Coinductive Graph Representation

Celia Picard

IRIT - UPS
Team : ACADIE
Thesis advisor: Ralph Matthes

CaCos-26/07/2012

Genesis: certified model transformation

Genesis: certified model transformation

Genesis: certified model transformation

certification

Genesis: certified model transformation

Genesis: certified model transformation

Coq

Coinductive representation

A first attempt

Definition

$$
\begin{gathered}
t: T \quad \text { I : list }(\text { Graph } T) \\
m k _G r a p h ~ \\
I: G r a p h ~
\end{gathered}
$$

Examples

A first function
We would like to define the function (with f of type $T \rightarrow U$): applyF2G $f\left(m k _G r a p h t I\right)=m k _G r a p h(f t)($ map $(\operatorname{applyF2Gf}) I)$ but... forbidden !

Coinductive representation

A first attempt

Definition

$$
\xlongequal[m \text { t:T_Graph } t \text { I: Graph } T]{\text { I list }(\text { Graph })}
$$

Examples

Finite_Graph = mk_Graph 0 [mk_Graph 1 [Finite_Graph]] Infinite_Graph $h_{n}=$ mk_Graph n [Infinite_Graph n_{n+1}]

A first function
We would like to define the function (with f of type $T \rightarrow U$): applyF2G $f(m k$ Graph $t I)=m k$ Graph $(f t)(\operatorname{map}(\operatorname{applyF2G} f) /)$ but... forbidden

Coinductive representation

A first attempt

Definition

$$
\begin{gathered}
t: T \quad \text { I : list }(\text { Graph } T) \\
m k _G r a p h ~ \\
I: G r a p h ~
\end{gathered}
$$

Examples

Finite_Graph = mk_Graph 0 [mk_Graph 1 [Finite_Graph]] Infinite_Graph $=$ mk_Graph n [Infinite_Graph n_{n+1}]

[^0]
The problem

Guard condition
Explanation of the idea
Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

On a small example: filter on streams

The problem

Guard condition
Explanation of the idea
Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

On a small example: filter on streams

Problem/solution
Problem: applyF2G actually semantically correct!
Solution: overcome guardedness condition (not change it)

The problem

Guard condition
Explanation of the idea
Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

On a small example: filter on streams

Problem/solution

Problem: applyF2G actually semantically correct!
Solution: overcome guardedness condition (not change it)

Outline

(9) A Functional Equivalent to Lists
(2) A Coinductive Graph Representation
(3) Related Work and Conclusions

Outline

(9) A Functional Equivalent to Lists

- Definition of ilist
- Capturing Permutations on ilist
(2) A Coinductive Graph Representation
(3) Related Work and Conclusions

The idea

Using functions instead of inductive types to represent lists A list = a shape (specified by number of positions) and a function: positions $\rightarrow T$ (container view)

Example for the list [10; 22; 5]

First problem : represent set of n elements (n indeterminate):
family of sets Fin such that $\forall n$, card $\{i \mid i:$ Fin $n\}=n$
ACADIE

Implementation of ilist

Implementation

The function : ilistn $(T:$ Set $)(n: \mathbb{N})=$ Fin $n \rightarrow T$
The ilist : ilist $(T: \operatorname{Set})=\Sigma(n: \mathbb{N})$. ilistn $T n$
Lemma : There is a bijection between ilist and list.
where $l g$ and fct are projections on ilist, R is a relation on T and i_{h}^{\prime} is i, converted from type Fin $\left(\lg l_{1}\right)$ to type Fin $\left(\lg l_{2}\right)$
Replacement for map:

Implementation of ilist

Implementation

The function : ilistn $(T:$ Set $)(n: \mathbb{N})=$ Fin $n \rightarrow T$
The ilist : ilist $(T: \operatorname{Set})=\Sigma(n: \mathbb{N})$. ilistn $T n$
Lemma : There is a bijection between ilist and list.

