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Goal: certified polynomial approximation of real functions

Consider a function f , a polynomial P, an error δ and an interval I
Show: ∀x ∈ I , |f (x)− P(x)| < δ

I dedicated data structure: rigorous polynomial approximation
I a pair (P,∆) of a polynomial and an interval that contains the

approximation error
I Taylor models (TM)
I Formal verification

I ensure correctness of the TM algorithms
I ensure correct computation of TMs
I by using a proof assistant
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Interval Arithmetic
I interval = pair of representable numbers
I e.g., π ∈ [3.14, 3.15]
I operations and functions on intervals

[2, 4]− [0, 1] = [1, 4] Exp([0, 1]) = [1, 2.72]
I satisfy the enclosure property
∀x ∈ [0, 1], exp(x) ∈ Exp([0, 1]) = [1, 2.72]

I tool for bounding the range of functions
I dependency problem:

e.g. F(x) := x − x
in interval arithmetic F([1, 4]) = [−4, 4] while we expect [0, 0]

I interval arithmetic is not directly applicable to bound the
approximation error e := P − f as the values of f and P are very
near
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Outline

1. Algorithms for Taylor Models

2. Formalization of Taylor Models in COQ

3. Current Results and Future Developments
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Taylor Models

Definition
An order-n Taylor Model (TM) for a function f : D ⊂ R→ R over I is a
pair (T ,∆) where T is a degree-n polynomial and ∆ is an interval, such
that

∀x ∈ I , f (x)− T (x) ∈∆

But what type for T?

Polynomial T with interval coefficients
I rounding errors are directly handled by the interval arithmetic
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Theorem (Taylor-Lagrange)
If f is n + 1 times derivable on I , then ∀x ∈ I , ∃c between x0 and x s.t.:

f (x) =
( n∑

i=0

f (i)(x0)
i! (x − x0)i

)
︸ ︷︷ ︸

Taylor expansion

+ f (n+1)(c)
(n + 1)! (x − x0)n+1︸ ︷︷ ︸

∆(x,c)

.

Computation
I for T : compute interval enclosures of f (i)(x0)

i! , i = 0, . . . ,n

I for ∆: compute in interval arithmetic f (n+1)(I )
(n + 1)! (I − x0)n+1

Issue
I for composite functions ∆ can be largely overestimated
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Methodology for Taylor Models
Define arithmetic operations on Taylor Models:

I TMadd, TMmul, TMcomp, and TMdiv

I E.g., TMadd :
(

(P1,∆1), (P2,∆2)
)
7→ (P1 + P2,∆1 + ∆2).

A two-fold approach:

I apply these operations recursively on the structure of the function
I use Taylor-Lagrange remainder for atoms (i.e., for base functions)

We need to consider a relevant class for base functions, so that:

I we can easily compute their successive derivatives
I the interval remainder computed for these atoms is thin enough
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D-finite functions

Definition
A D-finite function is a solution of a homogeneous linear ordinary
differential equation with polynomial coefficients:

ar(x)y(r)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = 0, for ak ∈ K[X ]

Example (exp)
The function y = exp is fully determined by {y′ − y = 0, y(0) = 1}

I most common functions are D-finite
(sin, cos, arcsin, arccos, sinh, cosh, arcsinh, arccosh, Si, Ci, Shi,
Chi, arctan, exp, ln, Ei, erf, Ai, Bi, . . . ).

I tan is not D-finite
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Taylor series of D-finite functions

Theorem
A function represented by a Taylor series f (x) =

∞∑
n=0

un (x − x0)n is

D-finite if and only if the sequence (un) of its Taylor coefficients satisfies
a linear recurrence with polynomial coefficients.

recurrence relation
initial conditions

}
⇒ fast numerical computation of Taylor coefficients

Example (exp)
Taylor series: exp(x) =

∞∑
n=0

exp(x0)
n! (x − x0)n

Recurrence: ∀n ∈ N, un+1 = un

n + 1 Initial condition: u0 = exp(x0)
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Outline

1. Algorithms for Taylor Models

2. Formalization of Taylor Models in COQ

3. Current Results and Future Developments
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How we use COQ

For Taylor Models
I implement TM algorithms in Coq
I formally prove these algorithms
I compute in Coq the TMs

Levels of trust

method trust speed
compute (kernel) +++ +
vm_compute (byte code) ++ ++
native_compute (native code) + +++
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Coq and real numbers

The “Reals” library
I designed for high level proofs
I available in the COQ Standard Library
I defined by axioms

e.g. r1 + (r2 + r3) = (r1 + r2) + r3
I use classical reasoning ∀r , r = 0 ∨ r 6= 0
I definitions and proofs from “paper mathematics”

e.g. convergence, derivability, fundamental theorem of
calculus etc.

