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Coinductive representation
A first attempt

Definition
t : T l : list (Graph T )

mk_Graph t l : Graph T

Examples

0 1
Finite_Graph =
mk_Graph 0 [mk_Graph 1 [Finite_Graph]]

0 1 2 . . . Infinite_Graphn =
mk_Graph n [Infinite_Graphn+1]

A first function
We would like to define the function (with f of type T → U):
applyF2G f (mk_Graph t l)=mk_Graph (f t) (map (applyF2G f ) l)
but... forbidden !
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The problem
Guard condition

Explanation of the idea
Objective: ensure that we can get more information on the
structure in a finite amount of time (productivity rule).
Restrictive solution offered by Coq: a corecursive call must
always be a constructor argument.

On a small example: filter on streams

1 2 3 4 5 6 7 8 2 4 6 8 ?
filter even filter odd

Problem/solution
Problem: applyF2G actually semantically correct!
Solution: overcome guardedness condition (not change it)
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The idea
Using functions instead of inductive types to represent lists
A list = a shape (specified by number of positions) and a
function: positions→ T (container view)

Example for the list [10 ; 22 ; 5]

p1

p2
p3

10

22

5

N

First problem : represent set of n elements (n indeterminate):
family of sets Fin such that ∀n, card {i | i : Fin n} = n
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Implementation of ilist

Implementation

The function : ilistn (T : Set) (n : N) = Fin n→ T
The ilist : ilist (T : Set) = Σ(n : N).ilistn T n
Lemma : There is a bijection between ilist and list .

An equivalence on ilist
∀l1 l2 : ilist T , ilist_relR l1 l2 ⇔
∀h : lg l1 = lg l2, ∀i : Fin (lg l1),R (fct l1 i) (fct l2 i ′h)
where lg and fct are projections on ilist , R is a relation on T and
i ′h is i , converted from type Fin (lg l1) to type Fin (lg l2)

Tools
Replacement for map: imap f l = 〈lg l , f ◦ (fct l)〉
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Capturing permutations on ilist
Permutations on ilist with decidability

The idea for comparing l1 and l2

∀t , card {i | R (fct l1 i) t} = card {i | R (fct l2 i) t}

Implementation: counting elements
∀l1 l2, iperm_occRd

l1 l2 ⇔ ∀t ,nboccRd t l1 = nboccRd t l2
where nboccRd t l gives the number of occurrences of t in l .

The problem
iperm_occ needs decidability. Cannot always be assumed.
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Capturing permutations on ilist
Inductive definitions of permutations on ilist- Definitions

iperm_indR l1 l2 ⇔


lg l1 = lg l2 = 0 ∨
∃i1∃i2,R (fct l1 i1) (fct l2 i2) ∧
iperm_indR (remEl l1 i1) (remEl l2 i2)

iperm_ind ′
R l1 l2 ⇔

lg l1 = lg l2 ∧
(
∀i1∃i2,R (fct l1 i1) (fct l2 i2)

∧ iperm_ind ′
R (remEl l1 i1) (remEl l2 i2)

)
iperm_ind ′′

R l1 l2 ⇔
lg l1 = lg l2 ∧

(
∀i2∃i1,R (fct l1 i1) (fct l2 i2)

∧ iperm_ind ′′
R (remEl l1 i1) (remEl l2 i2)

)
where remEl l i removes the i th element of l .

t0
0

t1
1

t2
2

t3
3

t4
4

t5
5

l

i

t0 t1 t2 t4 t5
0 1 2 3 4

remEl l i

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 11/33



Introduction A Functional Equivalent to Lists A Coinductive Graph Representation Conclusions

Capturing permutations on ilist
Inductive definitions of permutations on ilist- Results

Theorem of equivalence between definitions

∀l1 l2, iperm_indR l1 l2 ⇔ iperm_ind ′
R l1 l2 ⇔ iperm_ind ′′

R l1 l2
Proof not straightforward since one definition can be seen as a
special case of the others.
Usefulness of having various definitions: some properties
easier to prove on one than on the other and vice versa.

