Cryptographic Engineering

Important: This exam is composed of 4 parts:

- Part 1: P. Karpman, 7.5 points
- Part 2: C. Pernet, 6.5 points
- Part 3: E. Peyre, 3 points

Part 4: C. Ene, 6 points

- Any paper document allowed. All electronic devices are forbidden.
- Each of the 4 parts has to be answered on a separate answer sheet.
- The grading over 23 points will not be scaled, hence it is not necessary to answer correctly all questions to get the maximum grade of 20.
- Your answers have to be short but clearly and cleanly argued or commented.
- You may assume the results of unanswered questions to proceed to the next ones.

Part 1: Symmetric Cryptography (P. Karpman)

Exercise 1.1 (7.5 pts.): Format-preserving block ciphers

We first briefly recall the following security definitions.

UP. Let F be an arbitrary keyed function $\{0,1\}^k \times \mathcal{M} \to \mathcal{C}$. An adversary in the game FORGE^F is given oracle access to $\mathbb{O} = F(k, \cdot)$ for $k \leftarrow \{0, 1\}^{\kappa}$; it wins iff. it returns a couple (x, y) s.t.:

1. x was not queried to \mathbb{O}

$$
2. \ F(k, x) = y
$$

One then defines:

$$
\mathbf{InSec}_F^{\mathsf{UP}}(q,t) = \max_{A_{q,t}} \Pr[A_{q,t}^{\mathbb{O}}(t) \text{ wins } \text{FORGE}^F]
$$

where $A_{q,t}$ makes q queries to \mathbb{O} and runs in time t.

PRP. Let F be an arbitrary keyed function $\{0,1\}^k \times M \to M$, and Perm (M) denote the set of all permutations over M . One defines:

$$
\mathbf{Adv}_{F}^{\mathsf{PRP}}(q,t) = \max_{A_{q,t}} \left| \Pr[A_{q,t}^{\mathbb{O}}(t) = 1 : \mathbb{O} \leftarrow \mathrm{Perm}(\mathcal{M})] - \Pr[A_{q,t}^{\mathbb{O}}(t) = 1 : \mathbb{O} = F(k, \cdot), k \leftarrow \{0, 1\}^{\kappa}] \right|
$$

The goal of this exercise is to study a generic construction that reduces the message domain of an *n*-bit block cipher $E: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ to some subset of $\{0,1\}^n$. (This subset may be arbitrary, and in particular is not guaranteed to possess a rich algebraic structure; for instance, it may be the subset of strings representing n -bit prime numbers, or valid Dutch burgerservicenummer.)

Given $S \subset \{0,1\}^n$, the cycle walking construction generically allows to build from E a block cipher $\mathsf{CW}[E,\mathcal{S}] : \{0,1\}^\kappa \times \mathcal{S} \to \mathcal{S}$. It works as follows: to evaluate $\mathsf{CW}[E,\mathcal{S}](k,\cdot)$ on $x \in \mathcal{S}$, compute $x' := E(k, x)$; then if $x' \in S$ return x' ; otherwise iterate the process by computing $x'' = E(k, x')$ and test if it is in S, etc., and return the first encountered x' that is in S.

This construction may also be applied to any fixed permutation P (rather than on a block cipher) in the obvious way, and we will admit that if $P \leftarrow \text{Perm}(\{0,1\}^n)$ is a uniformly sampled permutation of domain $\{0,1\}^n$, then CW $[P,\mathcal{S}]$ is a uniformly sampled permutation of domain S. We will also make the (obviously wrong) simplifying hypothesis that for every $S \subset \{0,1\}^n$, for every $x \in \{0,1\}^n$, for $c := \lfloor 2^n / \#S \rfloor$, the probability (over the sampling of P) that none of the values $P(x)$, $P \circ P(x)$, \cdots , $P^c(x)$ is in S is equal to zero (where P^c denotes the c-time composition of P).

Q.1 (correctness \mathcal{B} efficiency)

- 1. Informally state two necessary conditions on S for $CW[E, S]$ to be an "efficient" block cipher of message domain S, when E is any "efficient" block cipher of message domain $\{0,1\}^n$.
- 2. Give an efficient^{[1](#page-1-0)} algorithm to compute the inverse cipher $\mathsf{CW}[E,\mathcal{S}]^{-1}:\{0,1\}^\kappa\times\mathcal{S}\to\mathcal{S}$ of CW[E, S]. (That is, given k, $y := CW[E](k, x)$ and the knowledge of E and S, this algorithm must return x .)

