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Cryptographic Engineering

Important: This exam is composed of 4 parts:

Part 1: P. Karpman, 7.5 points

Part 2: C. Pernet, 6.5 points

Part 3: E. Peyre, 3 points

Part 4: C. Ene, 6 points

� Any paper document allowed. All electronic devices are forbidden.

� Each of the 4 parts has to be answered on a separate answer sheet.

� The grading over 23 points will not be scaled, hence it is not necessary to answer correctly
all questions to get the maximum grade of 20.

� Your answers have to be short but clearly and cleanly argued or commented.

� You may assume the results of unanswered questions to proceed to the next ones.

Part 1: Symmetric Cryptography (P. Karpman)

Exercise 1.1 (7.5 pts.): Format-preserving block ciphers

We �rst brie�y recall the following security de�nitions.

UP. Let F be an arbitrary keyed function {0, 1}κ×M→ C. An adversary in the game ForgeF

is given oracle access to O = F (k, ·) for k ↞ {0, 1}κ; it wins i�. it returns a couple (x, y) s.t.:

1. x was not queried to O

2. F (k, x) = y

One then de�nes:
InSecUPF (q, t) = max

Aq,t

Pr[AO
q,t() wins Forge

F ]

where Aq,t makes q queries to O and runs in time t.

PRP. Let F be an arbitrary keyed function {0, 1}κ ×M→M, and Perm(M) denote the set of
all permutations overM. One de�nes:

AdvPRPF (q, t) = max
Aq,t

∣∣∣Pr[AO
q,t() = 1 : O ↞ Perm(M)]− Pr[AO

q,t() = 1 : O = F (k, ·), k ↞ {0, 1}κ]
∣∣∣

F

The goal of this exercise is to study a generic construction that reduces the message domain
of an n-bit block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n to some subset of {0, 1}n. (This sub-
set may be arbitrary, and in particular is not guaranteed to possess a rich algebraic structure;
for instance, it may be the subset of strings representing n-bit prime numbers, or valid Dutch
burgerservicenummer.)

Given S ⊂ {0, 1}n, the cycle walking construction generically allows to build from E a block
cipher CW[E ,S] : {0, 1}κ × S → S. It works as follows: to evaluate CW[E ,S](k, ·) on x ∈ S,



compute x′ := E (k, x); then if x′ ∈ S return x′; otherwise iterate the process by computing
x′′ = E (k, x′) and test if it is in S, etc., and return the �rst encountered x

′···′ that is in S.
This construction may also be applied to any �xed permutation P (rather than on a block

cipher) in the obvious way, and we will admit that if P ↞ Perm({0, 1}n) is a uniformly sampled
permutation of domain {0, 1}n, then CW[P ,S] is a uniformly sampled permutation of domain S.
We will also make the (obviously wrong) simplifying hypothesis that for every S ⊂ {0, 1}n, for
every x ∈ {0, 1}n, for c := ⌈2n/#S⌉, the probability (over the sampling of P) that none of the
values P(x),P ◦P(x), · · · ,Pc(x) is in S is equal to zero (where Pc denotes the c-time composition
of P).

Q.1 (correctness & e�ciency)

1. Informally state two necessary conditions on S for CW[E ,S] to be an �e�cient� block cipher
of message domain S, when E is any �e�cient� block cipher of message domain {0, 1}n.

2. Give an e�cient1 algorithm to compute the inverse cipher CW[E ,S]−1 : {0, 1}κ × S → S of
CW[E ,S]. (That is, given k, y := CW[E ](k, x) and the knowledge of E and S, this algorithm
must return x.)

Q.2 (PRP security)

1. Show that under the above simplifying hypothesis and given S and x ∈ S, a PRP adversary
for E that cannot compute CW[O,S](x) with at most c queries to its oracle O is able to win
the PRP game with advantage one. (That is, show that when the relevant probabilities are
conditioned by this event, the PRP advantage is one.)

2. Show by an explicit reduction that under the above simplifying hypothesis one has:

AdvPRPCW[E ,S](q, t) ≤ AdvPRPE (cq, ct)

Be careful to justify your answer as much as possible.

Q.3 (UP security)

1. Show by an explicit reduction that under the above simplifying hypothesis, one has:

InSecUPCW[E ,S](q, t) ≤ AdvPRPE (c(q + 1), c(t+ 1)) +
1

#S − q

2. Does the above reduction strategy also work to reduce the UP security of CW[E ,S] to the
UP (and not PRP) security of E?

3. Could it be useful to reduce the UP security of CW[E ,S] to the UP security of E?

Q.4 (application)

1. Suppose that one wishes to use CW[E ,S] to implement an encryption scheme over S whose
security will be quanti�ed w.r.t. IND-CPA security. Which of the two above security de�ni-
tions for CW[E ,S] is the most relevant for that?

2. Suppose that one wishes to design a MAC whose message domain is S and whose tag space
may be arbitrary. Do you think that using CW[E ,S] as a basis is a good idea?

1As much as CW[E ,S].
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Part 2: Asymetric Cryptography (C. Pernet)

Exercise 2.1 (6.5 pts.): McEliece

Recall that the Mc Eliece cryptosystem based on a code C over a �eld K is de�ned by:

� the private key is composed of a generator matrix G ∈ Kk×n of a code with an e�cient
decoding algorithm up to t errors, an invertible matrix S ∈ Kk×k, a permutation matrix
P ∈ Kn×n;

� the public key is (Ĝ, t) where Ĝ = SGP

� the encryption function: E : m 7→ c = mĜ+ e where e is sampled uniformly with wH(e) = t

1. (0.5 pts) Recall how the decryption algorithm works.

2. In order to ensure a su�ciently good resistance against know attacks, we are requested to
use a linear code of length 1024 able to correct up to 50 errors.