An equivalence on ilist

$\forall I_{1} I_{2}$: ilist T, ilist_rel $I_{R} I_{1} I_{2} \Leftrightarrow$ $\forall h: \lg I_{1}=\lg I_{2}, \forall i: \operatorname{Fin}\left(\lg l_{1}\right), R\left(\right.$ fct $\left.I_{1} i\right)\left(\right.$ fct $\left.I_{2} i_{h}^{\prime}\right)$ where $l g$ and $f c t$ are projections on ilist, R is a relation on T and i_{h}^{\prime} is i, converted from type Fin $\left(\lg l_{1}\right)$ to type Fin $\left(\lg l_{2}\right)$

Implementation of ilist

Implementation

The function : ilistn $(T:$ Set $)(n: \mathbb{N})=$ Fin $n \rightarrow T$
The ilist : ilist $(T: \operatorname{Set})=\Sigma(n: \mathbb{N})$. ilistn $T n$
Lemma : There is a bijection between ilist and list.

An equivalence on ilist

$\forall I_{1} I_{2}$: ilist T, ilist_re $I_{R} I_{1} I_{2} \Leftrightarrow$
$\forall h: \lg I_{1}=\lg I_{2}, \forall i: \operatorname{Fin}\left(\lg l_{1}\right), R\left(\right.$ fct $\left.I_{1} i\right)\left(\right.$ fct $\left.I_{2} i_{h}^{\prime}\right)$ where $l g$ and $f c t$ are projections on ilist, R is a relation on T and i_{h}^{\prime} is i, converted from type Fin $\left(\lg l_{1}\right)$ to type Fin $\left(\lg l_{2}\right)$

Tools
Replacement for map: imap $f I=\langle l g I, f \circ(f c t I)\rangle$

Outline

(1) A Functional Equivalent to Lists

- Definition of ilist
- Capturing Permutations on ilist
(2) A Coinductive Graph Representation
(3) Related Work and Conclusions

Capturing permutations on ilist

Permutations on ilist with decidability

The idea for comparing I_{1} and I_{2}

$$
\forall t, \mathfrak{c a r d}\left\{i \mid R\left(f c t l_{1} i\right) t\right\}=\mathfrak{c a r d}\left\{i \mid R\left(f c t l_{2} i\right) t\right\}
$$

Implementation: counting elements

$\forall I_{1} l_{2}$, iperm_occ $R_{R_{d}} I_{1} I_{2} \Leftrightarrow \forall t$, nbocc $_{R_{d}} t l_{1}=\operatorname{nbocc}_{R_{d}} t l_{2}$ where $n b o c C_{R_{d}} t /$ gives the number of occurrences of t in I.

The problem

 iperm_occ needs decidability. Cannot always be assumed.
Capturing permutations on ilist

Inductive definitions of permutations on ilist- Definitions
iperm_ind $I_{R} I_{2} \Leftrightarrow\left\{\begin{array}{l}\lg I_{1}=\lg I_{2}=0 \\ \exists i_{1} \exists i_{2}, R\left(\text { fct } l_{1} i_{1}\right)\left(\text { fct } I_{2} i_{2}\right) \wedge \\ \text { iperm_ind }\left(\text { remEl } l_{1} i_{1}\right)\left(\text { remEI } I_{2} i_{2}\right)\end{array}\right.$
iperm ind $I_{R}^{\prime} I_{1} l_{2} \Leftrightarrow \lg I_{1}=\lg I_{2} \wedge\left(\forall i_{1} \exists i_{2}, R\left(\right.\right.$ fct $\left.l_{1} i_{1}\right)\left(\right.$ fct $\left.l_{2} i_{2}\right)$ \wedge iperm_ind ${ }_{R}^{\prime}\left(\right.$ remEl $\left.l_{1} i_{1}\right)\left(\right.$ remEl $\left.\left.I_{2} i_{2}\right)\right)$
iperm_ind $\|_{R}^{\prime \prime} I_{1} I_{2} \Leftrightarrow \lg 1_{1}=\lg I_{2} \wedge\left(\forall i_{2} \exists i_{1}, R\left(\right.\right.$ fct $\left.l_{1} i_{1}\right)\left(\right.$ fct $\left.l_{2} i_{2}\right)$ \wedge iperm_ind ${ }_{R}^{\prime \prime}\left(\right.$ remEl $\left.\left._{1} i_{1}\right)\left(\operatorname{remEl} I_{2} i_{2}\right)\right)$
where remEl I i removes the $i^{\text {th }}$ element of l.

