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Goal: certified polynomial approximation of real functions

Consider a function f, a polynomial P, an error § and an interval [
Show: Vz € I,|f(z) — P(z)| < ¢
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Goal: certified polynomial approximation of real functions

Consider a function f, a polynomial P, an error § and an interval [
Show: Vz € I,|f(z) — P(z)| < ¢

> dedicated data structure: rigorous polynomial approximation
» a pair (P,A) of a polynomial and an interval that contains the
approximation error
» Taylor models (TM)
» Formal verification

> ensure correctness of the TM algorithms
> ensure correct computation of TMs
» by using a proof assistant
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Interval Arithmetic

v

interval = pair of representable numbers
> eg., € [3.14, 3.15)

» operations and functions on intervals

v

satisfy the enclosure property
Vz € [0,1],exp(z) € Exp([0,1]) = [1,2.72]
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Interval Arithmetic

v

interval = pair of representable numbers
e.g., m € [3.14, 3.15]

operations and functions on intervals

satisfy the enclosure property
Vz € [0,1],exp(z) € Exp([0,1]) = [1,2.72]

tool for bounding the range of functions

dependency problem:
eg Flz)=z—=x
in interval arithmetic F([1,4]) = [—4, 4] while we expect [0, 0]

interval arithmetic is not directly applicable to bound the
approximation error e := P — f as the values of f and P are very
near
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Outline

1. Algorithms for Taylor Models
2. Formalization of Taylor Models in COQ

3. Current Results and Future Developments
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Taylor Models

Definition
An order-n Taylor Model (TM) for a function f: D CR — R over I is a
pair (T, A) where T is a degree-n polynomial and A is an interval, such

that
Veel, f(x)— T(z) € A
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Taylor Models

Definition
An order-n Taylor Model (TM) for a function f : DCR — Rover I is a
pair (T, A) where T is a degree-n polynomial and A is an interval, such

that
Veel, f(x)— T(z) € A

But what type for T7

Polynomial T with interval coefficients

» rounding errors are directly handled by the interval arithmetic
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Theorem (Taylor-Lagrange)
If f is n+ 1 times derivable on I, then VY € I, 3¢ between xy and z s.t.:

" g(d) N\ e,
)= (Zf o <x—xo>’> $ I (o gy,
i=0 ’

(n+1)!
Taylor expansion A(z,c)
Computation
f(’)( )
» for T: compute interval enclosures of ,1=0,...,n
f(n+1)(1)
» for A: compute in interval arithmetic ————= (I — )" !
(n+1)!
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Theorem (Taylor-Lagrange)
If f is n+ 1 times derivable on I, then VY € I, 3¢ between xy and z s.t.:

" g(d) N\ e,
)= (Zf o <x—xo>’) $ I (o gy,
i=0 ’

(n+1)!
Taylor expansion A(z,c)
Computation
f(’)( )
» for T: compute interval enclosures of ,1=0,...,n
f(n+1)(1)
» for A: compute in interval arithmetic ————= (I — )" !
(n+1)!

Issue

» for composite functions A can be largely overestimated
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Methodology for Taylor Models
Define arithmetic operations on Taylor Models:
> TMagds TMuu1, TMcomp, and TMg;y
> Eg. T (P, A1), (Po,A2)) > (P + P, Ay + Ag).
A two-fold approach:

> apply these operations recursively on the structure of the function

> use Taylor-Lagrange remainder for atoms (i.e., for base functions)
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Methodology for Taylor Models
Define arithmetic operations on Taylor Models:
> TMaga, TMuu1, TMcomp, and TMasy
> Eg. T (P, A1), (Po,A2)) > (P + P, Ay + Ag).
A two-fold approach:

> apply these operations recursively on the structure of the function

> use Taylor-Lagrange remainder for atoms (i.e., for base functions)
We need to consider a relevant class for base functions, so that:

> we can easily compute their successive derivatives

> the interval remainder computed for these atoms is thin enough
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D-finite functions

Definition
A D-finite function is a solution of a homogeneous linear ordinary
differential equation with polynomial coefficients:

ar ()Y (z) + -+ a1 (2)y () + ao(z)y(z) = 0, for aj, € K[X]

Example (exp)
The function y = exp is fully determined by {y —y =0, y(0) =1}

» most common functions are D-finite

(sin, cos, arcsin, arccos, sinh, cosh, arcsinh, arccosh, Si, Ci, Shi,
Chi, arctan, exp, In, Ei, erf, Ai, Bi, ...).

