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Organization of the course

Content: computer algebra fundations for cryptology

• Computational aspects of integer arithmetic, finite groups, and finite fields.

• algorithms and complexity analysis
• software implementations

• Application to error correcting codes

• 11× 1.5h of CTD (mix of plenary lecture and tutorial)

• 2 TP (lab session) as home-work

Grading: average of the TP grades
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Introduction

Algebraic Computing

Computing: Algorithms, Complexity, Implementations
Security in cryptology relies on one-way functions: easy to compute, but hard to invert

Easy: cost analysis, fast software implementations

Hard: complexity theory and reductions, fast implementation of expensive attacks

Algebra: finite fields, finite groups, integer and polynomial arithmetic
A good source of one way functions:

• integer multiplication/factorization,

• exponentiation / discrete logarithm in a group, e.g. (Fq)
∗

• algebraic coding theory, etc
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Computational cost / complexity

How to guess the cost of the execution of an algorithm on a given instance?

• in time
• in space

Defining a cost model (simplifying assumptions)

• Define units: which operation has cost 1 ? Which data can be stored in space 1 ?

• Cost only depends on the input size (or a parameter related to it):

• uniform across all instances
• worst case analysis, (sometimes average case analysis)

• Asymptotic analysis : mostly care about large instances

=
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Asymptotics

Landau notation:

• f (n) = O(g(n)) iff f (n) ≤ Kg(n) ∀ n ≥ n0 for some K > 0 and n0 ≥ 0

• f (n) = Ω(g(n)) iff g(n) = O (f (n))

• f (n) = Θ(g(n)) iff f (n) = O (g(n)) and g(n) = O (f (n))

Equivalently, f (n) = O(g(n)) if f (n)/g(n) is bounded by a constant for all n
sufficiently large.

Example
2n3 − 3n2 log n + 5n + 12 = Θ(n3)

n + 1 = O(
1

1000
n)

n log n = O(n2)

n2 + 100000n1.9 = Ω(n2)

(3n + 1) log2 n ̸= O(n log n)

2n ̸= O(nk) for any k ∈ Z
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Asymptotics

poly-logarithmic notations (soft-O)
f (n) = O˜(g(n)) iff f (n) = O (g(n) loge g(n)) for some e > 0

Example

n× log n× log log n = O˜(n)

⇝ Quasi-linear cost.
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Magnitudes

Linear or Exp time ?
Size of an integer n represented in base 2 : s = ⌈log2 n⌉ bits.

n = Θ(2s) = Θ(exp(s))

⇝ any algorithm working on an integer n with cost linear in n takes actually an exponential
time in the input size.
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Orders of magnitude in practice

Nowadays’ computers are quite fast

Speed of a PC: 3GHz⇝ 3× 109 × 4× 2 int64 t mult. per sec.

• Video projector is at 3m of the screen: 300 000km/s⇝ 10−8s

• 240 multiplications done before the light reaches the screen

• Age of the universe : 15 billion × 365× 24× 3600 ≈ 5.1017s ≈ 259s
• Number of electrons in the universe : ≈ 1064 ≈ 2213

• Costs for algorithms working with 128 bit integers
Cost s s2 s3 s4 n = 2s

Nb of ops 128 16 384 2 · 106 3 · 108 1039

Time on a 2.5Ghz PC 5.3ns 0.68µs 87.4µs 11.2ms 293.5s

⇝ 293.5s ≈ 234.5× ≈ 2.4× 1010× the age of the universe !
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Integer arithmetic

Fixed precision 32, 64 bits

(24, 53)

: word size integers

uint32 t: [0..232 − 1]

int32 t: [−231 + 1..231 − 1]

uint64 t: [0..264 − 1]

int64 t: [−263 + 1..263 − 1]

Atomic cost:

• add, mul, sub: ≈ 1 clock cycle; • div, mod : ≈ 10 clock cycles

Alternatively, one can store integers on floating point types:

float: [−223 + 1..223 − 1]

double: [−252 + 1..252 − 1]

⇝ faster on most CPUs, but slightly smaller representation capacity

⇝ used for small integers; small finite fields/rings, ...
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Integer arithmetic

Multi-precision

• No native hardware support

• Software emulation: C/C++ libraries GMP/MPIR:
⇝ vectors of 64 bits unsigned words (called limbs)

...

64 bits 64 bits

uint64_t uint64_t

Basic arithmetic no longer have unit cost:
⇝ depend on the number of limbs

s = #of limbs = (log2 n)/64 = log264 n

14



Multiprecision Integer arithmetic

Addition O (s)

Multip.