Other properties
Preservation of equivalence, decidability, monotonicity.

Definition with skeleton: skel_type
Equivalent to iperm_ind with witness of the permutation used.
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Capturing permutations on ilist
Definition using bijective functions and comparison between definitions

Definition of iperm_bij
Idea: use a bijective function in the same style as ilist_rel .
∀f g,bij f g ⇔ (∀t ,g(f t) = t) ∧ (∀u, f (g u) = u)
∀l1 l2, iperm_bijR l1 l2 ⇔ ∃f g,bij f g ∧ ∀i ,R (fct l1 i) (fct l2 (f i))

Equivalence between definitions
We can show that ∀l1 l2, iperm_indR l1 l2 ⇔ iperm_bijR l1 l2
Permutations on lists by Contejean equivalent to ours

Comparison between definitions
iperm_ind captures better intuition than iperm_bij but
inductive. Contejean’s definition on list .
We prefer definition on ilist ⇒ our choice is iperm_ind .
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New graph representation
Definition of Graph

Graph and applyF2G (coinductive)
Graph : t : T l : ilist (Graph T )

mk_Graph t l : Graph T
applyF2G : applyF2G f (mk_Graph t l) =
mk_Graph (f t) (imap (applyF2G f ) l)

Bisimulation relation on Graph: Geq

Why ?
Graph is infinite
⇒ “=” not usable

Example:
0

1

0
1

0
1

R (label g1) (label g2) ilist_relGeqR
(sons g1) (sons g2)

GeqR g1 g2

where label and sons are the projections on Graph
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New graph representation
Finiteness

Notion of finiteness
Finiteness : ∀g, G_ finiteR g ⇔ ∃gs, G_all (element_of R gs) g
with Gall universal quantification on Graph and element_of list
membership modulo Geq

Redefinition of the examples from the beginning

0 1 Finite_Graph := mk_Graph 0 Jmk_Graph 1 JFinite_GraphKK

0 1 2 . . . Infinite_Graphn := mk_Graph n JInfinite_Graphn+1K

Proofs of finiteness
G_ finite= Finite_Graph: rather easy proof
∀n, ¬ G_ finite= Infinite_Graphn: we use unbounded labels
labels and #sons bounded⇒ proofs of infinity much harder
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Need for a more liberal relation on Graph

The problem
These pairs of graphs are not bisimulated through Geq:

0

1 2
⇔

0

2 1

0

1
⇔

1

0

Solution
Define a new equivalence relation on Graph using
permutations on ilist
Define a new equivalence relation on Graph using the
previous one and taking into account rotations
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A relation on Graph using iperm_ind

Definition of GPerm (coinductive)
R (label g1) (label g2) iperm_indGPermR (sons g1) (sons g2)

GPermR g1 g2

The problem: proof that GPerm preserves reflexivity
Lemma: ∀R, R reflexive⇒ ∀g, GPermR g g
Proof (by coinduction): We must prove that
R (label g) (label g)︸ ︷︷ ︸

ok

∧ iperm_indGPermR (sons g) (sons g)︸ ︷︷ ︸
has to be inductive

Mendler-style definition (coinductive and impredicative)
R⊆GPerm_mendR R (label g1) (label g2) iperm_indR (sons g1) (sons g2)

GPerm_mendR g1 g2
Preserves equivalence
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A relation on Graph using iperm_ind
An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a
certain depth.
⇒ no more mixing of inductive and coinductive types

0

1

Observed
=⇒

until depth 5

0

1

0

1

0

1
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A relation on Graph using iperm_ind
An equivalent approach based on observation - Definitions

iTree (inductive): t : T l : ilist (iTree T )

mk_iTree t l : iTree T

TPerm (inductive):

R (labeliT t1) (labeliT t2) iperm_indTPermR (sonsiT t1) (sonsiT t2)