ACADIE

Capturing permutations on ilist

Inductive definitions of permutations on ilist- Results

> Theorem of equivalence between definitions
> $\forall l_{1} I_{2}$, iperm_ind $1_{1} I_{2} \Leftrightarrow$ iperm_ind $1_{1} I_{2} \Leftrightarrow$ iperm_ind $I_{R}^{\prime \prime} I_{1} I_{2}$
> Proof not straightforward since one definition can be seen as a special case of the others.
> Usefulness of having various definitions: some properties easier to prove on one than on the other and vice versa.

Other properties

Preservation of equivalence, decidability, monotonicity.
Definition with skeleton: skel_type
Equivalent to iperm_ind with witness of the permutation used.

Capturing permutations on ilist

Definition using bijective functions and comparison between definitions
Definition of iperm_bij
Idea: use a bijective function in the same style as ilist_rel.
$\forall f g$, bij $f g \Leftrightarrow(\forall t, g(f t)=t) \wedge(\forall u, f(g u)=u)$
$\forall I_{1} I_{2}$, iperm_bij $_{R} I_{1} I_{2} \Leftrightarrow \exists f g$, bij $f g \wedge \forall i, R\left(f c t I_{1} i\right)\left(f c t I_{2}(f i)\right)$
Equivalence between definitions

- We can show that $\forall l_{1} l_{2}$, iperm_ind $I_{1} I_{2} \Leftrightarrow$ iperm_bij $_{R} I_{1} l_{2}$
- Permutations on lists by Contejean equivalent to ours

Comparison between definitions
iperm_ind captures better intuition than iperm_bij but
inductive. Contejean's definition on list.
We prefer definition on ilist \Rightarrow our choice is iperm_ind.

Capturing permutations on ilist

Definition using bijective functions and comparison between definitions

Definition of iperm_bij

 Idea: use a bijective function in the same style as ilist_rel. $\forall f g$, bij $f g \Leftrightarrow(\forall t, g(f t)=t) \wedge(\forall u, f(g u)=u)$ $\forall l_{1} I_{2}$, iperm_bij $_{R} I_{1} I_{2} \Leftrightarrow \exists f g$, bij $f g \wedge \forall i, R\left(f c t l_{1} i\right)\left(f c t l_{2}(f i)\right)$Equivalence between definitions

- We can show that $\forall I_{1} l_{2}$, iperm_ind ${ }_{R} I_{1} I_{2} \Leftrightarrow$ iperm_bij $l_{1} I_{2}$
- Permutations on lists by Contejean equivalent to ours

Comparison between definitions

 iperm_ind captures better intuition than iperm_bij but inductive. Contejean's definition on list.We prefer definition on ilist \Rightarrow our choice is iperm_ind.

Outline

(1) A Functional Equivalent to Lists

(2) A Coinductive Graph Representation

- New Graph Representation
- A More Liberal Bisimulation Relation on Graph
- Need For a More Liberal Relation on Graph
- A Relation On Graph Using iperm_ind
- Relations On Graph Using iperm_bij
- The Final Relation Over Graph
(3) Related Work and Conclusions

New graph representation

Definition of Graph

> Graph and applyF2G (coinductive)
> Graph: $\quad \frac{t: T \quad \text { : ilist }(\text { Graph } T)}{m k _G r a p h ~} t:$ Graph T
> applyF2G : applyF2G $f(m k$ Graph $t I)=$ $m k$ Graph ($f t$) (imap (applyF2G f) I)

Bisimulation relation on Graph: Geq

Why?

Graph is infinite \Rightarrow "=" not usable Example:

$R\left(\right.$ label $\left.g_{1}\right)$ (label g_{2}) \quad ilist_rel Geq $_{R}\left(\right.$ sons $\left.g_{1}\right)$ (sons g_{2})

$\mathrm{Geq}_{R} g_{1} g_{2}$

where label and sons are the projections on Graph

New graph representation

Finiteness

Notion of finiteness

Finiteness : $\forall g, G_{-}$finite $_{R} g \Leftrightarrow \exists g s, G_{\text {_all }}\left(\right.$ element_of $\left._{R} g s\right) g$ with Gall universal quantification on Graph and element_of list membership modulo Geq

Redefinition of the examples from the beginning

Proofs of finiteness

G_finite = Finite_Graph: rather easy proof
$\forall n$, \neg G_finite = Infinite_Graph h_{n} : we use unbounded labels labels and \#sons bounded \Rightarrow proofs of infinity much harder

