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t: T I : list (Graph T)

mk_Graph t | : Graph T




I : list (Graph T)
mk_Graph tl: Graph T

Finite_Graph =
mk_Graph 0 [mk_Graph 1 [Finite_Graph|

~ Infinite_Graph,, =
m """ mk_Graph n [Infinite_Graph,, 4]
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Coinductive representation
A first attempt

Definition
t: T I : list (Graph T)
mk_Grapht|: Graph T
Examples
Finite_Graph =
9‘0 mk_Graph 0 [mk_Graph 1 [Finite_Graph]]

~ Infinite_Graph,, =
""" mk_Graph n [Infinite_Graph,,. ]

A first function
We would like to define the function (with f of type T — U):

applyF2G f (mk_Graphtl)=mk_Graph (ft) (map (applyF2G ) I)

but... forbidden !

v
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The problem

Guard condition

Explanation of the idea

Objective: ensure that we can get more information on the
structure in a finite amount of time (productivity rule).
Restrictive solution offered by Coq: a corecursive call must
always be a constructor argument.
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Guard condition

Explanation of the idea

Objective: ensure that we can get more information on the
structure in a finite amount of time (productivity rule).
Restrictive solution offered by Coq: a corecursive call must
always be a constructor argument.

On a small example: filter on streams

filter even

= s
(1]2]3]4]5]6|7[8] [2]4]6][8] ?
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The problem

Guard condition

Explanation of the idea

Objective: ensure that we can get more information on the
structure in a finite amount of time (productivity rule).
Restrictive solution offered by Coq: a corecursive call must
always be a constructor argument.

On a small example: filter on streams

filter even

.
IIIHIB l2]4[e[8] ?

Problem/solution

Problem: applyF2G actually semantically correct!
Solution: overcome guardedness condition (not change it)
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@ A Functional Equivalent to Lists
@ Definition of ilist
@ Capturing Permutations on ilist

Q A Coinductive Graph Representation

Q Related Work and Conclusions
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Using functions instead of inductive types to represent lists
A list = a shape (specified by number of positions) and a
function: positions — T (container view)

Example for the list [10 ; 22 ; 5]

First problem : represent set of n elements (n indeterminate):
family of sets Fin such that vVn, catdo {i | i: Finn} =n
=01 ACADIE
7/33
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The function : ilistn (T : Set) (n: N) = Finn— T
The ilist : ilist (T : Set) = %(n:N).ilistn T n
Lemma : There is a bijection between ilist and list.
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Implementation of ilist

Implementation

The function : ilistn (T : Set) (n: N) = Finn— T
The ilist : ilist (T : Set) = X(n:N).ilistn T n
Lemma : There is a bijection between ilist and list.

An equivalence on ilist

Vh b :ilist T,ilist_relg i b <

Vh:lgh =lg k,Vi: Fin(lg h),R (fct Iy i) (fct b i})

where Ig and fct are projections on ilist, R is a relation on T and
iy, is i, converted from type Fin (Ig 1) to type Fin (lg k)

_-—— -,

Oo=0"11" ACADIE

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 8/33



Introduction A Functional Equivalent to Lists A Coinductive Graph Representation Conclusions
0000 00000000 0000000000000 0000000

Implementation of ilist

Implementation

The function : ilistn (T : Set) (n: N) = Finn— T
The ilist : ilist (T : Set) = X(n:N).ilistn T n
Lemma : There is a bijection between ilist and list.

An equivalence on ilist

Vi b :ilist T,ilist_relg ly b <
Vh:lgh =lg k,Vi: Fin(lg h),R (fct Iy i) (fct b i})

where Ig and fct are projections on ilist, R is a relation on T and
iy, is i, converted from type Fin (Ig 1) to type Fin (lg k)

Tools
Replacement for map: imap f I = (lg I, f o (fct )

[ I=——=u | F—%
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Capturing permutations on ilist

Permutations on ilist with decidability

The idea for comparing /4 and kb

Vt,card {i | R (fet ly i) t} = cavd {i | R (fct b i) t}

Implementation: counting elements
Vh b, iperm_occg, h k < Vt, nboccg, t lh = nboccg, t I
where nboccp, t | gives the number of occurrences of tin /.

The problem
iperm_occ needs decidability. Cannot always be assumed.

0E=0T1 ACADIE
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Capturing permutations on ilist

Inductive definitions of permutations on ilist- Definitions

/g /1 = /g /2 =0 V
iperm_indg hh b < < Jit3ix, R (fct Iy iy) (fet b i) A
iperm_indg (remEl Iy iy) (remEl I i)

/g /1 = /g /2 A (Vi13i2, R (fCt /1 I1) (fCt /2 12)

. -,
iperm_indp h lp <~ iperm_indy, (remEl Iy iy) (remEl I )

Ig /1 = /g /2 A (VI23I1 , R (fCt /1 11) (fCt /2 /2)

; i
iperm_indp h lp < A iperm_indp, (remEl Iy iy) (remEl I ip))

where remEl | i removes the i element of /.