TPermR t1 t2

G2iT :
G2iT : ∀T ,nat → Graph T → iTree T
G2iT T 0 (mk_Graph t l) := mk_Tree t JK
G2iT T (n + 1) (mk_Graph t l) := mk_Tree t (imap (G2iT n) l)

≡R,n: ∀n g1 g2,g1 ≡R,n g2 ⇔ TPermR (G2iT n g1) (G2iT n g2)

GTPerm: ∀g1 g2,GTPermR g1 g2 ⇔ ∀n,g1 ≡R,n g2
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A relation on Graph using iperm_ind
An equivalent approach based on observation - Main theorem

The theorem
∀g1 g2,GPerm_mendR g1 g2 ⇔ GTPermR g1 g2

Proof
[Direction⇒ ] easy (induction on n)
[Direction⇐ ] proved using the lemma:
∀g1 g2,GTPermR g1 g2 ⇒ iperm_indGTPermR (sons g1) (sons g2)
Modulo non-constructive axiom: Infinite Pigeonhole Principle
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Relations on Graph using iperm_bij

Definitions
Direct definition:

R (label g1) (label g2) iperm_bijGPerm_bijR
(sons g1) (sons g2)

GPerm_bijR g1 g2

Need an impredicative one for proofs of equivalence:

R⊆GPerm_bij_mendR R(label g1)(label g2) iperm_bijR(sons g1)(sons g2)

GPerm_bij_mendR g1 g2

Results
Equivalence relations
GPerm_mend ⇔ GPerm_bij_mend ⇔ GPerm_bij
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Summary of the obtained notions

GPerm

GTPerm

GPerm_mend

GPerm_bij_mend

GPerm_bij

with infinite pigeonhole principle

flexibility of Mendler style

no nested induction

nested induction
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The final relation over Graph
The idea

Change in the “point of view” for the observation of the
graph
Single-rooted graph⇒ path from the root to all nodes
Change in the root⇒ both roots in the same cycle⇒
g1 ⊂ g2 ∧ g2 ⊂ g1

Only for a “general” view:

1 2 3 6' 1 3 2
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The final relation over Graph
Definitions

Non-strict Inclusion
General definition (inductive):

∀gin gout ,GinG?
RG

gin gout ⇔
{

RG gin gout or
∃i ,GinG?

RG
gin (fct (sons gout ) i)

Instantiation:GinGPR := GinG?
GPerm_mendR

The final relation
∀g1 g2, GeqPermR g1 g2 ⇔ GinGPR g1 g2 ∧GinGPR g2 g1

Preserves equivalence

0

1 2
⇔

0

2 1

0

1
⇔

1

0
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Related work

Permutations
Contejean: treats the same problem for lists
Standard library: requires decidability or Leibniz equality

Graph representation
Erwig: inductive directed graph representation; each
node is added with its successors and predecessors
Courcelle: inductive representation as regular expressions

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 28/33



Introduction A Functional Equivalent to Lists A Coinductive Graph Representation Conclusions

Related work

Guardedness issues
Bertot & Komendantskaya: same approach with streams
represented by functions
Dams: defines everything coinductively and restricts the
finite parts with properties of finiteness
Niqui: solution using category theory but not usable here
Danielsson: experimental solution to the problem in Agda
adding one constructor for each problematic function
Nakata & Uustalu: Mendler-style definition
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Conclusions

Achievements
Complete solution to the guardedness problem in the
case of lists
Permutations captured for ilist
Complete representation of graphs in Coq, many tools
Quite liberal equivalence relation on Graph
Various extensions in order to represent models
(non-connected graphs, multiplicities)
Completely formalized in Coq: www.irit.fr/∼Celia.Picard/These/

Publications (with R. Matthes)
Coinductive Graph Representation : the Problem of Embedded
Lists - ECEASST, Vol. 39, 2011
Permutations in Coinductive Graph Representation - CMCS’12
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Perspectives

