
Algebraic Algorithms for Cryptology

Clément PERNET

M1 MoSIG / Info / AM

1

Organization of the course

Content: computer algebra fundations for cryptology

• Computational aspects of integer arithmetic, finite groups, and finite fields.

• algorithms and complexity analysis
• software implementations

• Application to error correcting codes

• 11× 1.5h of CTD (mix of plenary lecture and tutorial)

• 2 TP (lab session) as home-work

Grading: average of the TP grades

2

Organization of the course

Content: computer algebra fundations for cryptology

• Computational aspects of integer arithmetic, finite groups, and finite fields.

• algorithms and complexity analysis
• software implementations

• Application to error correcting codes

• 11× 1.5h of CTD (mix of plenary lecture and tutorial)

• 2 TP (lab session) as home-work

Grading: average of the TP grades

2

Outline

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Coding theory

3

Introduction

Algebraic Computing

Computing: Algorithms, Complexity, Implementations
Security in cryptology relies on one-way functions: easy to compute, but hard to invert

Easy: cost analysis, fast software implementations

Hard: complexity theory and reductions, fast implementation of expensive attacks

Algebra: finite fields, finite groups, integer and polynomial arithmetic
A good source of one way functions:

• integer multiplication/factorization,

• exponentiation / discrete logarithm in a group, e.g. (Fq)
∗

• algebraic coding theory, etc

4

Introduction

Algebraic Computing

Computing: Algorithms, Complexity, Implementations
Security in cryptology relies on one-way functions: easy to compute, but hard to invert

Easy: cost analysis, fast software implementations

Hard: complexity theory and reductions, fast implementation of expensive attacks

Algebra: finite fields, finite groups, integer and polynomial arithmetic
A good source of one way functions:

• integer multiplication/factorization,

• exponentiation / discrete logarithm in a group, e.g. (Fq)
∗

• algebraic coding theory, etc
4

Outline

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Coding theory

5

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

• in time
• in space

Defining a cost model (simplifying assumptions)

• Define units: which operation has cost 1 ? Which data can be stored in space 1 ?

• Cost only depends on the input size (or a parameter related to it):

• uniform across all instances
• worst case analysis, (sometimes average case analysis)

• Asymptotic analysis : mostly care about large instances

=

6

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

• in time
• in space

Defining a cost model (simplifying assumptions)

• Define units: which operation has cost 1 ? Which data can be stored in space 1 ?

• Cost only depends on the input size (or a parameter related to it):

• uniform across all instances
• worst case analysis, (sometimes average case analysis)

• Asymptotic analysis : mostly care about large instances

=
6

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

• in time
• in space

Defining a cost model (simplifying assumptions)

• Define units: which operation has cost 1 ? Which data can be stored in space 1 ?

• Cost only depends on the input size (or a parameter related to it):

• uniform across all instances
• worst case analysis, (sometimes average case analysis)

• Asymptotic analysis : mostly care about large instances

C(n) =
6

Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

• in time
• in space

Defining a cost model (simplifying assumptions)

• Define units: which operation has cost 1 ? Which data can be stored in space 1 ?

• Cost only depends on the input size (or a parameter related to it):

• uniform across all instances
• worst case analysis, (sometimes average case analysis)

• Asymptotic analysis : mostly care about large instances

C(n) = O(n2)
6

Asymptotics

Landau notation:

• f (n) = O(g(n)) iff f (n) ≤ Kg(n) ∀ n ≥ n0 for some K > 0 and n0 ≥ 0

• f (n) = Ω(g(n)) iff g(n) = O (f (n))

• f (n) = Θ(g(n)) iff f (n) = O (g(n)) and g(n) = O (f (n))

Equivalently, f (n) = O(g(n)) if f (n)/g(n) is bounded by a constant for all n
sufficiently large.

Example
2n3 − 3n2 log n + 5n + 12 = Θ(n3)

n + 1 = O(
1

1000
n)

n log n = O(n2)

n2 + 100000n1.9 = Ω(n2)

(3n + 1) log2 n ̸= O(n log n)

2n ̸= O(nk) for any k ∈ Z

7

Asymptotics

Landau notation:

• f (n) = O(g(n)) iff f (n) ≤ Kg(n) ∀ n ≥ n0 for some K > 0 and n0 ≥ 0

• f (n) = Ω(g(n)) iff g(n) = O (f (n))

• f (n) = Θ(g(n)) iff f (n) = O (g(n)) and g(n) = O (f (n))

Equivalently, f (n) = O(g(n)) if f (n)/g(n) is bounded by a constant for all n
sufficiently large.

Example
2n3 − 3n2 log n + 5n + 12 = Θ(n3)

n + 1 = O(
1

1000
n)

n log n = O(n2)

n2 + 100000n1.9 = Ω(n2)

(3n + 1) log2 n ̸= O(n log n)

2n ̸= O(nk) for any k ∈ Z

7

Asymptotics

poly-logarithmic notations (soft-O)
f (n) = O˜(g(n)) iff f (n) = O (g(n) loge g(n)) for some e > 0

Example

n× log n× log log n = O˜(n)

⇝ Quasi-linear cost.

8

Asymptotics

poly-logarithmic notations (soft-O)
f (n) = O˜(g(n)) iff f (n) = O (g(n) loge g(n)) for some e > 0

Example

n× log n× log log n = O˜(n)

⇝ Quasi-linear cost.

8

Magnitudes

Linear or Exp time ?
Size of an integer n represented in base 2 : s = ⌈log2 n⌉ bits.

n = Θ(2s) = Θ(exp(s))

⇝ any algorithm working on an integer n with cost linear in n takes actually an exponential
time in the input size.

9

Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz⇝ 3× 109 × 4× 2 int64 t mult. per sec.

• Video projector is at 3m of the screen: 300 000km/s⇝ 10−8s

• 240 multiplications done before the light reaches the screen

• Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s
• Number of electrons in the universe : ≈ 1064 ≈ 2213

• Costs for algorithms working with 128 bit integers
Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 293.5s

⇝ 293.5s ≈ 234.5× ≈ 2.4× 1010× the age of the universe !

10

Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz⇝ 3× 109 × 4× 2 int64 t mult. per sec.

• Video projector is at 3m of the screen: 300 000km/s⇝ 10−8s

• 240 multiplications done before the light reaches the screen

• Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s

• Number of electrons in the universe : ≈ 1064 ≈ 2213

• Costs for algorithms working with 128 bit integers
Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 293.5s

⇝ 293.5s ≈ 234.5× ≈ 2.4× 1010× the age of the universe !