Outline

(1) A Functional Equivalent to Lists

(2) A Coinductive Graph Representation

- New Graph Representation
- A More Liberal Bisimulation Relation on Graph
- Need For a More Liberal Relation on Graph
- A Relation On Graph Using iperm_ind
- Relations On Graph Using iperm_bij
- The Final Relation Over Graph
(3) Related Work and Conclusions

Need for a more liberal relation on Graph

The problem
These pairs of graphs are not bisimulated through Geq:

Solution

- Define a new equivalence relation on Graph using permutations on ilist
- Define a new equivalence relation on Graph using the previous one and taking into account rotations

A relation on Graph using iperm_ind

$\frac{\text { Definition of GPerm (coinductive) }}{R\left(\text { label } g_{1}\right)\left(\text { label } g_{2}\right) \quad \text { iperm_ind }_{G P e r m_{R}}\left(\text { sons } g_{1}\right)\left(\text { sons } g_{2}\right)}$
$G P e r m_{R} g_{1} g_{2}$

The problem: proof that GPerm preserves reflexivity Lemma: $\forall R$, R reflexive $\Rightarrow \forall g$, GPerm $_{R} g g$ Proof (by coinduction): We must prove that $\underbrace{R(\text { label g) (label g) }} \wedge \underbrace{\text { jperm_ind }_{\text {GPerm }}^{R}}$ (sons g) (sons g)

has to be inductive

\square
Mendler-style definition (coinductive and impredicative)

Preserves equivalence

A relation on Graph using iperm_ind

Definition of GPerm (coinductive)

$\frac{R\left(\text { label } g_{1}\right)\left(\text { label } g_{2}\right) \quad \text { iperm_ind }{ }_{G P e r m_{R}}\left(\text { sons } g_{1}\right)\left(\text { sons } g_{2}\right)}{G P e r m_{R} g_{1} g_{2}}$

The problem: proof that GPerm preserves reflexivity
Lemma: $\forall R, R$ reflexive $\Rightarrow \forall g, G P e r m_{R} g g$
Proof (by coinduction): We must prove that
$\underbrace{R(\text { label g) }(\text { label g) })}_{\text {ok }} \wedge \underbrace{i \text { iperm_ind }_{G P e r m_{R}}(\text { sons } g)(\text { sons g) })}_{\text {has to be inductive }}$
Mendler-style definition (coinductive and impredicative)
$R \subseteq$ GPerm_mend $d_{R} R\left(\right.$ label $\left.g_{1}\right)\left(l a b e l g_{2}\right)$ iperm_ind $d_{\mathcal{R}}$ (sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$
Preserves equivalence

A relation on Graph using iperm_ind

Definition of GPerm (coinductive)

$R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \quad$ iperm_ind ${ }_{G P e r m_{R}}$ (sons $\left.g_{1}\right)$ (sons g_{2})

GPerm ${ }_{R} g_{1} g_{2}$

The problem: proof that GPerm preserves reflexivity
 Lemma: $\forall R, R$ reflexive $\Rightarrow \forall g, G P e r m_{R} g g$ Proof (by coinduction): We must prove that $\underbrace{R(\text { label g) }(\text { label g) })}_{\text {ok }} \wedge \underbrace{i \text { iperm_ind }{ }_{G P e r m_{R}}(\text { sons } g)(\text { sons g) }}_{\text {has to be inductive }}$

Mendler-style definition (coinductive and impredicative)
$\mathcal{R} \subseteq$ GPerm_mend R R $\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right)$ iperm_ind $d_{\mathcal{R}}$ (sons $\left.g_{1}\right)$ (sons g_{2})
Preserves equivalence
GPerm_mend $_{R} g_{1} g_{2}$

0000

A relation on Graph using iperm_ind
 An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a certain depth.
\Rightarrow no more mixing of inductive and coinductive types