/
remEl i
bt b >s< s | B e Ty | ] g
0 1 2 3 4 5 0 1 2 3 _
- — | [ @@'
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Capturing permutations on ilist
Inductive definitions of permutations on ilist- Results
Theorem of equivalence between definitions

Vh b, iperm_indg Iy b < iperm_indg I h < iperm_indg |1 b
Proof not straightforward since one definition can be seen as a
special case of the others.

Usefulness of having various definitions: some properties
easier to prove on one than on the other and vice versa.

Other properties
Preservation of equivalence, decidability, monotonicity.

Definition with skeleton: skel type
Equivalent to jperm_ind with witness of the permutation used.

v
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Capturing permutations on ilist

Definition using bijective functions and comparison between definitions

Definition of jperm_bij

Idea: use a bijective function in the same style as ilist_rel.
vfg.bijf g« (vt g(ft)=1t)A(Vu,f(g u) = u)

Vi b, iperm_bijg I b < 3f g, bij f g AVi, R (fct |1 i) (fct b (f 1))

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 13/33
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Capturing permutations on ilist

Definition using bijective functions and comparison between definitions

Definition of jperm_bij

Idea: use a bijective function in the same style as ilist_rel.
vfg.bijf g« (vt g(ft)=1t)A(Vu,f(g u) = u)

Vi b, iperm_bijg I b < 3f g, bij f g AVi, R (fct |1 i) (fct b (f 1))

Equivalence between definitions
@ We can show that V/; kb, iperm_indg Iy I < iperm_bijg 1
@ Permutations on lists by Contejean equivalent to ours

Comparison between definitions

iperm_ind captures better intuition than ijperm_bij but
inductive. Contejean’s definition on /ist.
We prefer definition on ilist = our choice is iperm_ind.
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New graph representation
Definition of Graph
Graph and applyF2G (coinductive)
Graph : t: T I :ilist (Graph T)
mk_Grapht|: Graph T
applyF2G : applyF2G f (mk_Grapht |) =
mk_Graph (f t) (imap (applyF2G f) I)

Bisimulation relation on Graph: Geq

Graph is infinite Example: ( >

= “=" not usable
R (label g1) (label g2)  ilist_relgeq, (SONS gy) (sons 92)

Gegr 91 92
where label and sons are the projections on Graph

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 15/33
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New graph representation

Finiteness

Notion of finiteness

Finiteness : Vg, G_finiteg g < 3gs, G_all (element_ofg gs) g
with Gall universal quantification on Graph and element_of list
membership modulo Geq

Redefinition of the examples from the beginning
0 /\1 Finite_Graph := mk_Graph 0 [mk_Graph 1 [Finite_Graph]]
0 (1) (2) .. Infinite_Graph,, := mk_Graph n [Infinite_Graph,, ]

Proofs of finiteness

G_finite— Finite_Graph: rather easy proof

vn, = G_finite— Infinite_Graph,: we use unbounded labels
labels and #sons bounded =- proofs of infinity much harder

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation
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@ Need For a More Liberal Relation on Graph
@ A Relation On Graph Using iperm_ind
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Need for a more liberal relation on Graph

The problem
These pairs of graphs are not bisimulated through Geq:

Db o (o) (e

Solution

@ Define a new equivalence relation on Graph using
permutations on ilist

@ Define a new equivalence relation on Graph using the
previous one and taking into account rotations

- —
e ACADIE
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R (label g1) (label g2)  iperm_indgperm,, (sons g1) (sons g»)

GPermg g1 9>
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Definition of GPerm (coinductive)

R (label g1) (label go)  iperm_indgpem, (Sons g1) (sons g»)
GPermg g1 9>

The problem: proof that GPerm preserves reflexivity

Lemma: VR, R reflexive = Vg, GPermg g g9

Proof (by coinduction): We must prove that

R (label g) (label g) A iperm_indgperm, (SONS g) (sons g)
ok

has to be inductive

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 19/33
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A relation on Graph using iperm_ind

Definition of GPerm (coinductive)

R (label g1) (label go)  iperm_indgpem, (Sons g1) (sons g»)
GPermg g1 9>

The problem: proof that GPerm preserves reflexivity

Lemma: VR, R reflexive = Vg, GPermg g g9

Proof (by coinduction): We must prove that

R (label g) (label g) A iperm_indgperm, (SONS g) (sons g)
ok

has to be inductive

Mendler-style definition (coinductive and impredicative)
RC GPerm_mendg R (label g1) (label g2) iperm_indz (sons g1) (sons gz)