10

Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz⇝ 3× 109 × 4× 2 int64 t mult. per sec.

• Video projector is at 3m of the screen: 300 000km/s⇝ 10−8s

• 240 multiplications done before the light reaches the screen

• Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s
• Number of electrons in the universe : ≈ 1064 ≈ 2213

• Costs for algorithms working with 128 bit integers
Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 293.5s

⇝ 293.5s ≈ 234.5× ≈ 2.4× 1010× the age of the universe !

10

Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz⇝ 3× 109 × 4× 2 int64 t mult. per sec.

• Video projector is at 3m of the screen: 300 000km/s⇝ 10−8s

• 240 multiplications done before the light reaches the screen

• Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s
• Number of electrons in the universe : ≈ 1064 ≈ 2213

• Costs for algorithms working with 128 bit integers
Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 293.5s

⇝ 293.5s ≈ 234.5× ≈ 2.4× 1010× the age of the universe !

10

Outline

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory 11

Outline

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory 12

Integer arithmetic

Fixed precision 32, 64 bits

(24, 53)

: word size integers

uint32 t: [0..232 − 1]

int32 t: [−231 + 1..231 − 1]

uint64 t: [0..264 − 1]

int64 t: [−263 + 1..263 − 1]

Atomic cost:

• add, mul, sub: ≈ 1 clock cycle; • div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:

float: [−223 + 1..223 − 1]

double: [−252 + 1..252 − 1]

⇝ faster on most CPUs, but slightly smaller representation capacity

⇝ used for small integers; small finite fields/rings, ...

13

Integer arithmetic

Fixed precision 32, 64 bits (24, 53): word size integers

uint32 t: [0..232 − 1]

int32 t: [−231 + 1..231 − 1]

uint64 t: [0..264 − 1]

int64 t: [−263 + 1..263 − 1]

Atomic cost:

• add, mul, sub: ≈ 1 clock cycle; • div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:

float: [−223 + 1..223 − 1]

double: [−252 + 1..252 − 1]

⇝ faster on most CPUs, but slightly smaller representation capacity

⇝ used for small integers; small finite fields/rings, ...

13

Integer arithmetic

Fixed precision 32, 64 bits (24, 53): word size integers

uint32 t: [0..232 − 1]

int32 t: [−231 + 1..231 − 1]

uint64 t: [0..264 − 1]

int64 t: [−263 + 1..263 − 1]

Atomic cost:

• add, mul, sub: ≈ 1 clock cycle; • div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:

float: [−223 + 1..223 − 1]

double: [−252 + 1..252 − 1]

⇝ faster on most CPUs, but slightly smaller representation capacity

⇝ used for small integers; small finite fields/rings, ... 13

Integer arithmetic

Multi-precision

• No native hardware support

• Software emulation: C/C++ libraries GMP/MPIR:
⇝ vectors of 64 bits unsigned words (called limbs)

...

64 bits 64 bits

uint64_t uint64_t

Basic arithmetic no longer have unit cost:
⇝ depend on the number of limbs

s = #of limbs = (log2 n)/64 = log264 n

14

Multiprecision Integer arithmetic

Addition O (s)

Multip.

Classic

s < 32 words

O
(
s2
)

Karatsuba 32 < s < 256 O
(
s1.585

)
Toom-Cook O

(
s1.465

)
FFT s > 10000 words O (s log s) = O˜(s)

Division O
(
s2
)

O (Mult(s)) = O˜(s)

GCD
Euclidean Alg. O

(
s2
)

Fast Euclid. Alg. O (M(s) log s) = O˜(s)

15

Multiprecision Integer arithmetic

Addition O (s)

Multip.

Classic s < 32 words O
(
s2
)

Karatsuba 32 < s < 256 O
(
s1.585

)
Toom-Cook O

(
s1.465

)
FFT s > 10000 words O (s log s) = O˜(s)

Division O
(
s2
)

O (Mult(s)) = O˜(s)

GCD
Euclidean Alg. O

(
s2
)

Fast Euclid. Alg. O (M(s) log s) = O˜(s)

15

A swiss army knife for computing costs of divide and conquer algorithms

Theorem (Master Theorem)
Consider a divide and conquer algorithm, dividing the input in b parts of equal size, and
making a recursive calls. Define α = logb a. If its cost satisfies{

C(n) = aC(n
b) + f (n)

C(1) = c

then

1. If f (n) = O (nα−ϵ) for some ϵ > 0 then C(n) = Θ(nα)

2. If f (n) = Θ(nα) then C(n) = Θ(nα log n)

3. If f (n) = Ω(nα+ϵ) for some ϵ > 0 and af (n/b) ≤ kf (n) with k < 1 then C(n) = Θ(f (n))

16

The Euclidean Division

Theorem
For every a, b ∈ Z, there is a unique pair q, r ∈ Z with 0 ≤ r < |b| such that a = bq + r.

Proof by a slow algorithm.

begin
q1 ← 0;
r1 ← a;
ui← 1;
while ri ≥ 0 do

ri+1 ← ri − b;
qi+1 ← qi + 1;
i = i + 1;

return (q, r)← (qi, ri)

• q is the quotient

• r is the remainder, also called the
residue of a modulo b, denoted by
r = a mod b

• Cost: nb of iter.: q ≈ a/b ≈ 2sa−sb

⇝ C(sa, sb) = O (sa2sa−sb)

• using elementary school division
algorithm C(sa, sb) = O (sb(sa − sb))

17

The Euclidean Division

Theorem
For every a, b ∈ Z, there is a unique pair q, r ∈ Z with 0 ≤ r < |b| such that a = bq + r.

Proof by a slow algorithm.

begin
q1 ← 0;
r1 ← a;
ui← 1;
while ri ≥ 0 do

ri+1 ← ri − b;
qi+1 ← qi + 1;
i = i + 1;

return (q, r)← (qi, ri)

• q is the quotient

• r is the remainder, also called the
residue of a modulo b, denoted by
r = a mod b

• Cost: nb of iter.: q ≈ a/b ≈ 2sa−sb

⇝ C(sa, sb) = O (sa2sa−sb)

• using elementary school division
algorithm C(sa, sb) = O (sb(sa − sb))

17

The Euclidean Division

Theorem
For every a, b ∈ Z, there is a unique pair q, r ∈ Z with 0 ≤ r < |b| such that a = bq + r.

