A Coinductive Graph Representation

Conclusions

Coinductive Graph Representation

Celia Picard

IRIT - UPS Team : ACADIE Thesis advisor : Ralph Matthes

CaCos - 26/07/2012

Celia Picard

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Genesis: certified model transformation

CaCos - 26/07/2012

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Genesis: certified model transformation

A

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Genesis: certified model transformation

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Genesis: certified model transformation

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Genesis: certified model transformation

CaCos - 26/07/2012

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Coinductive representation A first attempt

Definition

mk_Graph t I : Graph T

Examples

Finite_Graph = $mk_Graph 0 [mk_Graph 1 [Finite_Graph]]$ $Infinite_Graph_n =$ $<math>mk_Graph n [Infinite_Graph_{n+1}]$

A first function

We would like to define the function (with *f* of type $T \rightarrow U$): applyF2G f (mk_Graph t I) = mk_Graph (f t) (map (applyF2G f) I) but... forbidden !

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Coinductive representation A first attempt

Definition

mk_Graph t I : Graph T

Examples

Finite_Graph = $mk_Graph 0 [mk_Graph 1 [Finite_Graph]]$ $Infinite_Graph_n =$ $mk_Graph n [Infinite_Graph_{n+1}]$

A first function

We would like to define the function (with *f* of type $T \rightarrow U$): applyF2G f (mk_Graph t I) = mk_Graph (f t) (map (applyF2G f) I) but... forbidden !

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Coinductive representation A first attempt

Definition

mk_Graph t I : Graph T

Examples

Finite_Graph = $mk_Graph 0 [mk_Graph 1 [Finite_Graph]]$ $Infinite_Graph_n =$ $mk_Graph n [Infinite_Graph_{n+1}]$

A first function

We would like to define the function (with *f* of type $T \rightarrow U$): applyF2G f (mk_Graph t I) = mk_Graph (f t) (map (applyF2G f) I) but... forbidden !

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

The problem Guard condition

Explanation of the idea

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (**productivity** rule). Restrictive solution offered by Coq: a **corecursive call** must always be a **constructor argument**.

Problem/solution

Problem: *applyF2G* actually **semantically correct**! Solution: overcome guardedness condition (not change it)

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

The problem Guard condition

Explanation of the idea

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (**productivity** rule). Restrictive solution offered by Coq: a **corecursive call** must always be a **constructor argument**.

Problem/solution

Problem: *applyF2G* actually **semantically correct**! Solution: overcome guardedness condition (not change it)

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

The problem Guard condition

Explanation of the idea

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (**productivity** rule). Restrictive solution offered by Coq: a **corecursive call** must always be a **constructor argument**.

Problem/solution

Problem: *applyF2G* actually **semantically correct**! Solution: overcome guardedness condition (not change it)

A Coinductive Graph Representation

Conclusions

Outline

- 2 A Coinductive Graph Representation
- 3 Related Work and Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Outline

A Functional Equivalent to Lists

- Definition of *ilist*
- Capturing Permutations on ilist
- 2 A Coinductive Graph Representation
- 3 Related Work and Conclusions

Introduction

A Coinductive Graph Representation

Conclusions

The idea

Using **functions** instead of inductive types to represent lists A list = a **shape** (specified by number of **positions**) and a **function**: positions $\rightarrow T$ (container view)

Example for the list [10; 22; 5]

First problem : represent set of *n* elements (*n* indeterminate): family of sets *Fin* such that $\forall n$, card $\{i \mid i : Fin n\} = n$

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Implementation of *ilist*

Implementation

The function : *ilistn* (T : *Set*) (n : \mathbb{N}) = *Fin* $n \rightarrow T$

The ilist : ilist $(T : Set) = \Sigma(n : \mathbb{N})$.ilistn T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on ilist

 $\forall l_1 \ l_2 : ilist \ T, ilist_rel_R \ l_1 \ l_2 \Leftrightarrow$ $\forall h : Ig \ l_1 = Ig \ l_2, \forall i : Fin (Ig \ l_1), R (fct \ l_1 \ i) (fct \ l_2 \ i'_h)$ where Ig and fct are projections on *ilist*, R is a relation on T and i'_h is *i*, converted from type Fin ($Ig \ l_1$) to type Fin ($Ig \ l_2$)

