Crypto-refresh. Exercise sheet # 2.

Extension fields and discrete probabilities

Exercice 1. The field with 4 elements

- **a.** Write down the addition and multiplication tables of $\mathbb{Z}/4\mathbb{Z}$
- **b.** Write down the addition and multiplication tables of \mathbb{F}_4 .
- c. Is there a isomorphism between both sets?

Exercice 2. The AES field \mathbb{F}_{256}

- **a.** Explain how to define the finite field \mathbb{F}_{256} with 256 elements.
- **b.** Among the following polynomials, only one can be used for this construction, which one is it ?
- 1. X 256
- 2. $X^2 + X + 1$
- 3. $X^{256} + X + 1$
- 4. $X^4 + X + 1$
- 5. $X^8 + X^4 + X^3 + X^2 + 1$
- 6. $X^8 + X^4 + X + 1$
- c. Explain how you would prove that the selected polynomial is irreducible (but don't do it).
- **d.** You have to provide a C implementation of \mathbb{F}_{256} . How would you represent an element?
- e. Write the addition and multiplication functions

Exercice 3. \mathbb{F}_8

- **a.** Prove that $Q = x^3 + x + 1$ is a primitive polynomial over $\mathbb{F}_2[x]$.
- b. Provide a ${\tt C}$ implementation of \mathbb{F}_8 using a Zech log representation

Exercice 4. (Multi)-collisions

In this exercise we let S be an arbitrary finite set of size N and we denote by $X \leftarrow S$ the process of drawing from S uniformly and independently of any other process.

Let $X \leftarrow S$, $Y \leftarrow S$ and $Z \leftarrow S$.

a. Compute $\Pr[(X = x) \land (Y = y)]$ for all $(x, y) \in S^2$

- **b.** Compute $\Pr[X = Y]$.
- **c.** Compute $\Pr[X = Y = Z]$.

Exercice 5. (Non-)uniform Masks

Let X and Y be two independent random variables drawn from \mathbb{F}_2 with a uniform law for X and an unknown law for Y.

a. What is the distribution of X + Y? (That is compute Pr[X + Y = 0]).

We now draw X and Y independently from a finite group $(\mathbb{G}, +)$ of size N.

b. What is the distribution of X + Y.

Remark : the result shown in those two questions is essential in cryptography and is used to justify the security of many constructions.

Exercice 6. Pigeon's birthday

Let \mathcal{S} be again a finite set of size N, which we sample repeatedly by drawing X_1, X_2, \ldots, X_k .

a. (Pigeon hole principle) How many samples are necessary to ensure that $\exists i, j \neq i$ s.t. $X_i = X_j$ with probability 1?

b. (Birthday paradox) How many samples are approximately needed to ensure that $\exists i, j \neq i$ s.t. $X_i = X_j$ with "high" probability? (e.g. constant in function of N).