Proof by a slow algorithm.

begin
q1 ← 0;
r1 ← a;
ui← 1;
while ri ≥ 0 do

ri+1 ← ri − b;
qi+1 ← qi + 1;
i = i + 1;

return (q, r)← (qi, ri)

• q is the quotient

• r is the remainder, also called the
residue of a modulo b, denoted by
r = a mod b

• Cost: nb of iter.: q ≈ a/b ≈ 2sa−sb

⇝ C(sa, sb) = O (sa2sa−sb)

• using elementary school division
algorithm C(sa, sb) = O (sb(sa − sb))

17

The Euclidean Division

Theorem
For every a, b ∈ Z, there is a unique pair q, r ∈ Z with 0 ≤ r < |b| such that a = bq + r.

Proof by a slow algorithm.

begin
q1 ← 0;
r1 ← a;
ui← 1;
while ri ≥ 0 do

ri+1 ← ri − b;
qi+1 ← qi + 1;
i = i + 1;

return (q, r)← (qi, ri)

• q is the quotient

• r is the remainder, also called the
residue of a modulo b, denoted by
r = a mod b

• Cost: nb of iter.: q ≈ a/b ≈ 2sa−sb

⇝ C(sa, sb) = O (sa2sa−sb)

• using elementary school division
algorithm C(sa, sb) = O (sb(sa − sb))

17

The Euclidean Division

Theorem
For every a, b ∈ Z, there is a unique pair q, r ∈ Z with 0 ≤ r < |b| such that a = bq + r.

Proof by a slow algorithm.

begin
q1 ← 0;
r1 ← a;
ui← 1;
while ri ≥ 0 do

ri+1 ← ri − b;
qi+1 ← qi + 1;
i = i + 1;

return (q, r)← (qi, ri)

• q is the quotient

• r is the remainder, also called the
residue of a modulo b, denoted by
r = a mod b

• Cost: nb of iter.: q ≈ a/b ≈ 2sa−sb

⇝ C(sa, sb) = O (sa2sa−sb)

• using elementary school division
algorithm C(sa, sb) = O (sb(sa − sb))

17

GCD and Euclidean Algorithm

Definition (GCD = Greatest Common Divisor)
The GCD of a and b is the greatest integer g dividing both a and b

Example
• GCD(12, 16) = 4

• GCD(12, 17) = 1⇝ 12 and 17 are coprime

18

GCD and Euclidean Algorithm

Property

• GCD(−a, b) = GCD(a, b))

• GCD(a, b) = GCD(b, a))

• GCD(a, b) = GCD(a− b, b)

• GCD(a, b) = GCD(a mod b, b)

where a mod b is the remainder of the euclidean division of a by b.

19

GCD and Euclidean Algorithm

Problem
Given a, b ∈ Z, find g = GCD(a, b)

begin
r0 = a;
r1 = b;
while ri ̸= 0 do

ri+1 = ri−1 mod ri ; /* ri−1 = riqi + ri+1 */

i = i + 1;

• The last ri ̸= 0 is the gcd of a and b

• invariant uia + vib = ri for all i⇝ Bezout coefficients

20

GCD and Euclidean Algorithm

Bezout relation
If g = GCD(a, b), then there exist u, v ∈ Z, coprime such that g = ua + vb

begin
r0 = a, u0 = 1, v0 = 0;
r1 = b, u1 = 0, v1 = 1;
while ri ̸= 0 do

ri+1 = ri−1 mod ri ; /* ri−1 = riqi + ri+1 */

ui+1 = ui−1 − qiui;
vi+1 = vi−1 − qivi;
i = i + 1;

• The last ri ̸= 0 is the gcd of a and b
• invariant uia + vib = ri for all i⇝ Bezout coefficients

20

Outline

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory 21

Finite ring and fields: Z/nZ

Integers modulo n

Z/nZ = {0, 1, . . . , n− 1} equiped with addition et mult. modulo n.

• use integer arithmetic
• reduce the results mod n

Addition c = a + b;

if (c >= n) c = c - n;

Opposé if (a) c = n - a; else c = a;

Multiplication c = a * b;

if (c >= n) c = c % n; // c modulo n

Inverse . . .

22

Finite ring and fields: Z/nZ

Integers modulo n

Z/nZ = {0, 1, . . . , n− 1} equiped with addition et mult. modulo n.

• use integer arithmetic
• reduce the results mod n

Addition c = a + b;

if (c >= n) c = c - n;

Opposé if (a) c = n - a; else c = a;

Multiplication c = a * b;

if (c >= n) c = c % n; // c modulo n

Inverse . . .
22

Modular Inverse

Modulo n any non-zero element does not necessarily have an inverse: 2−1 mod 4

Computing the modular inverse a−1 mod n

GCD(a, n) = 1⇔ ua + vn = 1⇔ ua = 1 mod n⇔ a−1 = u mod n.

Corollary
Z/pZ is a field iff p is prime

Corollary
Any finite field is isomorphic to either

• Z/pZ for a prime p or

• Z/pZ[X]/(Q) where Q ∈ Z/pZ[X] is irreducible

23

Outline

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory 24

The Chinese remainder theorem

Problem (Sunzi Suanjing)

Find n knowing that


n mod 3 = 2,
n mod 5 = 3,
n mod 7 = 2

⇝ n = 23 + 105k for k ∈ Z.
⇝ unique integer between 0 and 104

Theorem
If p, q are coprime and x, y are residues modulo p and q. Then ∃!A ∈ Z+,A < pq, such that{

A = x mod p
A = y mod q

25

The Chinese remainder theorem

Problem (Sunzi Suanjing)

Find n knowing that


n mod 3 = 2,
n mod 5 = 3,
n mod 7 = 2

⇝ n = 23 + 105k for k ∈ Z.
⇝ unique integer between 0 and 104

Theorem
If p, q are coprime and x, y are residues modulo p and q. Then ∃!A ∈ Z+,A < pq, such that{

A = x mod p
A = y mod q

25

The Chinese remainder theorem

Theorem (Alternative formulation)
If p, q are coprime, then there is an isomorphism between the rings

Z/pZ× Z/qZ ≡ Z/(pq)Z.

Isomorphism:

f : Z/(pq)Z → Z/pZ× Z/qZ
n 7→ (n mod p, n mod q)

f−1 : Z/pZ× Z/qZ → Z/(pq)Z
(x, y) 7→ xq(q−1 mod p) + yp(p−1 mod q) mod pq

26

The Chinese remainder theorem

Theorem (Alternative formulation)
If p, q are coprime, then there is an isomorphism between the rings

Z/pZ× Z/qZ ≡ Z/(pq)Z.