Classic

s < 32 words

O
(
s2
)

Karatsuba 32 < s < 256 O
(
s1.585

)
Toom-Cook O

(
s1.465

)
FFT s > 10000 words O (s log s) = O˜(s)

Division O
(
s2
)

O (Mult(s)) = O˜(s)

GCD
Euclidean Alg. O

(
s2
)

Fast Euclid. Alg. O (M(s) log s) = O˜(s)
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A swiss army knife for computing costs of divide and conquer algorithms

Theorem (Master Theorem)
Consider a divide and conquer algorithm, dividing the input in b parts of equal size, and
making a recursive calls. Define α = logb a. If its cost satisfies{

C(n) = aC( n
b ) + f (n)

C(1) = c

then

1. If f (n) = O (nα−ϵ) for some ϵ > 0 then C(n) = Θ(nα)

2. If f (n) = Θ(nα) then C(n) = Θ(nα log n)

3. If f (n) = Ω(nα+ϵ) for some ϵ > 0 and af (n/b) ≤ kf (n) with k < 1 then C(n) = Θ(f (n))

16



The Euclidean Division

Theorem
For every a, b ∈ Z, there is a unique pair q, r ∈ Z with 0 ≤ r < |b| such that a = bq + r.

Proof by a slow algorithm.

begin
q1 ← 0;
r1 ← a;
ui← 1;
while ri ≥ 0 do

ri+1 ← ri − b;
qi+1 ← qi + 1;
i = i + 1;

return (q, r)← (qi, ri)

• q is the quotient

• r is the remainder, also called the
residue of a modulo b, denoted by
r = a mod b

• Cost: nb of iter.: q ≈ a/b ≈ 2sa−sb

⇝ C(sa, sb) = O (sa2sa−sb)

• using elementary school division
algorithm C(sa, sb) = O (sb(sa − sb))
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GCD and Euclidean Algorithm

Definition (GCD = Greatest Common Divisor)
The GCD of a and b is the greatest integer g dividing both a and b

Example
• GCD(12, 16) = 4

• GCD(12, 17) = 1⇝ 12 and 17 are coprime

18



GCD and Euclidean Algorithm

Property

• GCD(−a, b) = GCD(a, b))

• GCD(a, b) = GCD(b, a))

• GCD(a, b) = GCD(a− b, b)

• GCD(a, b) = GCD(a mod b, b)

where a mod b is the remainder of the euclidean division of a by b.

19



GCD and Euclidean Algorithm

Problem
Given a, b ∈ Z, find g = GCD(a, b)

begin
r0 = a;
r1 = b;
while ri ̸= 0 do

ri+1 = ri−1 mod ri ; /* ri−1 = riqi + ri+1 */

i = i + 1;

• The last ri ̸= 0 is the gcd of a and b

• invariant uia + vib = ri for all i⇝ Bezout coefficients

20



GCD and Euclidean Algorithm

Bezout relation
If g = GCD(a, b), then there exist u, v ∈ Z, coprime such that g = ua + vb

begin
r0 = a, u0 = 1, v0 = 0;
r1 = b, u1 = 0, v1 = 1;
while ri ̸= 0 do

ri+1 = ri−1 mod ri ; /* ri−1 = riqi + ri+1 */

ui+1 = ui−1 − qiui;
vi+1 = vi−1 − qivi;
i = i + 1;

• The last ri ̸= 0 is the gcd of a and b
• invariant uia + vib = ri for all i⇝ Bezout coefficients

20



Outline

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory 21



Finite ring and fields: Z/nZ

Integers modulo n

Z/nZ = {0, 1, . . . , n− 1} equiped with addition et mult. modulo n.

• use integer arithmetic
• reduce the results mod n

Addition c = a + b;

if (c >= n) c = c - n;

Opposé if (a) c = n - a; else c = a;

Multiplication c = a * b;

if (c >= n) c = c % n; // c modulo n

Inverse . . .

22
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Modular Inverse

Modulo n any non-zero element does not necessarily have an inverse: 2−1 mod 4

Computing the modular inverse a−1 mod n

GCD(a, n) = 1⇔ ua + vn = 1⇔ ua = 1 mod n⇔ a−1 = u mod n.