Tools

Replacement for *map*: *imap* $f I = \langle Ig I, f \circ (fct I) \rangle$

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Implementation of *ilist*

Implementation

- The function : *ilistn* (T : Set) (n : \mathbb{N}) = Fin $n \rightarrow T$
- The ilist : ilist $(T : Set) = \Sigma(n : \mathbb{N})$.ilistn T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on ilist

 $\begin{array}{l} \forall l_1 \ l_2 : \textit{ilist T}, \textit{ilist_rel}_R \ l_1 \ l_2 \Leftrightarrow \\ \forall h : \textit{Ig } l_1 = \textit{Ig } \ l_2, \forall i : \textit{Fin} (\textit{Ig } l_1), R (\textit{fct } l_1 \ i) (\textit{fct } l_2 \ i'_h) \\ \text{where } \textit{Ig and } \textit{fct are projections on ilist, R is a relation on T and } \textit{i'_h is i, converted from type Fin} (\textit{Ig } l_1) \text{ to type Fin} (\textit{Ig } l_2) \end{array}$

Tools

Replacement for *map*: *imap* $f I = \langle Ig I, f \circ (fct I) \rangle$

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Implementation of *ilist*

Implementation

- The function : *ilistn* (T : Set) (n : \mathbb{N}) = Fin $n \rightarrow T$
- The ilist : ilist $(T : Set) = \Sigma(n : \mathbb{N})$.ilistn T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on ilist

 $\begin{array}{l} \forall l_1 \ l_2 : \textit{ilist T}, \textit{ilist_rel}_R \ l_1 \ l_2 \Leftrightarrow \\ \forall h : \textit{Ig } l_1 = \textit{Ig } \ l_2, \forall i : \textit{Fin} (\textit{Ig } l_1), R (\textit{fct } l_1 \ i) (\textit{fct } l_2 \ i'_h) \\ \text{where } \textit{Ig and } \textit{fct are projections on ilist, R is a relation on T and } \textit{i'_h is } \textit{i, converted from type } \textit{Fin} (\textit{Ig } l_1) \text{ to type } \textit{Fin} (\textit{Ig } l_2) \end{array}$

Tools

Replacement for *map*: *imap* $f I = \langle Ig I, f \circ (fct I) \rangle$

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Outline

- Capturing Permutations on ilist
- 2 A Coinductive Graph Representation
- 3 Related Work and Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Capturing permutations on *ilist* Permutations on *ilist* with decidability

The idea for comparing l_1 and l_2

 $\forall t, \operatorname{card} \{i \mid R (\mathit{fct} \ l_1 \ i) \ t\} = \operatorname{card} \{i \mid R (\mathit{fct} \ l_2 \ i) \ t\}$

Implementation: counting elements

 $\forall l_1 \ l_2, \ iperm_occ_{R_d} \ l_1 \ l_2 \Leftrightarrow \forall t, nbocc_{R_d} \ t \ l_1 = nbocc_{R_d} \ t \ l_2$ where $nbocc_{R_d} \ t \ l$ gives the number of occurrences of t in I.

The problem

iperm_occ needs decidability. Cannot always be assumed.

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Capturing permutations on *ilist* Inductive definitions of permutations on *ilist*- Definitions

$$iperm_ind_R l_1 l_2 \Leftrightarrow \begin{cases} lg l_1 = lg l_2 = 0 & \lor \\ \exists i_1 \exists i_2, R (fct l_1 i_1) (fct l_2 i_2) \land \\ iperm_ind_R (remEl l_1 i_1) (remEl l_2 i_2) \end{cases}$$

 $iperm_ind'_R l_1 l_2 \Leftrightarrow \begin{array}{l} lg \ l_1 = lg \ l_2 \ \land \ (\forall i_1 \exists i_2, R \ (fct \ l_1 \ i_1) \ (fct \ l_2 \ i_2) \\ \land \ iperm_ind'_R \ (remEl \ l_1 \ i_1) \ (remEl \ l_2 \ i_2)) \end{array}$

 $iperm_ind_R'' \ l_1 \ l_2 \Leftrightarrow \begin{array}{c} Ig \ l_1 = Ig \ l_2 \ \land \ (\forall i_2 \exists i_1, R \ (\textit{fct} \ l_1 \ i_1) \ (\textit{fct} \ l_2 \ i_2) \\ \land \ iperm_ind_R'' \ (\textit{remEl} \ l_1 \ i_1) \ (\textit{remEl} \ l_2 \ i_2)) \end{array}$

where *remEl I i* removes the *i*th element of *I*.