Isomorphism:

f : Z/(pq)Z → Z/pZ× Z/qZ
n 7→ (n mod p, n mod q)

f−1 : Z/pZ× Z/qZ → Z/(pq)Z
(x, y) 7→ xq(q−1 mod p) + yp(p−1 mod q) mod pq

26

The Chinese remainder theorem

Theorem
If m1, . . . ,mk are pairwise relatively prime,

Z/m1Z× · · · × Z/mkZ ≡ Z/(m1 . . .mk)Z.

Isomorphism:

f : Z/(m1 . . .mk)Z → Z/m1Z× · · · × Z/mkZ
n 7→ (n mod m1, . . . ,m mod mk)

f−1 : Z/m1Z× · · · × Z/mkZ → Z/(m1 . . .mk)Z
(x1, . . . , xk) 7→

∑k
i=1 xiΠiYi mod Π

where


Π =

∏k
i=1 mi

Πi = Π/mi

Yi = Π−1
i mod mi

27

The Chinese Remainder Theorem

Theorem (Alternative formulation)
If m1, . . . ,mk are pairwise relatively prime and a1, . . . , ak are residues modulo resp.
m1, . . . ,mk. Then ∃!A ∈ Z+,A <

∏k
i=1 mi, such that

A = ai mod mi ∀i = 1 . . . k.

28

Analogy with the polynomials

Over the ring of polynomials K[X] (for any field K),

P(a) = P mod (X − a)

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
y = P mod (X − a) y = N mod m
y = P(a) y = “Evaluation” of N in m

Interpolation:

P =
∑k

i=1 yi

∏
j ̸=i(X−aj)∏
j ̸=i(ai−aj)

N =
∑k

i=1 yi
∏

j̸=i mj(
∏

j ̸=i mj)
−1[mi]

29

Analogy with the polynomials

Over the ring of polynomials K[X] (for any field K),

P(a) = P mod (X − a)

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
y = P mod (X − a) y = N mod m
y = P(a) y = “Evaluation” of N in m

Interpolation:

P =
∑k

i=1 yi

∏
j ̸=i(X−aj)∏
j ̸=i(ai−aj)

N =
∑k

i=1 yi
∏

j̸=i mj(
∏

j ̸=i mj)
−1[mi]

29

Outline

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Algebraic structures

Finite groups

Galois fields

Coding theory 30

Outline

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Algebraic structures

Finite groups

Galois fields

Coding theory 31

Groups, Rings, Fields

Definition (informally)

A group (G, ∗, 1): is a set G with an associative law ∗ such that

• 1 is a neutral element x ∗ 1 = 1 ∗ x = x
• every element of G is invertible: ∀x ∈ G∃y ∈ G, x ∗ y = y ∗ x = 1
• Examples: (Z,+, 0); (Q \ {0},×, 1)

A ring (R,+,×, 0, 1) is

• a group (R,+, 0)
• with an associative law × with neutral element 1.
• such that 0 × x = 0
• Examples: (Z,+,×, 0, 1); (Z/nZ,+,×, 0, 1); (Z[X],+,×, 0, 1)

A field (F,+,×, 0, 1) is

• a ring (F,+,×, 0, 1)
• where every element except 0 has an inverse for ×
• equivalently such that (F \ {0},×, 1) is a group.
• Examples: (Q,+,×, 0, 1); (Z/pZ,+,×, 0, 1) for p prime

32

Groups, Rings, Fields

Definition (informally)

A group (G, ∗, 1): is a set G with an associative law ∗ such that

• 1 is a neutral element x ∗ 1 = 1 ∗ x = x
• every element of G is invertible: ∀x ∈ G∃y ∈ G, x ∗ y = y ∗ x = 1
• Examples: (Z,+, 0); (Q \ {0},×, 1)

A ring (R,+,×, 0, 1) is

• a group (R,+, 0)
• with an associative law × with neutral element 1.
• such that 0 × x = 0
• Examples: (Z,+,×, 0, 1); (Z/nZ,+,×, 0, 1); (Z[X],+,×, 0, 1)

A field (F,+,×, 0, 1) is

• a ring (F,+,×, 0, 1)
• where every element except 0 has an inverse for ×
• equivalently such that (F \ {0},×, 1) is a group.
• Examples: (Q,+,×, 0, 1); (Z/pZ,+,×, 0, 1) for p prime

32

Groups, Rings, Fields

Definition (informally)

A group (G, ∗, 1): is a set G with an associative law ∗ such that

• 1 is a neutral element x ∗ 1 = 1 ∗ x = x
• every element of G is invertible: ∀x ∈ G∃y ∈ G, x ∗ y = y ∗ x = 1
• Examples: (Z,+, 0); (Q \ {0},×, 1)

A ring (R,+,×, 0, 1) is

• a group (R,+, 0)
• with an associative law × with neutral element 1.
• such that 0 × x = 0
• Examples: (Z,+,×, 0, 1); (Z/nZ,+,×, 0, 1); (Z[X],+,×, 0, 1)

A field (F,+,×, 0, 1) is

• a ring (F,+,×, 0, 1)
• where every element except 0 has an inverse for ×
• equivalently such that (F \ {0},×, 1) is a group.
• Examples: (Q,+,×, 0, 1); (Z/pZ,+,×, 0, 1) for p prime 32

An example of a finite ring: Z/nZ

Z/nZ = {0, 1, . . . , n− 1} equiped with addition and mult. modulo n.

• (Z/nZ,+,×, 0, 1) is a ring
• not necessarily a field: e.g. n = pq
⇝ pq = 0 mod n
⇝ if p is invertible, then p−1pq = q = 0 mod n
⇝ neither p nor q have an inverse mod n

Theorem
(Z/nZ,+,×, 0, 1) is a field iff n is prime.

Constructive proof.
By the Extended Euclidean Algorithm

33

An example of a finite ring: Z/nZ

Z/nZ = {0, 1, . . . , n− 1} equiped with addition and mult. modulo n.

• (Z/nZ,+,×, 0, 1) is a ring
• not necessarily a field: e.g. n = pq
⇝ pq = 0 mod n
⇝ if p is invertible, then p−1pq = q = 0 mod n
⇝ neither p nor q have an inverse mod n

Theorem
(Z/nZ,+,×, 0, 1) is a field iff n is prime.