» tan is not D-finite
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Taylor series of D-finite functions

Theorem i,
A function represented by a Taylor series f(x) = Y uy (z — 20)™ is

n=
D-finite if and only if the sequence (u,) of its Taylor coefficients satisfies
a linear recurrence with polynomial coefficients.

recurrence relation

S o = fast numerical computation of Taylor coefficients
initial conditions

Example (exp)

Taylor series: exp(z) =
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QOutline

1. Algorithms for Taylor Models
2. Formalization of Taylor Models in COQ

3. Current Results and Future Developments
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How we use COQ

For Taylor Models
> implement TM algorithms in CoqQ
» formally prove these algorithms
» compute in CoQ the TMs

Levels of trust

method | trust | speed
compute (kernel) +++ +
vm_compute (byte code) ++ ++
native_compute (native code) | + +++
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Coq and real numbers

The “Reals” library

>

>

>

designed for high level proofs

available in the COQ Standard Library
defined by axioms

eg. ri+(ro+mr3)=(ri+mr)+rs

use classical reasoning Vr,r =0V r #0

definitions and proofs from “paper mathematics”
e.g. convergence, derivability, fundamental theorem of
calculus etc.

but no computational power
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Computing with real numbers

» libraries for computation in arbitrary precision (e.g. by
O'Connor)

» the Flocq library for multiple-precision floating-point
arithmetic

» the Coqlnterval library for interval arithmetic

» formal verification of these libraries with respect to (some)
standard implementation of real numbers
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Formally verified computation: Coglnterval

> abstract interface for intervals
> instantiation to intervals with floating point bounds
» formal verification with respect to the “Reals” library
z,y : RU{NaN}
X,Y: IR
reXyeY=>2r+yeX+Y

r € X = exp(z) € Exp(X)
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Implementation of Taylor models in COQ

Focus on being generic

» Taylor models are an instance of a rigorous polynomial
approximation (i.e. a pair (P,A))

> generic with respect to the type of coefficients of polynomial
P, to its implementation, as well as the type of interval A

Prove correctness with respect to the standard “Reals” library
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A generic implementation of TMs: modular hierarchy

(Coeff icient} -->» TaylorRec

¥
CPolynomial} --> TaylorPoly

-
-
-
-
-

Y A

RigPolyApprox TaylorModel

()
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Coefficient, Polynomial, Interval, RigPolyApprox

Coefficient:
tzero, tone, tadd, tmul, tdiv, tnat, texp, tsin, ...

Polynomial:
tadd, tmul, tmul_trunc, teval, tnth, tsize, trecl,
trec2, tfold,

Interval:
» reuse Coqlnterval library

» abstract interval operations: I.add, I.exp, ...

RigPolyApprox:

» the RPA structure: a pair (polynomial, interval)
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TaylorRec, TaylorPoly, TaylorModel

TaylorRec

Definition exp_rec n u := tdiv u (tnat n).
TaylorPoly

Definition T_exp n u := trecl exp_rec (texp u) n.
TaylorModel

Definition TM_exp n I x0 :=
RPA (T_exp n x0) (Trem T_exp n I x0).
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Example instance of the hierarchy

Coefficient: intervals with multiple precision floating point
bounds from Coqlnterval

Polynomial: lists

Interval: intervals with multiple precision floating point bounds
from Cogqlnterval
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A comparison

SOLLYA

written in C

based on the MPFI library
(Multiple-Precision FP 1A)

contains an implementation of
Taylor Models

in an imperative-programming
framework

polynomials as arrays of
coefficients

CogApprox

formalized in CoQ
based on the Coqlnterval library

implements Taylor Models using
a similar algorithm

in a functional-programming
framework

polynomials as lists of
coefficients (linear access time)

COQ is less than 10 times slower than Sollya! It's very good!