GPerm_mendgr g1 92

Preserves equivalence

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 19/33
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A relation on Graph using iperm_ind

An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a
certain depth.
= ho more mixing of inductive and coinductive types

v

: D
Observed 0
until depth 5 C
1 1
1

ot
OE=0T1 ACADIE
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A relation on Graph using iperm_ind

An equivalent approach based on observation - Definitions

t: T I :ilist (iTree T)

iTree (inductive):
( ) mk_iTree t|:iTree T

TPerm (inductive):

R (labeliT ty) (labeliT t,) iperm_indrperm, (SonsiT ty) (sonsiT ty)
TPermg t b

G2iT:
G2iT :¥T,nat — Graph T — iTree T
G2iT T 0 (mk_Graph t ) .= mk_Tree t []
G2iT T (n+1) (mk_Graph t I) := mk_Tree t (imap (G2iT n) [)

=gn: VN g1 92,91 =Rn 92 & TPermg (G2iT n g1) (G2IT n @)
GTPerm: Vg1 g2, GTPermg g1 9o < YN, g1 =rn 92

jo0|
)

,
e == ACADIE
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A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

The theorem
Vg1 9o, GPerm_mendg g1 go < GTPermpg g1 go

Proof
[Direction = ] easy (induction on n)
[Direction < ] proved using the lemma:

Vgy g2, GTPermpg g1 g2 = iperm_indgrperm, (S0Ns g1) (sons go)
Modulo non-constructive axiom: Infinite Pigeonhole Principle

Oe=0T1 ACADIE
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Relations on Graph using iperm_bij

Definitions
@ Direct definition:

R (label g1) (label g2)  iperm_bijgperm v, (SONS 91) (sons gz)

GPerm_bijg g1 92
@ Need an impredicative one for proofs of equivalence:

R C GPerm_bij_mend, R(label g1)(label g») iperm_bij (sons g1)(sons g»)

GPerm_bij_mendg g1 go

Results
@ Equivalence relations

@ GPerm_mend < GPerm_bij_mend < GPerm_bij

= >~/ . W
Oo=0"11" ACADIE
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GPerm

GTPerm
nested induction with infinite pigeonhole principle
GPerm_mend

> flexibility of Mendler style
GPerm_bij_mend

no nested induction
GPerm_bij

=gy Baor
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The final relation over Graph
The idea

@ Change in the “point of view” for the observation of the
graph
@ Single-rooted graph = path from the root to all nodes
@ Change in the root = both roots in the same cycle =
91 Cg2/NGge C g1
@ Only for a “general” view:

N <
1 —{ 2 3;ﬁ1—>3 2
N N

=T

ACADIE
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The final relation over Graph
Definitions

Non-strict Inclusion
General definition (inductive):

Rg 9in Gout or

V0in out; GINGE, Gin Gout < {3/, GinGpg, gin (fct (sons Gout) i)

Instantiation:GinGPr := GinG>

GPerm_mendg

The final relation
Vg1 92, GeqPermg g1 9> < GinGPg g1 92 A GinGPg 92 94
Preserves equivalence

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 26/33
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Related work

Permutations
@ Contejean: treats the same problem for lists
@ Standard library: requires decidability or Leibniz equality

Graph representation

@ Erwig: inductive directed graph representation; each
node is added with its successors and predecessors

@ Courcelle: inductive representation as regular expressions

- —
e ACADIE
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Related work

Guardedness issues

@ Bertot & Komendantskaya: same approach with streams
represented by functions

@ Dams: defines everything coinductively and restricts the
finite parts with properties of finiteness

@ Niqui: solution using category theory but not usable here

@ Danielsson: experimental solution to the problem in Agda
adding one constructor for each problematic function

@ Nakata & Uustalu: Mendler-style definition

- —
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Conclusions

Achievements

@ Complete solution to the guardedness problem in the
case of lists

@ Permutations captured for ilist
@ Complete representation of graphs in Coq, many tools
@ Quite liberal equivalence relation on Graph

@ Various extensions in order to represent models
(non-connected graphs, multiplicities)

@ Completely formalized in Coq: wwuw.irit.fr/~Celia.Picard/These/

Publications (with R. Matthes)

@ Coinductive Graph Representation : the Problem of Embedded
Lists - ECEASST, Vol. 39, 2011

@ Permutations in Coinductive Graph Representation - CMCS’12

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 30/33
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Perspectives