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Capturing permutations on *ilist* Inductive definitions of permutations on *ilist*- Results

Theorem of equivalence between definitions

 $\forall l_1 \ l_2, iperm_ind_R \ l_1 \ l_2 \Leftrightarrow iperm_ind_R' \ l_1 \ l_2 \Leftrightarrow iperm_ind_R'' \ l_1 \ l_2$ Proof not straightforward since one definition can be seen as a special case of the others.

Usefulness of having various definitions: some properties easier to prove on one than on the other and vice versa.

Other properties

Preservation of equivalence, decidability, monotonicity.

Definition with skeleton: skel_type

Equivalent to *iperm_ind* with witness of the permutation used.

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Capturing permutations on *ilist* Definition using bijective functions and comparison between definitions

Definition of *iperm_bij*

Idea: use a bijective function in the same style as *ilist_rel*. $\forall f \ g, bij \ f \ g \Leftrightarrow (\forall t, g(f \ t) = t) \land (\forall u, f(g \ u) = u)$ $\forall l_1 \ l_2, iperm_bij_R \ l_1 \ l_2 \Leftrightarrow \exists f \ g, bij \ f \ g \land \forall i, R \ (fct \ l_1 \ i) \ (fct \ l_2 \ (f \ i))$

Equivalence between definitions

- We can show that $\forall l_1 \ l_2$, *iperm_ind*_R $l_1 \ l_2 \Leftrightarrow iperm_bij_R \ l_1 \ l_2$
- Permutations on lists by Contejean equivalent to ours

Comparison between definitions

iperm_ind captures better **intuition** than *iperm_bij* but inductive. Contejean's definition on *list*. We prefer definition on *ilist* \Rightarrow our choice is *iperm_ind*.

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Capturing permutations on *ilist* Definition using bijective functions and comparison between definitions

Definition of *iperm_bij*

Idea: use a bijective function in the same style as *ilist_rel*. $\forall f \ g, bij \ f \ g \Leftrightarrow (\forall t, g(f \ t) = t) \land (\forall u, f(g \ u) = u)$ $\forall l_1 \ l_2, iperm_bij_R \ l_1 \ l_2 \Leftrightarrow \exists f \ g, bij \ f \ g \land \forall i, R \ (fct \ l_1 \ i) \ (fct \ l_2 \ (f \ i))$

Equivalence between definitions

- We can show that $\forall l_1 \ l_2$, *iperm_ind_R* $l_1 \ l_2 \Leftrightarrow iperm_bij_R \ l_1 \ l_2$
- Permutations on lists by Contejean equivalent to ours

Comparison between definitions

iperm_ind captures better **intuition** than *iperm_bij* but inductive. Contejean's definition on *list*. We prefer definition on *ilist* \Rightarrow our choice is *iperm_ind*.

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Outline

A Functional Equivalent to Lists

2 A Coinductive Graph Representation

New Graph Representation

- A More Liberal Bisimulation Relation on Graph
 - Need For a More Liberal Relation on Graph
 - A Relation On Graph Using iperm_ind
 - Relations On Graph Using iperm_bij
 - The Final Relation Over Graph

3 Related Work and Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

New graph representation Definition of Graph

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

New graph representation

Notion of finiteness

Finiteness : $\forall g, G_finite_R g \Leftrightarrow \exists gs, G_all (element_of_R gs) g$ with *Gall* universal quantification on *Graph* and *element_of* list membership modulo *Geq*