21/ 39



Some benchmarks for base functions

Timing Approximation error

CoQ | SOLLYA CoqQ SOLLYA
arctan
gr:eflz ;]20' deg=8 | 11455 | 1.03s | 743 x10-2° | 2.93 x 10-2°
split in 256
exp
I}rjﬁigog] deg=40 | 35 10s | 16.30s | 6.23 x 10-152 | 6.22 x 10-152
split in 256
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Some benchmarks for composite functions

Timing Approximation error
CoqQ | SoLLYA coqQ SOLLYA

exp X sin

?rjflz/gog]' deg=10 | ;1006 | 12,055 | 6.92 x 10~ | 6.10 x 100
split in 2048

exp o sin

I}r_eflz/éog]' deg=10 | 3 045 | 12.19s | 4.90 x 10797 | 4.92 x 1047
split in 2048
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Proving Taylor models in COQ

Definition (validTM)

Let f: I — R be a function, &g be a small interval around an expansion

point xy. Let T be a polynomial with interval coefficients ao, ..., a, and
A an interval. We say that (T, A) is a Taylor model of f at @g on I
when

x C I,

0€ A,

n

Véo € 0,30 € @g, ..., € an, Yz €I, f(z)— 3 a;(z—&)' € A.

=
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Adapting the hierarchy for proofs

----------------- [estores]

I

I

|
I

U

Polynomial )----------------23 4 TaylorPoly

I
I
I
I
I -
I
1
1
I
I

RigPolyApprox TaylorModel
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Adapting the hierarchy for proofs

Coefficient

————————————————— 4 TaylorRec

RigPolyApprox TaylorModel

rPoly
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Adapting the hierarchy for proofs

————————————————— 4 TaylorRec

RigPolyApprox TaylorModel

ValidTM

rPoly
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Problems with the specification

At the coefficient level
e.g associativity of addition

» holds for real numbers

» does not hold for floating point numbers or intervals

At the polynomial level
e.g. eval (P+ Q) =eval P+eval Q

» holds for polynomials with real number coefficients

» does not hold for polynomials with interval coefficients
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Adding specifications to the hierarchy

----------------- [estores]

|
1
!

RigPolyApprox TaylorModel

————————————————— >| TaylorPoly
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Adding specifications to the hierarchy

----------------- [estores]

(PropCoefComePropCoefAbs)
:
I
U

( Polynomial ----------=------>2 >| TaylorPoly

(PropPgLy’C/omp)CPropPolyAb s)

1
1
1
1
1
1
1
! s
-

! s

1 s

-

RigPolyApprox TaylorModel
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Adding specifications to the hierarchy

————————————————— >| TaylorRec

(PropCoe:E ComePropCoe:E Abs)

N

( Polynomial f--=-=--=-=-=-=-=-=----2 >| TaylorPoly

(PropPglny/omp)CPropPolyAbs)

-
-
-
-

RigPolyApprox TaylorModel

Coefficient
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Adding specifications to the hierarchy

Coefficient

————————————————— >| TaylorRec

(PropCoe:E ComePropCoe:E Abs)

N

( Polynomial f--=-=--=-=-=-=-=-=----2 >| TaylorPoly

(PropPglny/omp)CPropPolyAbs) (PropMonomBase)

. ~
. ~
- ~
. ~
P ~

RigPolyApprox TaylorModel
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Adding specifications to the hierarchy

Coefficient

————————————————— >| TaylorRec

(PropCoef ComePropCoef Abs)
‘\_‘/’

( Polynomial f---------=-------23 >| TaylorPoly

(PropPgly’C?;mp)(PropPolyAbs) (PropMonomBase)

~
e ~
~

-
-
-
-

RigPolyApprox TaylorModel

ValidTM

Ll
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Proof for TMs of base functions

» take advantage by the fact that they are defined in a uniform
way

» have a generic proof based on Taylor-Lagrange theorem

» instantiate to each function
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Example: exp

TMexp(I, @o, n) := (@g :: ... 12 @p, A) with
an Exp(I)
cI =E = A= I—x)"t!
To & ) Qo Xp(wf)), a"n+1 Tl+ 17 (’fl+ 1)| *( :BO)
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Example: exp

TMexp(I, o, n) == (@g :: ... :: Gy, A) with
an Exp(I)
crI =E ntl = , A= T n+1
xC1I, ao xp(To), Gni1 —— CE) * (I —xp)

We want to show TMeyp (I, o, n) is a valid TM for exp.
> xo C I
» 0 A
> V&) € xg,Jag € ag, ..., 0, € y,

n

Vo e Iexp(z) — S i (z— &) € A
=0
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Example: exp