Q.2 (PRP security)

- 1. Show that under the above simplifying hypothesis and given S and $x \in S$, a PRP adversary for E that cannot compute $\mathsf{CW}[\mathbb{O},\mathcal{S}](x)$ with at most c queries to its oracle $\mathbb O$ is able to win the PRP game with advantage one. (That is, show that when the relevant probabilities are conditioned by this event, the PRP advantage is one.)
- 2. Show by an explicit reduction that under the above simplifying hypothesis one has:

$$
\mathbf{Adv}^{\mathsf{PRP}}_{\mathsf{CW}[E,S]}(q,t) \leq \mathbf{Adv}^{\mathsf{PRP}}_{E}(cq,ct)
$$

Be careful to justify your answer as much as possible.

Q.3 (UP security)

1. Show by an explicit reduction that under the above simplifying hypothesis, one has:

$$
\mathbf{InSec^{UP}_{CW[E,S]}(q,t)} \leq \mathbf{Adv}^{\mathsf{PRP}}_E(c(q+1), c(t+1)) + \frac{1}{\# \mathcal{S} - q}
$$

- 2. Does the above reduction strategy also work to reduce the UP security of $\text{CW}[E,\mathcal{S}]$ to the UP (and not PRP) security of E ?
- 3. Could it be useful to reduce the UP security of $\mathsf{CW}[E,\mathcal{S}]$ to the UP security of E ?

Q.4 (application)

- 1. Suppose that one wishes to use $CW[E, S]$ to implement an encryption scheme over S whose security will be quantified w.r.t. $IND-CPA$ security. Which of the two above security definitions for $CW[E, S]$ is the most relevant for that?
- 2. Suppose that one wishes to design a MAC whose message domain is S and whose tag space may be arbitrary. Do you think that using $CW[E, S]$ as a basis is a good idea?

¹ As much as $\text{CW}[E, \mathcal{S}]$.

Part 2: Asymetric Cryptography (C. Pernet)

Exercise 2.1 (6.5 pts.): McEliece

Recall that the Mc Eliece cryptosystem based on a code $\mathcal C$ over a field $\mathbb K$ is defined by:

- t the private key is composed of a generator matrix $G \in \mathbb{K}^{k \times n}$ of a code with an efficient decoding algorithm up to t errors, an invertible matrix $S \in \mathbb{K}^{k \times k}$, a permutation matrix $P \in \mathbb{K}^{n \times n}$;
- the public key is (\hat{G}, t) where $\hat{G} = SGP$
- t the encryption function: $E : m \mapsto c = m\hat{G} + e$ where e is sampled uniformly with $w_H(e) = t$
- 1. (0.5 pts) Recall how the decryption algorithm works.
- 2. In order to ensure a sufficiently good resistance against know attacks, we are requested to use a linear code of length 1024 able to correct up to 50 errors.
	- 2.1 (1pt) If we choose to work over a Reed-Solomon code, what would be the parameters of the code (base eld, length, dimension)? What would be the size in kilobytes of the public key ?
	- 2.2 (1pt) Same question if we choose to work over a binary Goppa code. We recall that a binary Goppa code G of length n and parameters (m, r) is obtained as $\mathbb{F}_2^n\bigcap \textrm{GRS}_{2^m}(n, n-1)$ r), where $GRS_{q}(n, k)$ is a generalized Reed-Solomon code over the field \mathbb{F}_{q} of length n and dimension k. This construction ensures that the dimension of G is $\geq n-rm$ and its minimum distance is $\geq 2r + 1$.

For an arbitrary field, suppose that a same message m is sent twice using McEliece cryptosystem. An attacker, has then access to two different ciphertexts $y^{(1)}$ and $y^{(2)}$ for the same message m.

- 3. (1.5pts) Given two vectors $e, f \in \mathbb{F}_q^n$ with t non zero coefficients each, sampled uniformly at random (both the positions and the values of the non-zero coefficients):
	- (a) For a fixed index i, what are the probabilities $P[e_i = 0], P[f_i = 0]$ and $P[e_i + f_i = 0]$. (express them as functions of q, n and t)
	- (b) What is the probability $P[e_i = 0 \mid e_i + f_i = 0]$?
- 4. (0.5pts) Consequently, explain why the attacker can deduce, k positions in $y^{(1)}$ at which the corresponding error $e^{(1)}$ is zero, with a high probability.
- 5. (1pts) Deduce that there is then a polynomial time algorithm (state its cost) to compute the clear text m without knowing the private key.
- 6. (0.5pts) Explain how does this attack generalizes for the related plaintext attack: when the ciphertexts c_1 and c_2 correspond to plain texts which difference is known to the attacker.
- 7. (0.5pts) Propose a countermeasure for these attacks.