2.1 (1pt) If we choose to work over a Reed-Solomon code, what would be the parameters
of the code (base �eld, length, dimension)? What would be the size in kilobytes of the
public key ?

2.2 (1pt) Same question if we choose to work over a binary Goppa code. We recall that a
binary Goppa code G of length n and parameters (m, r) is obtained as Fn

2

⋂
GRS2m(n, n−

r), where GRSq(n, k) is a generalized Reed-Solomon code over the �eld Fq of length n
and dimension k. This construction ensures that the dimension of G is ≥ n− rm and its
minimum distance is ≥ 2r + 1.

For an arbitrary �eld, suppose that a same message m is sent twice using McEliece cryp-
tosystem. An attacker, has then access to two di�erent ciphertexts y(1) and y(2) for the same
message m.

3. (1.5pts) Given two vectors e, f ∈ Fn
q with t non zero coe�cients each, sampled uniformly at

random (both the positions and the values of the non-zero coe�cients):

(a) For a �xed index i, what are the probabilities P [ei = 0], P [fi = 0] and P [ei + fi = 0].
(express them as functions of q, n and t)

(b) What is the probability P [ei = 0 | ei + fi = 0] ?

4. (0.5pts) Consequently, explain why the attacker can deduce, k positions in y(1) at which the
corresponding error e(1) is zero, with a high probability.

5. (1pts) Deduce that there is then a polynomial time algorithm (state its cost) to compute the
clear text m without knowing the private key.

6. (0.5pts) Explain how does this attack generalizes for the related plaintext attack : when the
ciphertexts c1 and c2 correspond to plain texts which di�erence is known to the attacker.

7. (0.5pts) Propose a countermeasure for these attacks.

Part 3: Elliptic curves (E. Peyre)

Exercise 3.1: (3 pts) Elliptic curves

Let E be the elliptic curve de�ned by the a�ne equation

Y 2 = X3 + 3

over the �eld F11 = Z/11Z.

1. List all the elements of E(F11).

2. Find all points of order 2 in E(F11).

3. How do we know that the group E(F11) is isomorphic to Z/12Z?
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Part 4: Security Proofs (C. Ene)

Exercice 4.1 (4.0 pts.)

In this exercise, ⟨_,_⟩ represents concatenation, [[ _ ]]_ represents a symmetric encryption scheme,
{| _ |}_ an asymmetric encryption scheme, pr(u) is the inverse secret key associated to pk(u) and
⊕ denotes the usual bitwise xor over equal-length bitstrings, e.g. 0011 ⊕ 1110 = 1101. Consider
the following protocol:

1. A → B : {| ⟨⟨B,A⟩, Na⟩ |}pk(B)

2. B → A : ⟨{| ⟨K ⊕Na, A⟩ |}pk(A), [[ Na ]]K⟩
3. A → B : {| ⟨⟨A,B⟩,K⟩ |}pk(B)

The goal of this protocol is to provide both secrecy and authentication: at the end of a session
between two honest participants a and b, �k� (the instantiation of the variable K in the
speci�cation of the protocol) should be a new shared secret value known only by a
and b. This target session between honest participants a and b may be part of a richer scenario
containing other running sessions in parallel where the active adversary i can be involved.

1. Describe in details (as a list) A's and B's actions at receipt of messages 2 and 3 and what
beliefs they have at that stage.

2. Show (using the McAllester's Algorithm) that k (the instantiation of the variable K in
the speci�cation of the protocol) remains secret in presence of a passive Dolev-Yao intruder.

3. What do you think about the correctness of the protocol in presence of an active Dolev-Yao
intruder? If you think that the protocol is correct, then give a justi�cation. Otherwise,

� give an attack on the target session between honest participants a and b where the
intruder i will learn k;

� propose a correction of the protocol.

Exercice 4.2 (2.0 pts.)

In this exercise, | · | denotes the length of a bitstring, x is the bitwise complement of x (e.g.
1101 = 0010) and ⊕ denotes the usual bitwise xor over equal-length bitstrings, e.g. 0011⊕ 1110 =
1101. A one-way function is a function that is easy to compute but hard to invert. Formally,
f : {0, 1}∗ 7→ {0, 1}∗ is a one-way function, if for all probabilistic polynomial-time families of
adversaries A the following probability:

p(k)
def
= Pr

b
R←[x

R←{0,1}k; y←f(x); x′ R←A(y) : return f(x′)=y]
(b = true)

(simpler written p(k)
def
= Pr[f(x′) = y | x R← {0, 1}k; y←f(x); x′

R← A(y)])
is a negligible function in k. That is, the probability that a probabilistic polynomial-time algorithm
A is able to �nd a preimage x′ for a given image y = f(x) of an uniformly sampled x is negligible.
In this exercise, we assume the existence of at least one such one-way function denoted by f0.

For each of the assertions below, prove or disprove that they are valid for arbitrary one-way
functions f and g (we assume that ∀x ∈ {0, 1}∗, |f(x)| = |g(x)|). That is, if the assertion is valid
give a proof by reduction. If it is not, give a counterexample of one-way functions f and g such
that the obtained function is not a one-way function.

1. Let CXor(f) : {0, 1}∗ 7→ {0, 1}∗ be the function de�ned by CXor(f)(x) = f(x), i.e.
CXor(f) is the function that applies the function f to the argument and then computes
the bitwise complement of the result.
If f is a one-way function then CXor(f) is also a one-way function.

2. Let BXor(f, g) : {0, 1}∗ 7→ {0, 1}∗ be the function de�ned by BXor(f, g) = f(x)⊕ g(x).
If f and g are one-way functions then BXor(f, g) is also a one-way function.
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