Redefinition of the examples from the beginning

0 1 Finite_Graph := $mk_Graph 0 [mk_Graph 1 [Finite_Graph]]$ **0 1 2** $\stackrel{\cdot}{\rightarrow}$ Infinite_Graph_n := $mk_Graph n [Infinite_Graph_{n+1}]$

Proofs of finiteness

G_finite = *Finite_Graph*: rather easy proof $\forall n, \neg G_finite$ = *Infinite_Graph*^{*n*}: we use **unbounded labels** labels and #sons bounded \Rightarrow proofs of infinity much harder

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Outline

A Functional Equivalent to Lists

A Coinductive Graph Representation

New Graph Representation

• A More Liberal Bisimulation Relation on Graph

- Need For a More Liberal Relation on Graph
- A Relation On Graph Using iperm_ind
- Relations On Graph Using iperm_bij
- The Final Relation Over Graph

3 Related Work and Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Need for a more liberal relation on Graph

Solution

- Define a new equivalence relation on *Graph* using permutations on *ilist*
- Define a new equivalence relation on *Graph* using the previous one and taking into account **rotations**

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A relation on Graph using iperm_ind

Definition of GPerm (coinductive)R (label g_1) (label g_2) iperm_ind_{GPerm_R} (sons g_1) (sons g_2) $GPerm_R g_1 g_2$

Lemma: $\forall R$, R reflexive $\Rightarrow \forall g$, $GPerm_R g g$ Proof (by coinduction): We must prove that R (label g) (label g) \land iperm_ind_{GPerm_R} (sons g) (sons g)

has to be inductive

Mendler-style definition (coinductive and impredicative)

 $\mathcal{R} \subseteq GPerm_mend_R \ R(label g_1)(label g_2) \ iperm_ind_{\mathcal{R}}(sons g_1)(sons g_2)$

 $GPerm_mend_R g_1 g_2$

Preserves equivalence

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A relation on Graph using iperm_ind

Definition of GPerm (coinductive)

R (label g_1) (label g_2) iperm_ind_{GPerm_R} (sons g_1) (sons g_2)

 $GPerm_R g_1 g_2$

The problem: proof that GPerm preserves reflexivity

Lemma: $\forall R, R \text{ reflexive} \Rightarrow \forall g, GPerm_R g g$ Proof (by coinduction): We must prove that $R (label g) (label g) \land iperm_ind_{GPerm_P} (sons g) (sons g)$

has to be inductive

Mendler-style definition (coinductive and impredicative)

 $\mathcal{R} \subseteq GPerm_mend_R \ R \ (label g_1) \ (label g_2) \ iperm_ind_{\mathcal{R}} \ (sons g_1) \ (sons g_2)$

 $GPerm_mend_R g_1 g_2$

Preserves equivalence

ok

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A relation on Graph using iperm_ind

Definition of GPerm (coinductive)

R (label g_1) (label g_2) iperm_ind_{GPerm_R} (sons g_1) (sons g_2)

 $GPerm_R g_1 g_2$

The problem: proof that *GPerm* preserves reflexivity

Lemma: $\forall R, R \text{ reflexive} \Rightarrow \forall g, GPerm_R g g$ Proof (by coinduction): We must prove that

R (label g) (label g) \land iperm_ind_{GPerm_R} (sons g) (sons g)

has to be inductive

Mendler-style definition (coinductive and impredicative)

 $\mathcal{R} \subseteq GPerm_mend_R \ R(label g_1)(label g_2) \ iperm_ind_{\mathcal{R}}(sons g_1)(sons g_2)$

 $GPerm_mend_R g_1 g_2$

Preserves equivalence

ok

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A relation on *Graph* using *iperm_ind* An equivalent approach based on observation - The idea

Using **inductive trees** to observe coinductive graphs until a certain **depth**.