Part 3: Elliptic curves (E. Peyre)

Exercise 3.1: (3 pts) Elliptic curves

Let E be the elliptic curve defined by the affine equation

$$
Y^2 = X^3 + 3
$$

over the field $\mathbf{F}_{11} = \mathbf{Z}/11\mathbf{Z}$.

- 1. List all the elements of $E(\mathbf{F}_{11})$.
- 2. Find all points of order 2 in $E(\mathbf{F}_{11})$.
- 3. How do we know that the group $E(\mathbf{F}_{11})$ is isomorphic to $\mathbf{Z}/12\mathbf{Z}$?

Part 4: Security Proofs (C. Ene)

Exercice 4.1 (4.0 pts.)

In this exercise, $\langle _ \, , _ \rangle$ represents concatenation, $[_]$ represents a symmetric encryption scheme, $\{-\}$ an asymmetric encryption scheme, $pr(u)$ is the inverse secret key associated to $pk(u)$ and ⊕ denotes the usual bitwise xor over equal-length bitstrings, e.g. 0011 ⊕ 1110 = 1101. Consider the following protocol:

> 1. $A \rightarrow B : \{ \langle \langle B, A \rangle, N_a \rangle \}_{pk(B)}$ 2. $B \rightarrow A : \langle \{ \langle K \oplus N_a, A \rangle \} _{pk(A)}, [N_a]_K \rangle$ 3. $A \rightarrow B : \{ \langle \langle A, B \rangle, K \rangle \}_{pk(B)}$

The goal of this protocol is to provide both secrecy and authentication: at the end of a session between two honest participants a and b, "k" (the instantiation of the variable K in the specification of the protocol) should be a new shared secret value known only by a and b. This target session between honest participants a and b may be part of a richer scenario containing other running sessions in parallel where the active adversary i can be involved.

- 1. Describe in details (as a list) A's and B's actions at receipt of messages 2 and 3 and what beliefs they have at that stage.
- 2. Show (using the McAllester's Algorithm) that k (the instantiation of the variable K in the specification of the protocol) remains secret in presence of a passive Dolev-Yao intruder.
- 3. What do you think about the correctness of the protocol in presence of an active Dolev-Yao intruder? If you think that the protocol is correct, then give a justification. Otherwise,
	- $\frac{1}{2}$ give an attack on the target session between honest participants a and b where the intruder i will learn k ;
	- propose a correction of the protocol.

Exercice 4.2 (2.0 pts.)

In this exercise, | · | denotes the length of a bitstring, \bar{x} is the bitwise complement of x (e.g. $\overline{1101} = 0010$ and \oplus denotes the usual bitwise xor over equal-length bitstrings, e.g. $0011 \oplus 1110 =$ 1101. A one-way function is a function that is easy to compute but hard to invert. Formally, $f: \{0,1\}^* \mapsto \{0,1\}^*$ is a one-way function, if for all probabilistic polynomial-time families of adversaries A the following probability:

$$
p(k) \stackrel{def}{=} Pr_{b \stackrel{R}{\leftarrow} [x \stackrel{R}{\leftarrow} \{0,1\}^k; y \leftarrow f(x); x' \stackrel{R}{\leftarrow} \mathcal{A}(y) : \text{ return } f(x') = y]}(b = true)
$$

(simpler written $p(k) \stackrel{def}{=} Pr[f(x') = y \mid x \stackrel{R}{\leftarrow} \{0,1\}^k; y \leftarrow f(x); x' \stackrel{R}{\leftarrow} \mathcal{A}(y)]$) is a negligible function in k . That is, the probability that a probabilistic polynomial-time algorithm A is able to find a preimage x' for a given image $y = f(x)$ of an uniformly sampled x is negligible. In this exercise, we assume the existence of at least one such one-way function denoted by f_0 .

For each of the assertions below, prove or disprove that they are valid for arbitrary one-way functions f and g (we assume that $\forall x \in \{0,1\}^*, |f(x)| = |g(x)|$). That is, if the assertion is valid give a proof by reduction. If it is not, give a counterexample of one-way functions f and g such that the obtained function is not a one-way function.

- 1. Let $C X or (f) : \{0,1\}^* \mapsto \{0,1\}^*$ be the function defined by $C X or (f)(x) = \overline{f(x)}$, i.e. $CXor(f)$ is the function that applies the function f to the argument and then computes the bitwise complement of the result. If f is a one-way function then $C X or (f)$ is also a one-way function.
-
- 2. Let $BXor(f,g): \{0,1\}^* \mapsto \{0,1\}^*$ be the function defined by $BXor(f,g) = f(x) \oplus \overline{g(x)}$. If f and g are one-way functions then $BXor(f,g)$ is also a one-way function.