I but no computational power
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Computing with real numbers

I libraries for computation in arbitrary precision (e.g. by
O’Connor)

I the Flocq library for multiple-precision floating-point
arithmetic

I the CoqInterval library for interval arithmetic

I formal verification of these libraries with respect to (some)
standard implementation of real numbers
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Formally verified computation: CoqInterval

I abstract interface for intervals
I instantiation to intervals with floating point bounds
I formal verification with respect to the “Reals” library

x, y : R ∪ {NaN}
X,Y : IR

x ∈ X, y ∈ Y⇒ x + y ∈ X + Y

x ∈ X⇒ exp(x) ∈ Exp(X)
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Implementation of Taylor models in COQ

Focus on being generic
I Taylor models are an instance of a rigorous polynomial

approximation (i.e. a pair (P,∆))
I generic with respect to the type of coefficients of polynomial

P, to its implementation, as well as the type of interval ∆

Prove correctness with respect to the standard “Reals” library
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A generic implementation of TMs: modular hierarchy

RigPolyApprox TaylorModel

Polynomial TaylorPoly

Coefficient

Interval

TaylorRec

interface

module
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Coefficient, Polynomial, Interval, RigPolyApprox

Coefficient:
tzero, tone, tadd, tmul, tdiv, tnat, texp, tsin, . . .

Polynomial:
tadd, tmul, tmul_trunc, teval, tnth, tsize, trec1,
trec2, tfold, . . .

Interval:
I reuse CoqInterval library
I abstract interval operations: I.add, I.exp, . . .

RigPolyApprox:
I the RPA structure: a pair (polynomial, interval)
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TaylorRec, TaylorPoly, TaylorModel

TaylorRec

Definition exp_rec n u := tdiv u (tnat n).

TaylorPoly

Definition T_exp n u := trec1 exp_rec (texp u) n.

TaylorModel

Definition TM_exp n I x0 :=
RPA (T_exp n x0) (Trem T_exp n I x0).
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Example instance of the hierarchy

Coefficient: intervals with multiple precision floating point
bounds from CoqInterval

Polynomial: lists

Interval: intervals with multiple precision floating point bounds
from CoqInterval
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A comparison
Sollya

I written in C

I based on the MPFI library
(Multiple-Precision FP IA)

I contains an implementation of
Taylor Models

I in an imperative-programming
framework

I polynomials as arrays of
coefficients

CoqApprox

I formalized in Coq
I based on the CoqInterval library
I implements Taylor Models using

a similar algorithm
I in a functional-programming

framework
I polynomials as lists of

coefficients (linear access time)

COQ is less than 10 times slower than Sollya! It’s very good!
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Some benchmarks for base functions

Timing Approximation error
Coq Sollya Coq Sollya

arctan
prec=120, deg=8
I =[1, 2]
split in 256

11.45s 1.03s 7.43× 10−29 2.93× 10−29

exp
prec=600, deg=40
I =[ln 2, 1]
split in 256

38.10s 16.39s 6.23× 10−182 6.22× 10−182
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Some benchmarks for composite functions

Timing Approximation error
Coq Sollya Coq Sollya

exp× sin
prec=200, deg=10
I =[1/2, 1]
split in 2048

1m22s 12.05s 6.92× 10−50 6.10× 10−50

exp ◦ sin
prec=200, deg=10
I =[1/2, 1]
split in 2048

3m24s 12.19s 4.90× 10−47 4.92× 10−47
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Proving Taylor models in COQ

Definition (validTM)
Let f : I → R be a function, x0 be a small interval around an expansion
point x0. Let T be a polynomial with interval coefficients a0, . . . ,an and
∆ an interval. We say that (T ,∆) is a Taylor model of f at x0 on I
when

x0 ⊆ I ,

0 ∈∆,

∀ξ0 ∈ x0,∃α0 ∈ a0, . . . , αn ∈ an ,∀x ∈ I , f (x)−
n∑

i=0
αi (x − ξ0)i ∈∆.
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Adapting the hierarchy for proofs

RigPolyApprox TaylorModel

Polynomial TaylorPoly

Coefficient

Interval

TaylorRec
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Problems with the specification

At the coefficient level
e.g associativity of addition

I holds for real numbers
I does not hold for floating point numbers or intervals

At the polynomial level
e.g. eval (P + Q) = eval P + eval Q

I holds for polynomials with real number coefficients
I does not hold for polynomials with interval coefficients
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Adding specifications to the hierarchy