Extension of the representation
New finiteness criterion using spanning trees

Generalization
@ generalize the solutions for any inductive type
@ apply expertise to other problems

Extend links

@ containers:

e morphism coming with categorical notion of container
e notion of quotient types for permutations
e possibility of representing graphs as containers

@ process algebras

=01 ACADIE
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Perspectives - Certified model transformation

Extension
Deepen notion of forest of graphs

Applications

@ A first direct application:
e instantiation of the graphs for finite automata
o certified transformations: minimization, determinization
@ Metamodel representation (inheritance with
polymorphism)

ACADIE
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Summary

What has been done
@ Library for functional equivalent to lists

@ Full representation of graphs with liberal equivalence
relation

@ Fully proved in Coq

What remains to be done
@ Extend and generalize the representation
@ Extend links with existing work
@ Follow the idea of representing and transformings models

Thanks for your attention.

- —
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Fin - a type family for finite indexed sets

Problem: represent a set of n elements for n indeterminate

Solution: we represent a family of sets parameterized by the
number of their elements.
We use a common solution (Altenkirch, McBride & McKinna):
Fin of type N — Set with 2 constructors:

first (k:N): Fin(k+1)

succ (k:N): Fink— Fin(k+1)

Lemmas :
@ vVn, cavd {i|i: Finn} =n
evnm,Finn=Finm=n=m

- - :\{;@)—(%
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Multiplicities representation

Presentation

Final goal: represent big metamodels, perform and certify
transformations on them

Partial goal: represent multiplicities

Solution: extend ilist to include bounds.

PropMult

Indicates whether a natural number fits a multiplicity condition:
V(inf : N) (sup : option N) (i : N),

i>infAi<s ifsup= Somes

i > inf if sup = None

PropMult inf sup n < {

ilistMult
ilistnMult T inf sup n:= {i: ilistn T n| PropMult inf sup n}
ilistMult T inf sup := ¥(n : N).ilistnMult T inf sup n

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 35/33



A relation on Graph using iperm_ind

An impredicative definition

The impredicative definition: GPerm_imp

Vg1 92, GPerm_impg g1 92 < IR, (VQ§ g5, R 395 =

R (label g;) (label g5) A iperm_indx (sons g;) (sons gé)) AR g1 Qo
where variable R ranges over relations on Graph T

Tools and definitions

Coinduction principle: (VQ1 9>, R g1 9o =

R (label g1) (label g2) A iperm_indg (sons gy) (sons go)) =
Vg1 92, R 91 g2 = GPerm_impg 91 g2

Unfolding principle: Vg1 go, GPerm_impg g1 go =

R (label g1) (label g2) Niperm_indaperm _imp,, (SONS g1) (SONS g2)
Constructor: Vg1 g2, R (label g1) (label g2) A
iperm_indgperm_imp,, (SONS g1) (sons g) = GPerm_impg g1 9o

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 36/33



V91 go, GPerm_mendgr g1 9> < GTPermp g1 9>




A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

The theorem
Vg1 9», GPerm_mendg g1 go < GTPermpg g1 g

Proof
[Direction = ] easy (induction on n)
[Direction < ] proved using the lemma:

Vgy g2, GTPermg g1 92 = iperm_indgrperm, (S0Ns g1) (sons go)
Modulo non-constructive axiom: Infinite Pigeonhole Principle

CaCos - 26/07/2012 Celia Picard Coinductive Graph Representation 37/33
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An equivalent approach based on observation - Main theorem

The theorem
Vg1 9», GPerm_mendg g1 go < GTPermpg g1 g

Proof
[Direction = ] easy (induction on n)
[Direction < ] proved using the lemma:

Vgy g2, GTPermg g1 92 = iperm_indgrperm, (S0Ns g1) (sons go)
Modulo non-constructive axiom: Infinite Pigeonhole Principle
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A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

The theorem
Vg1 9», GPerm_mendg g1 go < GTPermpg g1 g

Proof
[Direction = ] easy (induction on n)
[Direction < ] proved using the lemma:

Vgy g2, GTPermg g1 92 = iperm_indgrperm, (S0Ns g1) (sons go)
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A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

The theorem
Vg1 9», GPerm_mendg g1 go < GTPermpg g1 g

Proof
[Direction = ] easy (induction on n)
[Direction < ] proved using the lemma:

Vgy g2, GTPermg g1 92 = iperm_indgrperm, (S0Ns g1) (sons go)
Modulo non—constructive axiom: Infinite Pigeonhole Principle
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We would like to represent graphs like this one:
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Solution: fictitious nodes.

AllGraph using Graph: AllGraph T := Graph (option T)
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Other solution: forest.

AllGraph: AllGraph T := list (Graph T)
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