 \Rightarrow **no more mixing** of inductive and coinductive types

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A relation on *Graph* using *iperm_ind* An equivalent approach based on observation - Definitions

iTree (inductive):

t: T I: ilist (iTree T) mk_iTree t I: iTree T

TPerm (inductive):

 $\frac{R(labeliT t_1)(labeliT t_2)}{TPerm_R t_1 t_2} iperm_ind_{TPerm_R}(sonsiT t_1)(sonsiT t_2)$

 $\begin{array}{l} \textbf{G2iT:}\\ \textbf{G2iT:}\\ \textbf{G2iT:}\\ \textbf{G2iT:}\\ \textbf{G2iT:}\\ \textbf{T} 0 (mk_Graph \ T) := mk_Tree \ T\\ \textbf{G2iT \ T 0 (mk_Graph \ t \ I) := mk_Tree \ t \ []]}\\ \textbf{G2iT \ T (n+1) (mk_Graph \ t \ I) := mk_Tree \ t \ (imap \ (\textbf{G2iT \ n) \ I})}\\ \hline \equiv_{\textbf{R,n}: \forall n \ g_1 \ g_2, g_1 \equiv_{\textbf{R,n}} g_2 \Leftrightarrow TPerm_{\textbf{R}} \ (\textbf{G2iT \ n \ g_1}) \ (\textbf{G2iT \ n \ g_2})\\ \hline \textbf{GTPerm:} \ \forall g_1 \ g_2, \ \textbf{GTPerm}_{\textbf{R}} \ g_1 \ g_2 \Leftrightarrow \forall n, g_1 \equiv_{\textbf{R,n}} g_2 \end{array}$

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A relation on *Graph* using *iperm_ind* An equivalent approach based on observation - Main theorem

The theorem

 $\forall g_1 \ g_2, \textit{GPerm_mend}_R \ g_1 \ g_2 \Leftrightarrow \textit{GTPerm}_R \ g_1 \ g_2$

Proof

[Direction \Rightarrow] easy (induction on n)

[Direction \Leftarrow] proved using the lemma:

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow iperm_ind_{GTPerm_R} (sons \ g_1) (sons \ g_2)$ Modulo non-constructive axiom: Infinite Pigeonhole Principle

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

A relation on *Graph* using *iperm_ind* An equivalent approach based on observation - Main theorem

The theorem

 $\forall g_1 \ g_2, \textit{GPerm_mend}_R \ g_1 \ g_2 \Leftrightarrow \textit{GTPerm}_R \ g_1 \ g_2$

Proof

[Direction \Rightarrow] easy (induction on n)

[Direction \Leftarrow] proved using the lemma:

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow iperm_ind_{GTPerm_R} (sons \ g_1) (sons \ g_2)$ Modulo non-constructive axiom: Infinite Pigeonhole Principle

A Coinductive Graph Representation

Conclusions

Relations on Graph using iperm_bij

Definitions

Direct definition:

 $R (label g_1) (label g_2) iperm_{bij_{GPerm_{bij_R}}} (sons g_1) (sons g_2)$

 $GPerm_bij_R g_1 g_2$

• Need an impredicative one for proofs of equivalence:

 $\mathcal{R} \subseteq GPerm_bij_mend_R \ R(label g_1)(label g_2) \ iperm_bij_{\mathcal{R}}(sons g_1)(sons g_2)$

 $GPerm_{bij}_{mend_{R}} g_{1} g_{2}$

Results

- Equivalence relations
- GPerm_mend ⇔ GPerm_bij_mend ⇔ GPerm_bij

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Summary of the obtained notions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

The final relation over Graph

- Change in the "point of view" for the observation of the graph
- Single-rooted graph \Rightarrow path from the root to all nodes
- Change in the root \Rightarrow both roots in the same cycle \Rightarrow $g_1 \subset g_2 \land g_2 \subset g_1$
- Only for a "general" view:

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

The final relation over *Graph* Definitions

Non-strict Inclusion

General definition (inductive):

 $\forall g_{in} g_{out}, GinG^{\star}_{R_G} g_{in} g_{out} \Leftrightarrow \begin{cases} R_G g_{in} g_{out} & or \\ \exists i, GinG^{\star}_{R_G} g_{in} (fct (sons g_{out}) i) \end{cases}$

Instantiation: $GinGP_R := GinG^*_{GPerm_mend_R}$

The final relation

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

2 A Coinductive Graph Representation

3 Related Work and Conclusions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Related work

Permutations

- Contejean: treats the same problem for lists
- Standard library: requires decidability or Leibniz equality