Extension of the representation
New finiteness criterion using spanning trees

Generalization
generalize the solutions for any inductive type
apply expertise to other problems

Extend links
containers:

morphism coming with categorical notion of container
notion of quotient types for permutations
possibility of representing graphs as containers

process algebras
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Perspectives - Certified model transformation

Extension
Deepen notion of forest of graphs

Applications
A first direct application:

instantiation of the graphs for finite automata
certified transformations: minimization, determinization

Metamodel representation (inheritance with
polymorphism)
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Summary

What has been done
Library for functional equivalent to lists
Full representation of graphs with liberal equivalence
relation
Fully proved in Coq

What remains to be done
Extend and generalize the representation
Extend links with existing work
Follow the idea of representing and transformings models

Thanks for your attention.
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Fin - a type family for finite indexed sets

Problem: represent a set of n elements for n indeterminate

Solution: we represent a family of sets parameterized by the
number of their elements.
We use a common solution (Altenkirch, McBride & McKinna):
Fin of type N→ Set with 2 constructors:

first (k : N) : Fin (k + 1)
succ (k : N) : Fin k → Fin (k + 1)

Lemmas :
∀n, card {i | i : Fin n} = n
∀n m,Fin n = Fin m⇒ n = m
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Multiplicities representation

Presentation
Final goal: represent big metamodels, perform and certify
transformations on them
Partial goal: represent multiplicities
Solution: extend ilist to include bounds.

PropMult
Indicates whether a natural number fits a multiplicity condition:
∀(inf : N) (sup : option N) (i : N),

PropMult inf sup n⇔
{

i ≥ inf ∧ i ≤ s if sup = Some s
i ≥ inf if sup = None

ilistMult
ilistnMult T inf sup n := {i : ilistn T n | PropMult inf sup n}
ilistMult T inf sup := Σ(n : N).ilistnMult T inf sup n

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 35/33



A relation on Graph using iperm_ind
An impredicative definition

The impredicative definition: GPerm_imp

∀g1 g2,GPerm_impR g1 g2 ⇔ ∃R,
(
∀g′

1 g′
2,Rg′

1 g′
2 ⇒

R (label g′
1) (label g′

2) ∧ iperm_indR (sons g′
1) (sons g′

2)
)
∧R g1 g2

where variable R ranges over relations on Graph T

Tools and definitions

Coinduction principle:
(
∀g1 g2, R g1 g2 ⇒

R (label g1) (label g2) ∧ iperm_indR (sons g1) (sons g2)
)
⇒

∀g1 g2, R g1 g2 ⇒ GPerm_impR g1 g2
Unfolding principle: ∀g1 g2, GPerm_impR g1 g2 ⇒
R (label g1) (label g2)∧ iperm_indGPerm_impR

(sons g1) (sons g2)
Constructor: ∀g1 g2, R (label g1) (label g2) ∧
iperm_indGPerm_impR

(sons g1) (sons g2)⇒ GPerm_impR g1 g2
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A relation on Graph using iperm_ind
An equivalent approach based on observation - Main theorem

The theorem
∀g1 g2,GPerm_mendR g1 g2 ⇔ GTPermR g1 g2

Proof
[Direction⇒ ] easy (induction on n)
[Direction⇐ ] proved using the lemma:
∀g1 g2,GTPermR g1 g2 ⇒ iperm_indGTPermR (sons g1) (sons g2)
Modulo non-constructive axiom: Infinite Pigeonhole Principle

0

1 1

2 3

0

1 1

2 3
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A representation of a wider class of graphs

We would like to represent graphs like this one:

0 1

2

3
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A representation of a wider class of graphs

Solution: fictitious nodes.

0 1

2

3

AllGraph using Graph: AllGraph T := Graph (option T )
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A representation of a wider class of graphs

Other solution: forest.

0 1

2

3

AllGraph: AllGraph T := list (Graph T )
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