Observed until $\overrightarrow{\text { depth }} 5$

A relation on Graph using iperm_ind
 An equivalent approach based on observation - Definitions

iTree (inductive): $\frac{t: T \quad 1: \text { ilist (iTree } T \text {) }}{m k _i T r e e ~} t:$ iTree T
TPerm (inductive):
$R\left(\right.$ labeliT $\left._{1}\right)$ (labeliT $\left.t_{2}\right)$ iperm_ind $_{\text {TPerm }}^{R}$ $\left(\right.$ sonsiT $\left._{1}\right)\left(\right.$ sonsiT $\left._{2}\right)$
TPerm $_{R} t_{1} t_{2}$
G2iT:
G2iT : $\forall T$, nat \rightarrow Graph $T \rightarrow$ iTree T
G2iT T 0 (mk_Graph t l) := mk_Tree $t \mathbb{1}$

$\equiv_{R, n}: \forall n g_{1} g_{2}, g_{1} \equiv_{R, n} g_{2} \Leftrightarrow \operatorname{TPerm}_{R}\left(\right.$ G2iT $\left.n g_{1}\right)\left(\right.$ G2iT $\left.n g_{2}\right)$
GTPerm: $\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Leftrightarrow \forall n, g_{1} \equiv_{R, n} g_{2}$
ACADIE

A relation on Graph using iperm_ind
 An equivalent approach based on observation - Main theorem

The theorem
$\forall g_{1} g_{2}$, GPerm_mend $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$
Proof
[Direction \Rightarrow] easy (induction on n)
[Direction $\Leftarrow 1$ proved using the lemma:
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm_ind $_{\text {GTPerm }_{R}}$ (sons g_{1}) (sons g_{2}) Modulo non-constructive axiom: Infinite Pigeonhole Principle

A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

```
The theorem
\(\forall g_{1} g_{2}\), GPerm_mend \(_{R} g_{1} g_{2} \Leftrightarrow\) GTPerm \(_{R} g_{1} g_{2}\)
```


Proof

[Direction \Rightarrow] easy (induction on n)
[Direction \Leftarrow] proved using the lemma:
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm_ind $_{\text {GTPerm }}^{R}$ (sons g_{1}) (sons g_{2}) Modulo non-constructive axiom: Infinite Pigeonhole Principle

Relations on Graph using iperm_bij

Definitions

- Direct definition:

$$
\frac{R\left(\text { label } g_{1}\right)\left(\text { label } g_{2}\right) \quad \text { iperm_bij }{ }_{G P e r m _b i j_{R}}\left(\text { sons } g_{1}\right)\left(\text { sons } g_{2}\right)}{G P e r m _b i j_{R} g_{1} g_{2}}
$$

- Need an impredicative one for proofs of equivalence:

$$
\frac{\mathcal{R} \subseteq \text { GPerm_bij_mend }_{R} R\left(\text { label } g_{1}\right)\left(\text { label } g_{2}\right) \text { iperm_bij }_{\mathcal{R}}\left(\text { sons } g_{1}\right)\left(\text { sons } g_{2}\right)}{G P e r m _b i j _ \text {mend }_{R} g_{1} g_{2}}
$$

Results

- Equivalence relations
- GPerm_mend \Leftrightarrow GPerm_bij_mend \Leftrightarrow GPerm_bij

Summary of the obtained notions

The final relation over Graph

The idea

- Change in the "point of view" for the observation of the graph
- Single-rooted graph \Rightarrow path from the root to all nodes
- Change in the root \Rightarrow both roots in the same cycle \Rightarrow $g_{1} \subset g_{2} \wedge g_{2} \subset g_{1}$
- Only for a "general" view:

ACADIE

The final relation over Graph

Definitions

Non-strict Inclusion

General definition (inductive):
$\forall g_{\text {in }} g_{\text {out }}, \operatorname{Gin}_{R_{G}}^{\star} g_{\text {in }} g_{\text {out }} \Leftrightarrow\left\{\begin{array}{l}R_{G} g_{\text {in }} g_{\text {out }} \\ \left.\exists i, G \text { Gin } G_{R_{G}}^{*} g_{\text {in }}\left(\text { fct (sons } g_{\text {out }}\right) i\right)\end{array}\right.$ Instantiation:GinGP $P_{R}:=$ GinG $_{G \text { GPrm_mend }_{R}}^{\star}$

The final relation

$\forall g_{1} g_{2}$, GeqPerm ${ }_{R} g_{1} g_{2} \Leftrightarrow$ GinGP $_{R} g_{1} g_{2} \wedge$ GinGP $_{R} g_{2} g_{1}$ Preserves equivalence