Graph representation

- Erwig: inductive directed graph representation; each node is added with its successors and predecessors
- Courcelle: inductive representation as regular expressions

A Functional Equivalent to Lists

A Coinductive Graph Representation

Coinductive Graph Representation

Conclusions

Related work

Guardedness issues

- Bertot & Komendantskaya: same approach with streams represented by functions
- Dams: defines everything coinductively and restricts the finite parts with properties of finiteness
- Niqui: solution using category theory but not usable here
- Danielsson: experimental solution to the problem in Agda adding one constructor for each problematic function
- Nakata & Uustalu: Mendler-style definition

Celia Picard

Introduction

A Coinductive Graph Representation

Conclusions

Conclusions

Achievements

- Complete solution to the guardedness problem in the case of lists
- Permutations captured for ilist
- Complete representation of graphs in Coq, many tools
- Quite liberal equivalence relation on Graph
- Various extensions in order to **represent models** (non-connected graphs, multiplicities)
- Completely formalized in Coq: www.irit.fr/~Celia.Picard/These/

Publications (with R. Matthes)

- Coinductive Graph Representation : the Problem of Embedded Lists - ECEASST, Vol. 39, 2011
- Permutations in Coinductive Graph Representation CMCS'12

A Coinductive Graph Representation

Conclusions

Perspectives

Extension of the representation

New finiteness criterion using spanning trees

Generalization

- generalize the solutions for any inductive type
- apply expertise to other problems

Extend links

- ontainers:
 - morphism coming with categorical notion of container
 - notion of quotient types for permutations
 - possibility of representing graphs as containers
- process algebras

A Coinductive Graph Representation

Conclusions

Perspectives - Certified model transformation

Extension

Deepen notion of forest of graphs

Applications

- A first direct application:
 - instantiation of the graphs for finite automata
 - certified transformations: minimization, determinization
- Metamodel representation (inheritance with polymorphism)

Celia Picard

A Functional Equivalent to Lists

A Coinductive Graph Representation

Conclusions

Summary

What has been done

- Library for functional equivalent to lists
- Full representation of graphs with liberal equivalence relation
- Fully proved in Coq

What remains to be done

- Extend and generalize the representation
- Extend links with existing work
- Follow the idea of representing and transformings models

Thanks for your attention.

CaCos - 26/07/2012

Problem: represent a set of *n* elements for *n* indeterminate

Solution: we represent a **family of sets** parameterized by the number of their elements.

We use a common solution (Altenkirch, McBride & McKinna): *Fin* of type $\mathbb{N} \rightarrow Set$ with 2 constructors:

> *first* $(k : \mathbb{N})$: *Fin* (k + 1)*succ* $(k : \mathbb{N})$: *Fin* $k \to Fin$ (k + 1)

Lemmas :

- $\forall n, \text{ card } \{i \mid i : Fin n\} = n$
- $\forall n m$, Fin $n = Fin m \Rightarrow n = m$

Multiplicities representation

Presentation

Final goal: represent big metamodels, perform and certify transformations on them Partial goal: represent multiplicities Solution: extend *ilist* to include bounds.

PropMult

Indicates whether a natural number fits a multiplicity condition: $\forall (inf : \mathbb{N}) (sup : option \mathbb{N}) (i : \mathbb{N}),$ $PropMult inf sup n \Leftrightarrow \begin{cases} i \ge inf \land i \le s & \text{if } sup = Some s \\ i \ge inf & \text{if } sup = None \end{cases}$

ilistMult

ilistnMult T inf sup $n := \{i : ilistn T n | PropMult inf sup n\}$ ilistMult T inf sup $:= \Sigma(n : \mathbb{N})$.ilistnMult T inf sup n

A relation on *Graph* using *iperm_ind* An impredicative definition

The impredicative definition: GPerm_imp

 $\forall g_1 \ g_2, \textit{GPerm_imp}_R \ g_1 \ g_2 \Leftrightarrow \exists \mathcal{R}, \left(\forall g_1' \ g_2', \mathcal{R} \ g_1' \ g_2' \Rightarrow \right)$