Constructive proof.
By the Extended Euclidean Algorithm

33

Multiplicative group of a ring

If (R,+,×, 0, 1) is a ring, not all elements of R are invertible for ×.

Definition (Multiplicative group of a ring R)
In a ring (R,+,×), the subset of the invertible elements w.r.t. × is a group, called the
multiplicative subgroup of R and denoted by R∗.

• If R is a field, any non-zero element is invertible,⇝ R∗ = R \ {0}
• (Z/nZ)∗ = {x ∈ Z/nZ s.t. GCD(x, n) = 1}

34

Multiplicative group of a ring

If (R,+,×, 0, 1) is a ring, not all elements of R are invertible for ×.

Definition (Multiplicative group of a ring R)
In a ring (R,+,×), the subset of the invertible elements w.r.t. × is a group, called the
multiplicative subgroup of R and denoted by R∗.

• If R is a field, any non-zero element is invertible,⇝ R∗ = R \ {0}
• (Z/nZ)∗ = {x ∈ Z/nZ s.t. GCD(x, n) = 1}

34

Outline

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Algebraic structures

Finite groups

Galois fields

Coding theory 35

Lagrange, Euler, Fermat

Definition

finite group: a group with a finite number of elements

order of an element x: o(x) = #{xi, i ∈ Z}

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: G = {gi, i ∈ Z} for some g ∈ G

Theorem (Lagrange)

For any finite group (G,×, 1) and any a ∈ G, we have a#G = 1.

Corollary
The order of any element divides that of the its group: ∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)
If H is a sub-group of G, then #H|#G

Property
Any sub-group H of a cyclic group G is cyclic.

36

Lagrange, Euler, Fermat

Definition

finite group: a group with a finite number of elements

order of an element x: o(x) = #{xi, i ∈ Z}

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: G = {gi, i ∈ Z} for some g ∈ G

Theorem (Lagrange)

For any finite group (G,×, 1) and any a ∈ G, we have a#G = 1.

Corollary
The order of any element divides that of the its group: ∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)
If H is a sub-group of G, then #H|#G

Property
Any sub-group H of a cyclic group G is cyclic.

36

Lagrange, Euler, Fermat

Definition

finite group: a group with a finite number of elements

order of an element x: o(x) = #{xi, i ∈ Z}

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: G = {gi, i ∈ Z} for some g ∈ G

Theorem (Lagrange)

For any finite group (G,×, 1) and any a ∈ G, we have a#G = 1.

Corollary
The order of any element divides that of the its group: ∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)
If H is a sub-group of G, then #H|#G

Property
Any sub-group H of a cyclic group G is cyclic.

36

Lagrange, Euler, Fermat

Definition

finite group: a group with a finite number of elements

order of an element x: o(x) = #{xi, i ∈ Z}

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: G = {gi, i ∈ Z} for some g ∈ G

Theorem (Lagrange)

For any finite group (G,×, 1) and any a ∈ G, we have a#G = 1.

Corollary
The order of any element divides that of the its group: ∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)
If H is a sub-group of G, then #H|#G

Property
Any sub-group H of a cyclic group G is cyclic. 36

Euler totient function

Definition

• Euler Totient: φ(n) = #(Z/nZ)∗

• Hence φ(n) = #{x ∈ Z/nZ,GCD(x, n) = 1}

Property

• φ(p) = (p− 1) for p prime

• φ(pk) = (p− 1)pk−1 for p prime

• φ(mn) = φ(m)φ(n) for GCD(m, n) = 1

Example: n =
∏k

i=1 pαi
i (prime factor decomposition)

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

37

Euler totient function

Definition

• Euler Totient: φ(n) = #(Z/nZ)∗

• Hence φ(n) = #{x ∈ Z/nZ,GCD(x, n) = 1}

Property

• φ(p) = (p− 1) for p prime

• φ(pk) = (p− 1)pk−1 for p prime

• φ(mn) = φ(m)φ(n) for GCD(m, n) = 1

Example: n =
∏k

i=1 pαi
i (prime factor decomposition)

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

37

Euler totient function

Definition

• Euler Totient: φ(n) = #(Z/nZ)∗

• Hence φ(n) = #{x ∈ Z/nZ,GCD(x, n) = 1}

Property

• φ(p) = (p− 1) for p prime

• φ(pk) = (p− 1)pk−1 for p prime

• φ(mn) = φ(m)φ(n) for GCD(m, n) = 1

Example: n =
∏k

i=1 pαi
i (prime factor decomposition)

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

37

Appliction to finite groups

Property
The number of generators in a cyclic group of order n is φ(n)

Proof.
If g is a generator. Then,

h is a generator ⇔ h = gi and g = hk ⇔ h = hik mod n ⇔ ik = 1 mod n.

38

Euler, Fermat

Theorem (Euler)

Let a, n ∈ Z. If GCD(a, n) = 1, then aφ(n) = 1 mod n.

Theorem (Fermat)
If p is prime, then ap = a mod p ∀a ∈ Z/pZ.

39

Théorème RSA

Theorem
For n = pq with p and q prime, then

∀k ∈ Z ∀a ∈ Z/nZ a1+kφ(n) = a mod n

Proof.
φ(n) = (p− 1)(q− 1)

• If a is invertible⇝ Fermat: aφ(n) = 1 mod n

• If a = 0 mod n⇝ trivial

• Otherwise:

modulo p: a invertible⇝ Euler (ap−1)q−1 = 1 mod p⇝ a1+kφ(n) = a mod p
modulo q: a = 0 mod q⇝ a1+kφ(n) = 0 = a mod q

Chinese Remainder Theorem⇝ aφ(n) = 1 mod n

40

Théorème RSA

Theorem
For n = pq with p and q prime, then

∀k ∈ Z ∀a ∈ Z/nZ a1+kφ(n) = a mod n

Proof.
φ(n) = (p− 1)(q− 1)

• If a is invertible⇝ Fermat: aφ(n) = 1 mod n

• If a = 0 mod n⇝ trivial

• Otherwise:

modulo p: a invertible⇝ Euler (ap−1)q−1 = 1 mod p⇝ a1+kφ(n) = a mod p
modulo q: a = 0 mod q⇝ a1+kφ(n) = 0 = a mod q

Chinese Remainder Theorem⇝ aφ(n) = 1 mod n
40

Outline

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Algebraic structures

Finite groups

Galois fields

Coding theory 41

Galois fields

Algebraic extensions
Consider a field (K,+,×), and a polynomial P ∈ K[X] of degree d.