Corollary
Z/pZ is a field iff p is prime

Corollary
Any finite field is isomorphic to either

• Z/pZ for a prime p or

• Z/pZ[X]/(Q) where Q ∈ Z/pZ[X] is irreducible

23
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The Chinese remainder theorem

Problem ( Sunzi Suanjing )

Find n knowing that


n mod 3 = 2,
n mod 5 = 3,
n mod 7 = 2

⇝ n = 23 + 105k for k ∈ Z.
⇝ unique integer between 0 and 104

Theorem
If p, q are coprime and x, y are residues modulo p and q. Then ∃!A ∈ Z+,A < pq, such that{

A = x mod p
A = y mod q

25
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The Chinese remainder theorem

Theorem (Alternative formulation)
If p, q are coprime, then there is an isomorphism between the rings

Z/pZ× Z/qZ ≡ Z/(pq)Z.

Isomorphism:

f : Z/(pq)Z → Z/pZ× Z/qZ
n 7→ (n mod p, n mod q)

f−1 : Z/pZ× Z/qZ → Z/(pq)Z
(x, y) 7→ xq(q−1 mod p) + yp(p−1 mod q) mod pq

26
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The Chinese remainder theorem

Theorem
If m1, . . . ,mk are pairwise relatively prime,

Z/m1Z× · · · × Z/mkZ ≡ Z/(m1 . . .mk)Z.

Isomorphism:

f : Z/(m1 . . .mk)Z → Z/m1Z× · · · × Z/mkZ
n 7→ (n mod m1, . . . ,m mod mk)

f−1 : Z/m1Z× · · · × Z/mkZ → Z/(m1 . . .mk)Z
(x1, . . . , xk) 7→

∑k
i=1 xiΠiYi mod Π

where


Π =

∏k
i=1 mi

Πi = Π/mi

Yi = Π−1
i mod mi

27



The Chinese Remainder Theorem

Theorem (Alternative formulation)
If m1, . . . ,mk are pairwise relatively prime and a1, . . . , ak are residues modulo resp.
m1, . . . ,mk. Then ∃!A ∈ Z+,A <

∏k
i=1 mi, such that

A = ai mod mi ∀i = 1 . . . k.

28



Analogy with the polynomials

Over the ring of polynomials K[X] (for any field K),

P(a) = P mod (X − a)

Evaluate P in a ↔ Reduce P modulo X − a

Polynomials Integers

Evaluation:
y = P mod (X − a) y = N mod m
y = P(a) y = “Evaluation” of N in m

Interpolation:

P =
∑k

i=1 yi

∏
j ̸=i(X−aj)∏
j ̸=i(ai−aj)

N =
∑k

i=1 yi
∏

j̸=i mj(
∏

j ̸=i mj)
−1[mi]
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Groups, Rings, Fields

Definition (informally)

A group (G, ∗, 1): is a set G with an associative law ∗ such that

• 1 is a neutral element x ∗ 1 = 1 ∗ x = x
• every element of G is invertible: ∀x ∈ G∃y ∈ G, x ∗ y = y ∗ x = 1
• Examples: (Z,+, 0); (Q \ {0},×, 1)

A ring (R,+,×, 0, 1) is

• a group (R,+, 0)
• with an associative law × with neutral element 1.
• such that 0 × x = 0
• Examples: (Z,+,×, 0, 1); (Z/nZ,+,×, 0, 1); (Z[X],+,×, 0, 1)

A field (F,+,×, 0, 1) is

• a ring (F,+,×, 0, 1)
• where every element except 0 has an inverse for ×
• equivalently such that (F \ {0},×, 1) is a group.
• Examples: (Q,+,×, 0, 1); (Z/pZ,+,×, 0, 1) for p prime

32



Groups, Rings, Fields

Definition (informally)

A group (G, ∗, 1): is a set G with an associative law ∗ such that

• 1 is a neutral element x ∗ 1 = 1 ∗ x = x
• every element of G is invertible: ∀x ∈ G∃y ∈ G, x ∗ y = y ∗ x = 1
• Examples: (Z,+, 0); (Q \ {0},×, 1)

A ring (R,+,×, 0, 1) is

• a group (R,+, 0)
• with an associative law × with neutral element 1.
• such that 0 × x = 0
• Examples: (Z,+,×, 0, 1); (Z/nZ,+,×, 0, 1); (Z[X],+,×, 0, 1)

A field (F,+,×, 0, 1) is

• a ring (F,+,×, 0, 1)
• where every element except 0 has an inverse for ×
• equivalently such that (F \ {0},×, 1) is a group.
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An example of a finite ring: Z/nZ

Z/nZ = {0, 1, . . . , n− 1} equiped with addition and mult. modulo n.