 $R(label g'_1)(label g'_2) \land iperm_ind_{\mathcal{R}}(sons g'_1)(sons g'_2)) \land \mathcal{R} g_1 g_2$ where variable \mathcal{R} ranges over relations on *Graph* T

Tools and definitions

 $\begin{array}{ll} & \text{Coinduction principle:} & \left(\forall g_1 \ g_2, \ \mathcal{R} \ g_1 \ g_2 \Rightarrow \\ & R \ (label \ g_1) \ (label \ g_2) \land iperm_ind_{\mathcal{R}} \ (sons \ g_1) \ (sons \ g_2) \right) \Rightarrow \\ & \forall g_1 \ g_2, \ \mathcal{R} \ g_1 \ g_2 \Rightarrow GPerm_imp_R \ g_1 \ g_2 \\ & \text{Unfolding principle:} \ \forall g_1 \ g_2, \ GPerm_imp_R \ g_1 \ g_2 \Rightarrow \\ & R \ (label \ g_1) \ (label \ g_2) \land iperm_ind_{GPerm_imp_R} \ (sons \ g_1) \ (sons \ g_2) \\ & \text{Constructor:} \ \forall g_1 \ g_2, \ R \ (label \ g_1) \ (label \ g_2) \land \\ & iperm_ind_{GPerm_imp_R} \ (sons \ g_1) \ (sons \ g_2) \Rightarrow \\ & GPerm_imp_R \ g_1 \ g_2 \end{array}$

An equivalent approach based on observation - Main theorem

The theorem

 $\forall g_1 \ g_2, \textit{GPerm_mend}_R \ g_1 \ g_2 \Leftrightarrow \textit{GTPerm}_R \ g_1 \ g_2$

Proof

[Direction \Rightarrow] easy (induction on n)

[Direction \leftarrow] proved using the lemma:

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow iperm_ind_{GTPerm_R} (sons \ g_1) (sons \ g_2)$ Modulo non-constructive axiom: Infinite Pigeonhole Principle

An equivalent approach based on observation - Main theorem

The theorem

 $\forall g_1 \ g_2, \textit{GPerm_mend}_R \ g_1 \ g_2 \Leftrightarrow \textit{GTPerm}_R \ g_1 \ g_2$

Proof

[Direction \Rightarrow] easy (induction on n)

[Direction \leftarrow] proved using the lemma:

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow iperm_ind_{GTPerm_R} (sons \ g_1) (sons \ g_2)$ Modulo non-constructive axiom: Infinite Pigeonhole Principle

An equivalent approach based on observation - Main theorem

The theorem

 $\forall g_1 \ g_2, \textit{GPerm_mend}_R \ g_1 \ g_2 \Leftrightarrow \textit{GTPerm}_R \ g_1 \ g_2$

Proof

[Direction \Rightarrow] easy (induction on n)

[Direction \leftarrow] proved using the lemma:

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow iperm_ind_{GTPerm_R} (sons \ g_1) (sons \ g_2)$ Modulo non-constructive axiom: Infinite Pigeonhole Principle

An equivalent approach based on observation - Main theorem

The theorem

 $\forall g_1 \ g_2, GPerm_mend_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

Proof

[Direction \Rightarrow] easy (induction on n)

[Direction \leftarrow] proved using the lemma:

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow iperm_ind_{GTPerm_R} (sons \ g_1) (sons \ g_2)$ Modulo non-constructive axiom: Infinite Pigeonhole Principle

An equivalent approach based on observation - Main theorem

The theorem

 $\forall g_1 \ g_2, GPerm_mend_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

Proof

[Direction \Rightarrow] easy (induction on n)

[Direction \leftarrow] proved using the lemma:

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow iperm_ind_{GTPerm_R} (sons \ g_1) (sons \ g_2)$ Modulo non-constructive axiom: Infinite Pigeonhole Principle

A representation of a wider class of graphs

We would like to represent graphs like this one:

A representation of a wider class of graphs

Solution: fictitious nodes.

AllGraph using Graph: AllGraph T := Graph (option T)

A representation of a wider class of graphs

Other solution: forest.

AllGraph: AllGraph T := list (Graph T)

38/33