Outline

(1) A Functional Equivalent to Lists

(2) A Coinductive Graph Representation

(3) Related Work and Conclusions

Related work

Permutations

- Contejean: treats the same problem for lists
- Standard library: requires decidability or Leibniz equality

Graph representation

- Erwig: inductive directed graph representation; each node is added with its successors and predecessors
- Courcelle: inductive representation as regular expressions

Related work

Guardedness issues

- Bertot \& Komendantskaya: same approach with streams represented by functions
- Dams: defines everything coinductively and restricts the finite parts with properties of finiteness
- Niqui: solution using category theory but not usable here
- Danielsson: experimental solution to the problem in Agda adding one constructor for each problematic function
- Nakata \& Uustalu: Mendler-style definition

Conclusions

Achievements

- Complete solution to the guardedness problem in the case of lists
- Permutations captured for ilist
- Complete representation of graphs in Coq, many tools
- Quite liberal equivalence relation on Graph
- Various extensions in order to represent models (non-connected graphs, multiplicities)
- Completely formalized in Coq: www.rit.fr/~Celia.Picard/These/

Publications (with R. Matthes)

- Coinductive Graph Representation : the Problem of Embedded Lists - ECEASST, Vol. 39, 2011
- Permutations in Coinductive Graph Representation - CMCS'12

Perspectives

Extension of the representation

New finiteness criterion using spanning trees

Generalization

- generalize the solutions for any inductive type
- apply expertise to other problems

Extend links

- containers:
- morphism coming with categorical notion of container
- notion of quotient types for permutations
- possibility of representing graphs as containers
- process algebras

Perspectives - Certified model transformation

Extension

Deepen notion of forest of graphs

Applications

- A first direct application:
- instantiation of the graphs for finite automata
- certified transformations: minimization, determinization
- Metamodel representation (inheritance with polymorphism)

Summary

What has been done

- Library for functional equivalent to lists
- Full representation of graphs with liberal equivalence relation
- Fully proved in Coq

What remains to be done

- Extend and generalize the representation
- Extend links with existing work
- Follow the idea of representing and transformings models

Thanks for your attention.

Fin - a type family for finite indexed sets

Problem: represent a set of n elements for n indeterminate
Solution: we represent a family of sets parameterized by the number of their elements.
We use a common solution (Altenkirch, McBride \& McKinna):
Fin of type $\mathbb{N} \rightarrow$ Set with 2 constructors:

```
first (k:\mathbb{N}): Fin (k+1)
succ (k:\mathbb{N}): Fink->Fin}(k+1
```

Lemmas:

- $\forall n, \mathfrak{c a r d}\{i \mid i:$ Fin $n\}=n$
- $\forall n m$, Fin $n=$ Fin $m \Rightarrow n=m$

Multiplicities representation

Presentation

Final goal: represent big metamodels, perform and certify transformations on them
Partial goal: represent multiplicities Solution: extend ilist to include bounds.

PropMult

Indicates whether a natural number fits a multiplicity condition:
$\forall($ inf : $\mathbb{N})($ sup : option $\mathbb{N})(i: \mathbb{N})$,
PropMult inf sup $n \Leftrightarrow \begin{cases}i \geq \inf \wedge i \leq s & \text { if sup }=\text { Some } s \\ i \geq \inf & \text { if sup }=\text { None }\end{cases}$

ilistMult

ilistnMult T inf sup $n:=\{i$: ilistn $T n \mid$ PropMult inf sup $n\}$ ilistMult T inf sup $:=\Sigma(n: \mathbb{N})$.ilistnMult T inf sup n

A relation on Graph using iperm_ind

An impredicative definition
The impredicative definition: GPerm_imp
$\forall g_{1} g_{2}, G P e r m_{i} i m p_{R} g_{1} g_{2} \Leftrightarrow \exists \mathcal{R},\left(\forall g_{1}^{\prime} g_{2}^{\prime}, \mathcal{R} g_{1}^{\prime} g_{2}^{\prime} \Rightarrow\right.$
$R\left(\right.$ label $\left.g_{1}^{\prime}\right)\left(\right.$ label $\left.g_{2}^{\prime}\right) \wedge$ iperm_ind $_{\mathcal{R}}\left(\right.$ sons $\left.g_{1}^{\prime}\right)\left(\right.$ sons $\left.\left.g_{2}^{\prime}\right)\right) \wedge \mathcal{R} g_{1} g_{2}$ where variable \mathcal{R} ranges over relations on Graph T