• (Z/nZ,+,×, 0, 1) is a ring
• not necessarily a field: e.g. n = pq
⇝ pq = 0 mod n
⇝ if p is invertible, then p−1pq = q = 0 mod n
⇝ neither p nor q have an inverse mod n

Theorem
(Z/nZ,+,×, 0, 1) is a field iff n is prime.

Constructive proof.
By the Extended Euclidean Algorithm
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Multiplicative group of a ring

If (R,+,×, 0, 1) is a ring, not all elements of R are invertible for ×.

Definition (Multiplicative group of a ring R)
In a ring (R,+,×), the subset of the invertible elements w.r.t. × is a group, called the
multiplicative subgroup of R and denoted by R∗.

• If R is a field, any non-zero element is invertible,⇝ R∗ = R \ {0}
• (Z/nZ)∗ = {x ∈ Z/nZ s.t. GCD(x, n) = 1}
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Lagrange, Euler, Fermat

Definition

finite group: a group with a finite number of elements

order of an element x: o(x) = #{xi, i ∈ Z}

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: G = {gi, i ∈ Z} for some g ∈ G

Theorem (Lagrange)

For any finite group (G,×, 1) and any a ∈ G, we have a#G = 1.

Corollary
The order of any element divides that of the its group: ∀a ∈ G, o(a)|#G

Theorem (Lagrange-v2)
If H is a sub-group of G, then #H|#G

Property
Any sub-group H of a cyclic group G is cyclic.
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Euler totient function

Definition

• Euler Totient: φ(n) = #(Z/nZ)∗

• Hence φ(n) = #{x ∈ Z/nZ,GCD(x, n) = 1}

Property

• φ(p) = (p− 1) for p prime

• φ(pk) = (p− 1)pk−1 for p prime

• φ(mn) = φ(m)φ(n) for GCD(m, n) = 1

Example: n =
∏k

i=1 pαi
i (prime factor decomposition)

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)
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Appliction to finite groups

Property
The number of generators in a cyclic group of order n is φ(n)

Proof.
If g is a generator. Then,

h is a generator ⇔ h = gi and g = hk ⇔ h = hik mod n ⇔ ik = 1 mod n.
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Euler, Fermat

Theorem (Euler)

Let a, n ∈ Z. If GCD(a, n) = 1, then aφ(n) = 1 mod n.

Theorem (Fermat)
If p is prime, then ap = a mod p ∀a ∈ Z/pZ.

39



Théorème RSA

Theorem
For n = pq with p and q prime, then

∀k ∈ Z ∀a ∈ Z/nZ a1+kφ(n) = a mod n

Proof.
φ(n) = (p− 1)(q− 1)

• If a is invertible⇝ Fermat: aφ(n) = 1 mod n

• If a = 0 mod n⇝ trivial

• Otherwise:

modulo p: a invertible⇝ Euler (ap−1)q−1 = 1 mod p⇝ a1+kφ(n) = a mod p
modulo q: a = 0 mod q⇝ a1+kφ(n) = 0 = a mod q

Chinese Remainder Theorem⇝ aφ(n) = 1 mod n
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Galois fields

Algebraic extensions
Consider a field (K,+,×), and a polynomial P ∈ K[X] of degree d.

• K[X]/(P) is the set of equivalence classes of K[X] modulo P.

• This is the set of the P ∈ K[X] with degree < d equipped with the following laws

Addition: S + T = S(X) +K[X] T(X) mod P
Multiplication: S× T = S(X)×K[X] T(X) mod P

• (K[X]/(P),+,×) is thus a commutative ring, called the quotient ring of K[X] by P.

Property
K[X]/(P) is a field iff P is irreducible over K[X].

Proof.
For all S ∈ K[X]/(P), GCD(S,P) = 1 hence ∃U,V,US + VP = 1 thus S is invertible and
U = S−1 mod P.
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Extension fields (Galois fields)

Example

Over (Z/2Z)[X], let P = (X + 1)(X2 + X + 1) (non-irreducible).

• Then (Z/2Z)[X]/(P) is not a field: X + 1 is not invertible since
(X + 1)(X2 + X + 1) = 0

• But (Z/2Z)[X]/(X2 + X + 1) is a field since X2 + X + 1 is irreducible. Its
elements are {0, 1,X,X + 1}

Remark
This is a new finite field, with 4 elements (not of the form Z/pZ since p = 4 is not prime)
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Finite fields

Property

Any finite field has a pk elements where p is prime and k ∈ Z>0.
p is called the characteristic of the field.

