09

Hirschowitz

Algebra

Multicategorie

2-categori

Conclusio

Intro: what is algebra?

In "Algebraic structures from shapes",

What is algebra?

- ▶ Universal algebra < Lawvere theories < Sketches < . . .
- ► Here: (finite limit) sketches.
- Beyond algebra.
- Everything works as algebra.

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusio

Dictionary

Algebra	Sketches
Theory	Sketch
Model	Finite limit preserving functor to Set
Model morphism	Natural transformation
Term model	Initial model

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusion

So what?

The category of algebras has a model structure, hence:

- limits and colimits,
- local closure,
- a factorisation system.

Canonical construction of the free algebra over a theory.

Hirschowitz

Algebra

Multicategorie

2-categorie

All you need to know about sketches for this talk

- ► There is a notion of a local right adjoint (Ira) monad (in a minute).
- ▶ For such a Ira monad *T* on a presheaf category:

Theorem (Leinster, Weber)

The category of T-algebras is locally presentable, i.e., sketchable.

Moreover, the construction provides a minimal sketch, in a certain sense.

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusio

Goal

- ► Here: technique for constructing Ira monads.
- ▶ Project: make this into a theory.

Motivation for such a theory

Algebraic approach to CCS:

- design new algebraic structures
- ▶ modelling computation (e.g., prog. languages).

Such a theory would make attempts cheaper.

Hirschowitz

Algebra

Multicategories

2-categories

Conclusio

Shapes

Consider the category ${\cal S}$ looking like:

Hirschowitz

Algebra

Multicategories

2-categories

Conclusio

Presheaves over shapes

The category $\hat{S} = [S^{op}, Set]$ has multigraphs as objects.

Exercise

Draw the multigraph for:

$$F(\star) = \{x, y, z\},$$

$$F(0) = \{e_0\},\$$

►
$$F(2) = \{e_2\},$$

►
$$F(3) = \{e_3\},$$

▶
$$F(\tau)(e_0) = y$$
,

▶
$$F(\tau)(e_2) = x$$
,

►
$$F(\sigma_0)(e_2) = x$$
,

▶
$$F(\sigma_1)(e_2) = y$$
,

Hirschowitz

Algebra

Multicategories

2-categorie

Conclusi

A first construction

We now:

- ▶ define a recipient presheaf \mathcal{R} on \mathcal{S} ;
- ▶ and a sequence of subpresheaves $\mathcal{T}_0, \mathcal{T}_1, \ldots \subseteq \mathcal{R}$;
- ightharpoonup consider the union $\mathcal{T}_{\omega} = \bigcup_{i \in \omega} \mathcal{T}_i \subseteq \mathcal{R}$.

We obtain:

The elements of $\mathcal{T}_{\omega}(n)$ are the morphisms $n \to 1$ in the free multicategory over 1.

Furthermore, multicategorical composition is computed by pushout.

Hirschowitz

Algebra

Multicategories

2-categories

Conclusio

The recipient presheaf

Consider $\mathcal{R} \colon \hat{\mathcal{S}} \to \mathsf{Set}$ defined by:

- $ightharpoonup \mathcal{R}(\star) = y\star$, seen as a functor $\mathcal{S} \cong 1^{op}
 ightarrow \hat{\mathcal{S}}$,
- $ightharpoonup \mathcal{R}(n)$ is the set of diagrams

with f finite,

▶ modulo isomorphism of diagrams $S/n \rightarrow \hat{S}$.

Intuition

Multigraphs with arity and handles.

Hirschowitz

Algebra

Multicategories

2-categories

Conclusi

An invariant and pictures

The diagrams we'll construct will satisfy a:

Linearity constraint

Each vertex is the source of at most one multi-edge, and is the target of at most one multi-edge.

Hirschowitz

Algebra

Multicategories

2-categories

Conclusion

Consider the following presheaf $\mathcal{T}_0 \subseteq \mathcal{R}$:

- $T_0(\star) = \mathcal{R}(\star) = y\star,$
- $ightharpoonup \mathcal{T}_0(n)$ is the singleton

(when
$$n = 1$$
).

Hirschowitz

Algebra

Multicategories

2-categories

Conclusio

Boot

Pictorially, \mathcal{T}_0 has, for each n, one element

(when n = 1).

Role of the diagram: distinguish the dangling wires.

Algebra

Multicategories

2-categories

z-categorie:

. . .

Step

Now define T_{n+1} to be the union of T_n and T'_n , which has:

- $T'_n(\star) = \emptyset$
- ▶ $T_n^{\gamma}(m)$ is the set of diagrams (f, \overline{s}, t) as above such that:
 - ▶ there exist p + q 1 = m, $i \in p$, and
 - ▶ diagrams $h \in \mathcal{T}_n(p)$ and $k \in \mathcal{T}_n(q)$, such that f is:

Hirschowitz

Algebra

Multicategories

2-categories

Conclusio

Picture

This just glues two multigraphs together along the chosen edge:

Hirschowitz

Multicategories

C l

Wrap up

Definition

Let T_{ω} be the union of all the T_n .