• K[X]/(P) is the set of equivalence classes of K[X] modulo P.

• This is the set of the P ∈ K[X] with degree < d equipped with the following laws

Addition: S + T = S(X) +K[X] T(X) mod P
Multiplication: S× T = S(X)×K[X] T(X) mod P

• (K[X]/(P),+,×) is thus a commutative ring, called the quotient ring of K[X] by P.

Property
K[X]/(P) is a field iff P is irreducible over K[X].

Proof.
For all S ∈ K[X]/(P), GCD(S,P) = 1 hence ∃U,V,US + VP = 1 thus S is invertible and
U = S−1 mod P.

42

Galois fields

Algebraic extensions
Consider a field (K,+,×), and a polynomial P ∈ K[X] of degree d.

• K[X]/(P) is the set of equivalence classes of K[X] modulo P.

• This is the set of the P ∈ K[X] with degree < d equipped with the following laws

Addition: S + T = S(X) +K[X] T(X) mod P
Multiplication: S× T = S(X)×K[X] T(X) mod P

• (K[X]/(P),+,×) is thus a commutative ring, called the quotient ring of K[X] by P.

Property
K[X]/(P) is a field iff P is irreducible over K[X].

Proof.
For all S ∈ K[X]/(P), GCD(S,P) = 1 hence ∃U,V,US + VP = 1 thus S is invertible and
U = S−1 mod P.

42

Galois fields

Algebraic extensions
Consider a field (K,+,×), and a polynomial P ∈ K[X] of degree d.

• K[X]/(P) is the set of equivalence classes of K[X] modulo P.

• This is the set of the P ∈ K[X] with degree < d equipped with the following laws

Addition: S + T = S(X) +K[X] T(X) mod P
Multiplication: S× T = S(X)×K[X] T(X) mod P

• (K[X]/(P),+,×) is thus a commutative ring, called the quotient ring of K[X] by P.

Property
K[X]/(P) is a field iff P is irreducible over K[X].

Proof.
For all S ∈ K[X]/(P), GCD(S,P) = 1 hence ∃U,V,US + VP = 1 thus S is invertible and
U = S−1 mod P. 42

Extension fields (Galois fields)

Example

Over (Z/2Z)[X], let P = (X + 1)(X2 + X + 1) (non-irreducible).

• Then (Z/2Z)[X]/(P) is not a field: X + 1 is not invertible since
(X + 1)(X2 + X + 1) = 0

• But (Z/2Z)[X]/(X2 + X + 1) is a field since X2 + X + 1 is irreducible. Its
elements are {0, 1,X,X + 1}

Remark
This is a new finite field, with 4 elements (not of the form Z/pZ since p = 4 is not prime)

43

Extension fields (Galois fields)

Example

Over (Z/2Z)[X], let P = (X + 1)(X2 + X + 1) (non-irreducible).

• Then (Z/2Z)[X]/(P) is not a field: X + 1 is not invertible since
(X + 1)(X2 + X + 1) = 0

• But (Z/2Z)[X]/(X2 + X + 1) is a field since X2 + X + 1 is irreducible. Its
elements are {0, 1,X,X + 1}

Remark
This is a new finite field, with 4 elements (not of the form Z/pZ since p = 4 is not prime)

43

Extension fields (Galois fields)

Example

Over (Z/2Z)[X], let P = (X + 1)(X2 + X + 1) (non-irreducible).

• Then (Z/2Z)[X]/(P) is not a field: X + 1 is not invertible since
(X + 1)(X2 + X + 1) = 0

• But (Z/2Z)[X]/(X2 + X + 1) is a field since X2 + X + 1 is irreducible. Its
elements are {0, 1,X,X + 1}

Remark
This is a new finite field, with 4 elements (not of the form Z/pZ since p = 4 is not prime)

43

Finite fields

Property

Any finite field has a pk elements where p is prime and k ∈ Z>0.
p is called the characteristic of the field.

Up to an isomorphism, all the finite fields are thus

• either the Z/pZ with p a prime number
• or the Fp[X]/(Q) with p a prime number and Q an irreducible polynomial of

degree k over Fp[X].

Notation
Fq denotes the finite field with q elements (q is necessarily of the form q = pk with p prime
and k ∈ Z>0)

• Fp = Zp when p is prime

• Fpk = Zp[X]/(Q) for p prime and k = degQ

44

Finite fields

Property

Any finite field has a pk elements where p is prime and k ∈ Z>0.
p is called the characteristic of the field.

Up to an isomorphism, all the finite fields are thus

• either the Z/pZ with p a prime number
• or the Fp[X]/(Q) with p a prime number and Q an irreducible polynomial of

degree k over Fp[X].

Notation
Fq denotes the finite field with q elements (q is necessarily of the form q = pk with p prime
and k ∈ Z>0)

• Fp = Zp when p is prime

• Fpk = Zp[X]/(Q) for p prime and k = degQ

44

Finite fields

Property

Any finite field has a pk elements where p is prime and k ∈ Z>0.
p is called the characteristic of the field.

Up to an isomorphism, all the finite fields are thus

• either the Z/pZ with p a prime number
• or the Fp[X]/(Q) with p a prime number and Q an irreducible polynomial of

degree k over Fp[X].

Notation
Fq denotes the finite field with q elements (q is necessarily of the form q = pk with p prime
and k ∈ Z>0)

• Fp = Zp when p is prime

• Fpk = Zp[X]/(Q) for p prime and k = degQ 44

Multiplicative group of a finite field

Property
The multiplicative group G = (Fpk)∗ is cyclic

Proof.
Let q = pk. Let e, be the smallest positive integer s.t. ∀x ∈ G xe = 1.
Thus Xe − 1 has q− 1 roots in Fpk .
Thus e ≥ q− 1.
Hence there exists an element g ∈ G of order e generating all elements of G.

Definition
The generators of the cyclic group (Fpk)∗ are called primitive elements.

45

Multiplicative group of a finite field

Property
The multiplicative group G = (Fpk)∗ is cyclic

Proof.
Let q = pk. Let e, be the smallest positive integer s.t. ∀x ∈ G xe = 1.
Thus Xe − 1 has q− 1 roots in Fpk .
Thus e ≥ q− 1.
Hence there exists an element g ∈ G of order e generating all elements of G.