Up to an isomorphism, all the finite fields are thus

• either the Z/pZ with p a prime number
• or the Fp[X]/(Q) with p a prime number and Q an irreducible polynomial of

degree k over Fp[X].

Notation
Fq denotes the finite field with q elements (q is necessarily of the form q = pk with p prime
and k ∈ Z>0)

• Fp = Zp when p is prime

• Fpk = Zp[X]/(Q) for p prime and k = degQ
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Multiplicative group of a finite field

Property
The multiplicative group G = (Fpk)∗ is cyclic

Proof.
Let q = pk. Let e, be the smallest positive integer s.t. ∀x ∈ G xe = 1.
Thus Xe − 1 has q− 1 roots in Fpk .
Thus e ≥ q− 1.
Hence there exists an element g ∈ G of order e generating all elements of G.

Definition
The generators of the cyclic group (Fpk)∗ are called primitive elements.
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Primitive elements and polynomials

• A primitive element α ∈ F∗
pk has order pk − 1 ;

• it is a primitive (pk − 1)-th root of unity:{
αpk−1 = 1
αi ̸= 1 ∀0 < i < pk − 1

• Fpk is Fp to which a primitive (pk − 1)-th root of unity has been added (and all
elements induced by the + and × laws). Denoted by Fp(α).

• Let fα = Xk − fk−1 − · · · − f0 be the minimal polynomial of α: the monic polynomial
f ∈ Fp[X] with least degree such that f (α) = 0(⇔ αk = fk−1α

k−1 + · · ·+ f0).
Then Fp(α) ≡ Fp[X]/f

• Reciprocally, all construction of the form Fpk ≡ Fp[X]/f does not necessarily imply that
X generates (Fpk)∗.

• Those f which satisfy this property ( X generates (Fpk)∗) are called primitive
polynomials

Example
Build F8 using a primitive polynomial
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The Galois fields in practice

Essentially 2 types of implementations:

• polynomial
• logarithmic

The polynomial representation
Simply using the arithmetic of Fp[X] modulo Q:

• Every element is a polynomial of degree < k with coeffs over Fp

⇝ array of size k of elements of Z/pZ

• see representation of Z/pZ for the type of the coefficients (uint64 t, float,

double, ...)
• Case of p = 2: bit-packing technique (see next slide)

• Addition: remains of degree < k⇝ just arithmetic over Z/pZ

• Mutliplication: S× T mod Q⇝ euclidean division by Q.
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Bit-packing for binary fields

If p = 2:
• 1 bit = F2

• 1 byte = (F2)
8 ≡ F28

• 1 uint64 t = (F2)
64 ≡ F264 , etc

For instance F28

• char a: the binary repr. of a is the coefficient vector of P ∈ F2[X] of degree ≤ 7 s. t. P(2) = a
a 0 1 2 3 4 5 . . .

in binary 000000000 000000001 00000010 00000011 00000100 00000101 . . .

represents 0 1 x x + 1 x2 x2 + 1 . . .

• addition: bitwise XOR: a ∧ b

• mult: iterated application of mulByX

char mulByX (char a){

char b = a<<1;

if (a & 128) b ˆ= 29

return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29
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• addition: bitwise XOR: a ∧ b

• mult: iterated application of mulByX

char mulByX (char a){

char b = a<<1;

if (a & 128) b ˆ= 29

return b;

}

here X8 mod X8 + X4 + X3 + X2 + 1 = X4 + X3 + X2 + 1 ≡ 29
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Logarithmic representation (Zech-log)

• Choose a generator g of (Fq)
∗

• Each element a ̸= 0 is represented by its discrete log. i s.t. a = gi.
• a = 0 is represented by a special value (e.g. q− 1)

• multiplication: a× b = gi × gj = gi+j

⇝ addition of the indices mod q− 1
⇝ requires to store conversion tables i 7→ gi and j = gi 7→ i

• addition: gi + gj = gi × (1 + gj−i)

⇝ requires to also store k 7→ ℓ s.t. gℓ = 1 + gk

Exercise
Write the algorithm for the addition, using a precomputed table

Choosing a good generator
X is a simpler generator to compute with.
⇝ the polyn. Q such that (Fp[X]/(Q))∗ is generated by X are the primitive polynomials
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