Theorem (Coherence at 1)

For all n, $T_{\omega}(n)$ is isomorphic to the set M(n) of morphisms $n \to 1$ in the free multicategory on 1. Furthermore, composition and identities are given by the operations on the T_n 's, e.g,

$$\mathcal{T}_{\omega}(p) imes\mathcal{T}_{\omega}(q)\cong M(p) imes M(q)$$
 glueing at i $igg|$ \circ_i $\mathcal{T}_{\omega}(p+q-1)\cong M(p+q-1)$

commutes.

2-categories

Conclusio

The monad

Consider the functor:

$$\begin{array}{ccc} \hat{\mathcal{S}} & \longrightarrow & \hat{\mathcal{S}} \\ F & \mapsto & \mathcal{T}F \end{array}$$

where
$$\mathcal{T}(F)(s) = \coprod_{x \in \mathcal{T}_{\omega}(s)} \hat{\mathcal{S}}(x(id_s), F).$$

WTF?

Sorry, I have to show you this key formula.

Hirschowitz

Algebra

Multicategories

2-categories

Conclusion

Understanding the key formula

$$\mathcal{T}(F)(s) = \coprod_{x \in \mathcal{T}_{\omega}(s)} \hat{\mathcal{S}}(x(id_s), F)$$

▶ Recall that $\mathcal{T}_{\omega}(s)$ is a set of diagrams $\hat{\mathcal{S}}/s^{op} \to \mathsf{Set}$,

- ▶ So that for $x \in \mathcal{T}_{\omega}(s)$,
 - \triangleright $x(id_s)$ is a presheaf on S,
 - \triangleright here f.
 - ▶ And a natural transformation $f \rightarrow F$ is a labelling of f in F.

Hirschowitz

Algebra

Multicategories

2-categories

Conclusion

Example

Recall

$$F(\star) = \{x, y, z\},$$

•
$$F(0) = \{e_0\},$$

►
$$F(2) = \{e_2\},$$

►
$$F(3) = \{e_3\},$$

▶
$$F(\tau)(e_0) = y$$
,

$$F(\tau)(e_2) = x,$$

▶
$$F(\sigma_0)(e_2) = x$$
,

$$F(\sigma_1)(e_2) = y,$$

Hirschowitz

Algebra

Multicategories

2-categories

Conclusion

Example

▶ Consider f =

Hirschowitz

Algebra

Multicategories

2-categories

Conclusio

Example

- ► Consider *f* =
- ▶ A possible natural transformation $f \rightarrow F$ yields

► Actually, here, there is only one.

Hirschowitz

Algebra

Multicategories

2-categories

Conclusion

Theorem (Not me)

Results

- ► T is a Ira monad, and a club [Kelly]:
 - T preserves pullbacks.
 - Naturality squares for μ and η are pullbacks.
 - ► Generic factorisations.
 - T is sketchable, i.e., algebraic.
- ▶ *T*-algebras are multicategories.

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusion

Iterating the process

lacktriangle We could do the same for categories, with $\mathcal{S}=$

▶ The elements of $T_{\omega}(1)$ are cospans

$$\star \longrightarrow f \longleftarrow \star.$$

Hirschowitz

Algebra

Multicategorie

2-categories

Extension

- ► Consider two such cospans *f* and *g*.
- ► They consist of multigraphs looking like

with, say, n and p occurrences of \bullet , respectively.

- ▶ Consider the full subcategory S[f,g] of \hat{S} containing:
 - the representables, plus
 - ▶ the colimit (f,g) of the diagram

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusion

Extension

This subcategory S[f,g] looks like S plus one object:

with
$$\sigma\sigma_0=\sigma\tau_0, \qquad \tau\sigma_{n-1}=\tau\tau_{p-1}, \qquad \text{and}$$

$$\tau\sigma_i=\sigma\sigma_{i+1} \qquad \qquad \tau\tau_j=\sigma\tau_{j+1}.$$

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusion

Extension

Now, we:

- do this for every equivalence class of pairs of cospans,
- ▶ and take the colimit:

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusio

Extension

The (category of elements of the) representable presheaf (f,g) on \mathcal{S}_2 looks like:

with all triangles commuting.

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusio

Picture

We picture it as:

This allows to define:

- ▶ Horizontal composition by glueing along backgrounds.
- ▶ Vertical composition by glueing along wires.

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusio

Not yet proved

- lackbox One defines \mathcal{T}_{ω} using these operations and identities,
- ightharpoonup then \mathcal{T} ,

and obtains:

The corresponding \mathcal{T} -algebras are exactly 2-categories.

Hirschowitz

Algebra

Multicategorie

2-categories

Conclusion

Conclusion

- ► A technique to define algebraic structures
 - ▶ of the kind where to seek coherence results,
 - with coherence built-in.
- ► Now?
 - ▶ Make this into a theory (i.e., prove a general result)?
 - ► Handle weak structures (here, we might have a size problem)?