Definition
The generators of the cyclic group (Fpk)∗ are called primitive elements.

45

Multiplicative group of a finite field

Property
The multiplicative group G = (Fpk)∗ is cyclic

Proof.
Let q = pk. Let e, be the smallest positive integer s.t. ∀x ∈ G xe = 1.
Thus Xe − 1 has q− 1 roots in Fpk .
Thus e ≥ q− 1.
Hence there exists an element g ∈ G of order e generating all elements of G.

Definition
The generators of the cyclic group (Fpk)∗ are called primitive elements.

45

Primitive elements and polynomials

• A primitive element α ∈ F∗
pk has order pk − 1 ;

• it is a primitive (pk − 1)-th root of unity:{
αpk−1 = 1
αi ̸= 1 ∀0 < i < pk − 1

• Fpk is Fp to which a primitive (pk − 1)-th root of unity has been added (and all
elements induced by the + and × laws). Denoted by Fp(α).

• Let fα = Xk − fk−1 − · · · − f0 be the minimal polynomial of α: the monic polynomial
f ∈ Fp[X] with least degree such that f (α) = 0(⇔ αk = fk−1α

k−1 + · · ·+ f0).
Then Fp(α) ≡ Fp[X]/f

• Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not necessarily imply that
X generates (Fpk)∗.

• Those f which satisfy this property (X generates (Fpk)∗) are called primitive
polynomials

Example
Build F8 using a primitive polynomial

46

Primitive elements and polynomials

• A primitive element α ∈ F∗
pk has order pk − 1 ;

• it is a primitive (pk − 1)-th root of unity:{
αpk−1 = 1
αi ̸= 1 ∀0 < i < pk − 1

• Fpk is Fp to which a primitive (pk − 1)-th root of unity has been added (and all
elements induced by the + and × laws). Denoted by Fp(α).

• Let fα = Xk − fk−1 − · · · − f0 be the minimal polynomial of α: the monic polynomial
f ∈ Fp[X] with least degree such that f (α) = 0(⇔ αk = fk−1α

k−1 + · · ·+ f0).
Then Fp(α) ≡ Fp[X]/f

• Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not necessarily imply that
X generates (Fpk)∗.

• Those f which satisfy this property (X generates (Fpk)∗) are called primitive
polynomials

Example
Build F8 using a primitive polynomial

46

Primitive elements and polynomials

• A primitive element α ∈ F∗
pk has order pk − 1 ;

• it is a primitive (pk − 1)-th root of unity:{
αpk−1 = 1
αi ̸= 1 ∀0 < i < pk − 1

• Fpk is Fp to which a primitive (pk − 1)-th root of unity has been added (and all
elements induced by the + and × laws). Denoted by Fp(α).

• Let fα = Xk − fk−1 − · · · − f0 be the minimal polynomial of α: the monic polynomial
f ∈ Fp[X] with least degree such that f (α) = 0(⇔ αk = fk−1α

k−1 + · · ·+ f0).
Then Fp(α) ≡ Fp[X]/f

• Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not necessarily imply that
X generates (Fpk)∗.

• Those f which satisfy this property (X generates (Fpk)∗) are called primitive
polynomials

Example
Build F8 using a primitive polynomial

46

Primitive elements and polynomials

• A primitive element α ∈ F∗
pk has order pk − 1 ;

• it is a primitive (pk − 1)-th root of unity:{
αpk−1 = 1
αi ̸= 1 ∀0 < i < pk − 1

• Fpk is Fp to which a primitive (pk − 1)-th root of unity has been added (and all
elements induced by the + and × laws). Denoted by Fp(α).

• Let fα = Xk − fk−1 − · · · − f0 be the minimal polynomial of α: the monic polynomial
f ∈ Fp[X] with least degree such that f (α) = 0(⇔ αk = fk−1α

k−1 + · · ·+ f0).
Then Fp(α) ≡ Fp[X]/f

• Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not necessarily imply that
X generates (Fpk)∗.

• Those f which satisfy this property (X generates (Fpk)∗) are called primitive
polynomials

Example
Build F8 using a primitive polynomial

46

Primitive elements and polynomials

• A primitive element α ∈ F∗
pk has order pk − 1 ;

• it is a primitive (pk − 1)-th root of unity:{
αpk−1 = 1
αi ̸= 1 ∀0 < i < pk − 1

• Fpk is Fp to which a primitive (pk − 1)-th root of unity has been added (and all
elements induced by the + and × laws). Denoted by Fp(α).

• Let fα = Xk − fk−1 − · · · − f0 be the minimal polynomial of α: the monic polynomial
f ∈ Fp[X] with least degree such that f (α) = 0(⇔ αk = fk−1α

k−1 + · · ·+ f0).
Then Fp(α) ≡ Fp[X]/f

• Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not necessarily imply that
X generates (Fpk)∗.

• Those f which satisfy this property (X generates (Fpk)∗) are called primitive
polynomials

Example
Build F8 using a primitive polynomial

46

Primitive elements and polynomials

• A primitive element α ∈ F∗
pk has order pk − 1 ;

• it is a primitive (pk − 1)-th root of unity:{
αpk−1 = 1
αi ̸= 1 ∀0 < i < pk − 1

• Fpk is Fp to which a primitive (pk − 1)-th root of unity has been added (and all
elements induced by the + and × laws). Denoted by Fp(α).

• Let fα = Xk − fk−1 − · · · − f0 be the minimal polynomial of α: the monic polynomial
f ∈ Fp[X] with least degree such that f (α) = 0(⇔ αk = fk−1α

k−1 + · · ·+ f0).
Then Fp(α) ≡ Fp[X]/f

• Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not necessarily imply that
X generates (Fpk)∗.

• Those f which satisfy this property (X generates (Fpk)∗) are called primitive
polynomials

Example
Build F8 using a primitive polynomial

46

The Galois fields in practice

Essentially 2 types of implementations:

• polynomial
• logarithmic

The polynomial representation
Simply using the arithmetic of Fp[X] modulo Q:

• Every element is a polynomial of degree < k with coeffs over Fp

⇝ array of size k of elements of Z/pZ

• see representation of Z/pZ for the type of the coefficients (uint64 t, float,

double, ...)
• Case of p = 2: bit-packing technique (see next slide)

• Addition: remains of degree < k⇝ just arithmetic over Z/pZ

• Mutliplication: S× T mod Q⇝ euclidean division by Q.

