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Job environnements The postdoctoral position will start in September 2024 at Université Greno-
ble Alpes within Inria project-team AIRSEA1 located in Grenoble (France). This work is part of the
activities of the french thematic network on uncertainty quantification2. The candidate will bene-
fit from the scientific environment of Jean Kuntzmann Laboratory3. She/he will also benefit from
GRICAD4 supercomputing infrastructure.

Project description Many mathematical models involve input parameters, which are not precisely
known. Global sensitivity analysis aims at identifying the parameters whose uncertainty has the
largest impact on the variability of a Quantity of Interest (QoI).

In this project we consider models described by hypoelliptic systems of Stochastic Differential
Equations (SDE), whose coefficients depend on some uncertainty parameter ξ = (ξ1, . . . , ξp) ∈ Ξ.
More precisely we investigate parametrized SDEs of the form{

dXt = Ytdt
dYt = σ(ξ)dWt − (c(ξ,Xt, Yt)Yt +∇V (ξ,Xt))dt.

(1)

We assume the Brownian motion W driving (1) is independent from ξ. In a preliminary work [4], we
were interested in QoIs which are averaged quantities with respect to the Brownian motion W . E.g.,
we considered the averaged exit time starting from x ∈ D a bounded open subset of Rd, defined as
U(x, ξ) = Ex[τD | ξ] with τD = inf{t ≥ 0 : Xt /∈ D}. Also, we limited our analysis to a framework of
uniform ellipticity. One major drawback of modeling based on elliptic systems is that corresponding
trajectories are non-differentiable at any point, which is meaningless for some applications (see, e.g.,
[1]). Therefore in the present research project, we rather focus on systems for which diffusion only acts
on Y -component (see Eq. (1)). Under mild assumptions on damping coefficient c and potential V the
system (1) is hypoelliptic (see, e.g., [8] for a definition). It enters the scope of damping Hamiltonian
(stochastic) systems whose properties are well studied, e;g., in [12]. In particular (X,Y ) has an
invariant probability measure µ(dxdy, ξ) = p(x, y, ξ)dxdy. In that case we will say (loosely speaking)
that the system is hypocoercive (see [11] for more on hypocoercivity). The parametrized QoI we will
focus on in this project is the stationary density function (x, y) 7→ p(x, y, ξ) whose first-order and
total sensitivity with respect to each component ξi of ξ is to be analysed.

It is well known that (x, y) 7→ p(x, y, ξ) solves the steady state (parametrized) Fokker-Planck
equation:

σ̃2

2ε2
∂yyp(x, y, ξ)− y∂xp(x, y, ξ) + ∂y[{c(ξ, x, y)y +∇V (ξ, x)}p(x, y, ξ)] = 0 ∀x, y ∈ R

lim
||(x,y)||→∞

p(x, y, ξ) = 0

∫
p(x, y, ξ)dxdy = 1.

(2)

So one of the first and most important tasks for this project will be to develop a numerical scheme
for partial differential equation (PDE) described by (2), in a non parametrized context. And then,
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in order to handle uncertain parameter ξ, a second task will be to perform a stochastic Galerkin
projection of this scheme (see [10, 9]). Numerical schemes for steady state Fokker-Planck equation are
not very well understood. One algorithm has been proposed in [7] without any proof of convergence.
Since the years 2000 hypocoercive systems have raised a lot of interest (see in particular [11]), but it
seems they have been investigated from a numerical perspective only from the years 2020 (e.g., in
[3],[6]. . . ). Moreover, in most of these works, evolution (and not steady state) hypocoercive PDE is
considered, and damping force coefficient c in (1) or (2) is kept constant. The guideline towards the
first task of this project will be to follow these works, adding a perturbation to handle non-constant
damping force coefficient and considering long-term behavior of the solution.

As far as sensitivity analysis is concerned, the main challenge here is that QoI is a parametrized
density function. Recent works in [5] or [2] can handle this framework. Estimation procedures
involve the development and use of machine learning and AI tools (random forests, kernel embedding
for the computation of Maximum Mean Discrepancy. . . ). The idea here is to leverage Galerkin
scheme developed for numerically solving (2) in order to estimate sensitivity measures based on
MMD discrepancy (see [2] for a definition) with a suitable kernel.

Among interesting hypoelliptic systems is the celebrated FitzHugh-Nagumo model used in neuro-
sciences (see [8] and the references therein for an introduction). In this neuroscience context one QoI is
the spike-rate of a neuron, which can be related to the invariant density function of FitzHugh-Nagumo
system.

Candidate profile This postdoctoral project is at the crossroad between numerical analysis, prob-
ability, statistics and machine learning. Candidates must have good knowledge for at least one of
these domains and the motivation to quickly acquire the missing complementary skills. This research
work will involve both theoretical developments and practical implementations. Candidates should
have demonstrable experience and skill in some of the following topics : scientific creativity, autonomy,
writing abilities, oral communication skills (English and/or French), and taste for teamwork.

How to apply The candidates should send a CV, statement of interest and letters of recom-
mendation to Clémentine Prieur (clementine.prieur@univ-grenoble-alpes.fr) and Pierre Etoré
(pierre.etore@univ-grenoble-alpes.fr).
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[3] Guillaume Dujardin, Frédéric Hérau, and Pauline Lafitte-Godillon. Coercivity, hypocoerciv-
ity, exponential time decay and simulations for discrete Fokker- Planck equations. Numerische
Mathematik, 144, 2020.
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