RigPolyApprox TaylorModel

Polynomial

PropPoly

TaylorPoly

Coefficient

PropCoef
Interval

TaylorRec
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Proof for TMs of base functions

I take advantage by the fact that they are defined in a uniform
way

I have a generic proof based on Taylor-Lagrange theorem
I instantiate to each function
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Example: exp
TMexp(I ,x0,n) := (a0 :: . . . :: an ,∆) with

x0 ⊆ I , a0 = Exp(x0), an+1 = an
n + 1 , ∆ = Exp(I )

(n + 1)! ∗ (I −x0)n+1

We want to show TMexp(I ,x0,n) is a valid TM for exp.
I x0 ⊆ I
I 0 ∈∆
I ∀ξ0 ∈ x0,∃α0 ∈ a0, . . . , αn ∈ an ,

∀x ∈ I , exp(x)−
n∑

i=0
αi (x − ξ0)i ∈∆

∃αi = exp(ξ0)
i! ∈ ai s.t.

exp(x)−
n∑

i=0

exp(ξ0)
i! (x − ξ0)i = exp(ci)

(n + 1)! ∗ (x − ξ0)n+1 ∈∆, as ci ∈ I
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Generalization to an arbitrary D-finite function f

Difficulty:

find minimal assumptions on the function f
I the derivative (in the sense of COQ) is compatible with the

recurrence relation
I we have a compatible interval evaluator for f
I f propagates NaNs

provide the Taylor-Lagrange theorem for standard Reals
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In practice

I a generic proof for first order recurrences proofOfRec1
I another generic proof for second order recurrences
I a generic proof for recurrences of order N is future work

Example

Theorem TM_exp_valid: validTM TM_exp X0 I n Rexp.
Proof.
...
apply proofOfRec1.
...
Qed.
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Proof for composite functions

Proof of the algorithm based on the specification
I addition: straightforward
I multiplication: almost straightforward
I composition: based on multiplication, addition and constant

function TMs
I division: it’s a multiplication and a composition with x 7→ 1

x
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Proof status

Fun/Op Reals CoqInterval
Implemented
in CoqApprox

Proved
in CoqApprox

cst 4 4 4 4
id 4 4 4 4
inv 4 4 4 4
sqrt 4 4 4 4
1√
· 4 4 4 4

exp 4 4 4 4
sin 4 4 4 4
cos 4 4 4 4
arctan 4 4 4 2
ln 4 2 4 2
arcsin 2 2 4 2
arccos 2 2 4 2
TMadd 4 4
TMmul 4 4
TMcomp 4 4
TMdiv 4 4
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Missing pieces

functions missing from the Reals library
I cannot provide a proof for the Taylor model
I find a generic way of adding a new function to Reals
I e.g. define them by a differential equation or a recurrence rel.

functions missing from CoqInterval
I cannot provide an initial value for the Taylor model
I just implement the missing functions in CoqInterval
I use other techniques (fixed point theorems, majorazing series)

34 / 39



Missing pieces

functions missing from the Reals library
I cannot provide a proof for the Taylor model
I find a generic way of adding a new function to Reals
I e.g. define them by a differential equation or a recurrence rel.

functions missing from CoqInterval
I cannot provide an initial value for the Taylor model
I just implement the missing functions in CoqInterval
I use other techniques (fixed point theorems, majorazing series)

34 / 39



Other issues or what a formal proof reveals

From arithmetic
I Does the constant function propagate NaN?
I What is the interval [NaN, NaN]? Does it contain NaN?
I Is the null polynomial a valid Taylor model?
I Is the interval [1, 0] empty?

From COQ
I dealing with extended standard reals: lack of automatic tactics
I dealing with derivation in COQ
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Future Work

I optimize algorithms for existing base functions
I add more functions

I consider functions in several dimensions

I consider other rigorous polynomial approximations, like
Chebyshev Models
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Future work

RigPolyApprox TaylorModel

Polynomial TaylorPoly

Coefficient

Interval

TaylorRec

ValidTM

PropCoefComp PropCoefAbs

PropPolyComp PropPolyAbs PropMonomBase
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Future work

RigPolyApprox ChebyshevModel

Polynomial ChebyshevPoly

Coefficient

Interval

ChebyshevRec

ValidChebyModel

PropCoefComp PropCoefAbs

PropPolyComp PropPolyAbs PropChebyBase
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Overview

Work in collaboration between the formal proof community and
arithmetic, symbolic and numeric computation communities.

Interesting for formal proofs:
I computing power of COQ: is it enough?
I comprehensive library on Reals, CoqInterval?
I state of the art algorithms

Interesting for arithmetic, symbolic and numeric computation:
I real algorithms, but with a proof of correctness
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