TMexp(I, o, n) == (@g :: ... :: Gy, A) with
an Exp(I)
CI, ap=E 1 = . A= I—ao)™*!
xo C I, ap=Exp(xo), any1 — (n+1)!*( Zo)

We want to show TMeyp (I, o, n) is a valid TM for exp.
> xo C I
» 0 A

> V§0€%73a0€%7"‘7an€an)

n

Vo e Iexp(z) — S i (z— &) € A
=0

E|Ozi = —eXP'('fo)
2.

exp(z) — i exp (o) (z— & )z _ exp(c;) « (x_éo)n+1 €A, asc el

=l T (n+ 1)

€ a; s.t.
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Generalization to an arbitrary D-finite function f

Difficulty:

find minimal assumptions on the function f

» the derivative (in the sense of COQ) is compatible with the
recurrence relation

> we have a compatible interval evaluator for f
> f propagates NaNs

provide the Taylor-Lagrange theorem for standard Reals
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In practice

> a generic proof for first order recurrences proofOfRecl
> another generic proof for second order recurrences

> a generic proof for recurrences of order N is future work

Example

Theorem TM_exp_valid: validTM TM_exp X0 I n Rexp.
Proof.

apply proofOfRecl.
Qed.
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Proof for composite functions

Proof of the algorithm based on the specification

v

addition: straightforward

v

multiplication: almost straightforward

» composition: based on multiplication, addition and constant
function TMs

v

division: it's a multiplication and a composition with z — —
x
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Proof status

Implemented  Proved

Fun/Op Reals Cogqlnterval in CogApprox in CogApprox
cst X X X X
id X X X X
inv X X X X
sqrt X X X X
L X X X X
exp X X X X
sin X X X X
Ccos X X X X
arctan X X X O
In X | X |
arcsin O | X O
arccos O O ¢ O
TMagq X X
Mm1 X X
comp X X
div X X
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Missing pieces

functions missing from the Reals library

» cannot provide a proof for the Taylor model
» find a generic way of adding a new function to Reals

> e.g. define them by a differential equation or a recurrence rel.

34 /39



Missing pieces

functions missing from the Reals library

» cannot provide a proof for the Taylor model
» find a generic way of adding a new function to Reals

> e.g. define them by a differential equation or a recurrence rel.
functions missing from Cogqlnterval

» cannot provide an initial value for the Taylor model
> just implement the missing functions in Coqlnterval

» use other techniques (fixed point theorems, majorazing series)
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Other issues or what a formal proof reveals

From arithmetic
» Does the constant function propagate NaN?
» What is the interval [NaN, NaN|? Does it contain NaN?
> |s the null polynomial a valid Taylor model?

> |s the interval [1,0] empty?
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Other issues or what a formal proof reveals

From arithmetic
» Does the constant function propagate NaN?
» What is the interval [NaN, NaN|? Does it contain NaN?
> |s the null polynomial a valid Taylor model?

> |s the interval [1,0] empty?

From COQ

» dealing with extended standard reals: lack of automatic tactics
» dealing with derivation in COQ
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Future Work

» optimize algorithms for existing base functions

» add more functions
» consider functions in several dimensions

» consider other rigorous polynomial approximations, like
Chebyshev Models
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Future work

----------------- [Farione]

(PropCoefComePropCoefAbs)
:
I
U

( Polynomial ----------=------>2 >| TaylorPoly

(PropPgLy’C/omp)CPropPolyAb s) (PropMonomBas e)

~
~
~

-
-
-
-
-

RigPolyApprox TaylorModel

ValidTM

B
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Future work

--------------- | e
(PropCoefComePropCoefAbs)
I

( Polynomial }--------------- -)| ChebyshevPoly

I

I

:

I -

! (PropPoLy’Comp)(PropPolyAbs) (PropChebyBase)
) c

' Z

I

I

~
- N
-
- ~
- S
- ~

RigPolyApprox ChebyshevModel
ValidChebyModel
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Overview

Work in collaboration between the formal proof community and
arithmetic, symbolic and numeric computation communities.

Interesting for formal proofs:

» computing power of COQ: is it enough?
» comprehensive library on Reals, Coqlnterval?

» state of the art algorithms

Interesting for arithmetic, symbolic and numeric computation:

» real algorithms, but with a proof of correctness
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