Tools and definitions

Coinduction principle: $\left(\forall g_{1} g_{2}, \mathcal{R} g_{1} g_{2} \Rightarrow\right.$ $R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge i$ iperm_ind $\mathcal{R}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.\left.g_{2}\right)\right) \Rightarrow$ $\forall g_{1} g_{2}, \mathcal{R} g_{1} g_{2} \Rightarrow$ GPerm_imp ${ }_{R} g_{1} g_{2}$ Unfolding principle: $\forall g_{1} g_{2}$, GPerm_imp ${ }_{R} g_{1} g_{2} \Rightarrow$ $R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ iperm_ind GPerm_imp $_{R}$ (sons $\left.g_{1}\right)$ (sons g_{2}) Constructor: $\forall g_{1} g_{2}, R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ iperm_ind ${ }_{G P e r m _i m p}^{R}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) \Rightarrow G P e r m _i m p_{R} g_{1} g_{2}$

A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

The theorem

$\forall g_{1} g_{2}$, GPerm_mend $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$
Proof
[Direction \Rightarrow] easy (induction on n)
[Direction \Leftarrow] proved using the lemma:
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm_ind $_{\text {GTPerm }}^{R}$ (sons g_{1}) (sons g_{2}) Modulo non-constructive axiom: Infinite Pigeonhole Principle

A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

> The theorem $\forall g_{1} g_{2}$, GPerm_mend $R$$g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$

Proof

[Direction \Rightarrow] easy (induction on n)
[Direction \Leftarrow] proved using the lemma:
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm_ind $_{\text {GTPerm }}^{R}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons g_{2}) Modulo non-constructive axiom: Infinite Pigeonhole Principle

A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

The theorem

```
\forallg}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{},\mp@subsup{\mathrm{ GPerm_mend}}{R}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{}\Leftrightarrow\mp@subsup{\mathrm{ GTPerm}}{R}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{
```


Proof

[Direction \Rightarrow] easy (induction on n)
[Direction \Leftarrow] proved using the lemma:
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm_ind $_{G T P e r m_{R}}$ (sons g_{1}) (sons g_{2}) Modulo non-constructive axiom: Infinite Pigeonhole Principle

A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

The theorem

```
\forallg}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{},\mp@subsup{\mathrm{ GPerm_mend}}{R}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{}\Leftrightarrow\mp@subsup{\mathrm{ GTPerm}}{R}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{
```


Proof

[Direction \Rightarrow] easy (induction on n)
[Direction \Leftarrow] proved using the lemma:
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm_ind $_{\text {GTPerm }}^{R}$ (sons g_{1}) (sons g_{2}) Modulo non-constructive axiom: Infinite Pigeonhole Principle

A relation on Graph using iperm_ind

An equivalent approach based on observation - Main theorem

The theorem

```
\forallg}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{},\mp@subsup{\mathrm{ GPerm_mend}}{R}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{}\Leftrightarrow\mp@subsup{\mathrm{ GTPerm}}{R}{}\mp@subsup{g}{1}{}\mp@subsup{g}{2}{
```


Proof

[Direction \Rightarrow] easy (induction on n)
[Direction \Leftarrow] proved using the lemma:
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ iperm_ind $_{G T P e r m_{R}}$ (sons g_{1}) (sons g_{2}) Modulo non-constructive axiom: Infinite Pigeonhole Principle

A representation of a wider class of graphs

We would like to represent graphs like this one:

A representation of a wider class of graphs

Solution: fictitious nodes.

AllGraph using Graph: AllGraph $T:=$ Graph (option T)

A representation of a wider class of graphs

Other solution: forest.

AllGraph: AllGraph $T:=\operatorname{list}(\operatorname{Graph} T)$

[^0]: A first function
 We would like to define the function (with f of type $T \rightarrow U$): applyF2G $f\left(m k _G r a p h t I\right)=m k _G r a p h(f t)($ map $($ applyF2G $f) I)$ but... forbidden!