47

The Galois fields in practice

Essentially 2 types of implementations:

• polynomial
• logarithmic

The polynomial representation
Simply using the arithmetic of Fp[X] modulo Q:

• Every element is a polynomial of degree < k with coeffs over Fp

⇝ array of size k of elements of Z/pZ

• see representation of Z/pZ for the type of the coefficients (uint64 t, float,

double, ...)
• Case of p = 2: bit-packing technique (see next slide)

• Addition: remains of degree < k⇝ just arithmetic over Z/pZ

• Mutliplication: S× T mod Q⇝ euclidean division by Q. 47

Bit-packing for binary fields

If p = 2:
• 1 bit = F2

• 1 byte = (F2)
8 ≡ F28

• 1 uint64 t = (F2)
64 ≡ F264 , etc

For instance F28

• char a: the binary repr. of a is the coefficient vector of P ∈ F2[X] of degree ≤ 7 s. t. P(2) = a
a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

• addition: bitwise XOR: a ∧ b

• mult: iterated application of mulByX

char mulByX (char a){

char b = a<<1;

if (a & 128) b ˆ= 29

return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29

48

Bit-packing for binary fields

If p = 2:
• 1 bit = F2

• 1 byte = (F2)
8 ≡ F28

• 1 uint64 t = (F2)
64 ≡ F264 , etc

For instance F28

• char a: the binary repr. of a is the coefficient vector of P ∈ F2[X] of degree ≤ 7 s. t. P(2) = a
a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

• addition: bitwise XOR: a ∧ b

• mult: iterated application of mulByX

char mulByX (char a){

char b = a<<1;

if (a & 128) b ˆ= 29

return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29

48

Bit-packing for binary fields

If p = 2:
• 1 bit = F2

• 1 byte = (F2)
8 ≡ F28

• 1 uint64 t = (F2)
64 ≡ F264 , etc

For instance F28

• char a: the binary repr. of a is the coefficient vector of P ∈ F2[X] of degree ≤ 7 s. t. P(2) = a
a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

• addition: bitwise XOR: a ∧ b

• mult: iterated application of mulByX

char mulByX (char a){

char b = a<<1;

if (a & 128) b ˆ= 29

return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29

48

Bit-packing for binary fields

If p = 2:
• 1 bit = F2

• 1 byte = (F2)
8 ≡ F28

• 1 uint64 t = (F2)
64 ≡ F264 , etc

For instance F28

• char a: the binary repr. of a is the coefficient vector of P ∈ F2[X] of degree ≤ 7 s. t. P(2) = a
a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

• addition: bitwise XOR: a ∧ b

• mult: iterated application of mulByX

char mulByX (char a){

char b = a<<1;

if (a & 128) b ˆ= 29

return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29

48

Logarithmic representation (Zech-log)

• Choose a generator g of (Fq)
∗

• Each element a ̸= 0 is represented by its discrete log. i s.t. a = gi.
• a = 0 is represented by a special value (e.g. q− 1)

• multiplication: a× b = gi × gj = gi+j

⇝ addition of the indices mod q− 1
⇝ requires to store conversion tables i 7→ gi and j = gi 7→ i

• addition: gi + gj = gi × (1 + gj−i)

⇝ requires to also store k 7→ ℓ s.t. gℓ = 1 + gk

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator
X is a simpler generator to compute with.
⇝ the polyn. Q such that (Fp[X]/(Q))∗ is generated by X are the primitive polynomials

49

Logarithmic representation (Zech-log)

• Choose a generator g of (Fq)
∗

• Each element a ̸= 0 is represented by its discrete log. i s.t. a = gi.
• a = 0 is represented by a special value (e.g. q− 1)
• multiplication: a× b = gi × gj = gi+j

⇝ addition of the indices mod q− 1
⇝ requires to store conversion tables i 7→ gi and j = gi 7→ i

• addition: gi + gj = gi × (1 + gj−i)

⇝ requires to also store k 7→ ℓ s.t. gℓ = 1 + gk

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator
X is a simpler generator to compute with.
⇝ the polyn. Q such that (Fp[X]/(Q))∗ is generated by X are the primitive polynomials

49

Logarithmic representation (Zech-log)

• Choose a generator g of (Fq)
∗

• Each element a ̸= 0 is represented by its discrete log. i s.t. a = gi.
• a = 0 is represented by a special value (e.g. q− 1)
• multiplication: a× b = gi × gj = gi+j

⇝ addition of the indices mod q− 1
⇝ requires to store conversion tables i 7→ gi and j = gi 7→ i

• addition: gi + gj = gi × (1 + gj−i)

⇝ requires to also store k 7→ ℓ s.t. gℓ = 1 + gk

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator
X is a simpler generator to compute with.
⇝ the polyn. Q such that (Fp[X]/(Q))∗ is generated by X are the primitive polynomials

49

Logarithmic representation (Zech-log)

• Choose a generator g of (Fq)
∗

• Each element a ̸= 0 is represented by its discrete log. i s.t. a = gi.
• a = 0 is represented by a special value (e.g. q− 1)
• multiplication: a× b = gi × gj = gi+j

⇝ addition of the indices mod q− 1
⇝ requires to store conversion tables i 7→ gi and j = gi 7→ i

• addition: gi + gj = gi × (1 + gj−i)

⇝ requires to also store k 7→ ℓ s.t. gℓ = 1 + gk

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator
X is a simpler generator to compute with.
⇝ the polyn. Q such that (Fp[X]/(Q))∗ is generated by X are the primitive polynomials

49

Logarithmic representation (Zech-log)

• Choose a generator g of (Fq)
∗

• Each element a ̸= 0 is represented by its discrete log. i s.t. a = gi.
• a = 0 is represented by a special value (e.g. q− 1)
• multiplication: a× b = gi × gj = gi+j

⇝ addition of the indices mod q− 1
⇝ requires to store conversion tables i 7→ gi and j = gi 7→ i

• addition: gi + gj = gi × (1 + gj−i)

⇝ requires to also store k 7→ ℓ s.t. gℓ = 1 + gk

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator
X is a simpler generator to compute with.
⇝ the polyn. Q such that (Fp[X]/(Q))∗ is generated by X are the primitive polynomials 49

Outline

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Coding theory

50

	Introduction
	Complexity analysis
	Computational Arithmetic
	Integer arithmetic
	Arithemtic of Integers modulo
	The Chinese Remainder Theorem

	Computational Algebra
	Algebraic structures
	Finite groups
	Galois fields

	Coding theory

