Algebraic Algorithms for Cryptology

Clément PERNET M1 MoSIG / Info / AM

Organization of the course

Content: computer algebra fundations for cryptology

- Computational aspects of integer arithmetic, finite groups, and finite fields.
 - · algorithms and complexity analysis
 - · software implementations
- · Application to error correcting codes

Organization of the course

Content: computer algebra fundations for cryptology

- Computational aspects of integer arithmetic, finite groups, and finite fields.
 - · algorithms and complexity analysis
 - software implementations
- · Application to error correcting codes
- $11 \times 1.5h$ of CTD (mix of plenary lecture and tutorial)
- 2 TP (lab session) as home-work

Grading: average of the TP grades

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Coding theory

Algebraic Computing

Computing: Algorithms, Complexity, Implementations

Security in cryptology relies on one-way functions: easy to compute, but hard to invert

Easy: cost analysis, fast software implementations

Hard: complexity theory and reductions, fast implementation of expensive attacks

Algebraic Computing

Computing: Algorithms, Complexity, Implementations

Security in cryptology relies on one-way functions: easy to compute, but hard to invert

Easy: cost analysis, fast software implementations

Hard: complexity theory and reductions, fast implementation of expensive attacks

Algebra: finite fields, finite groups, integer and polynomial arithmetic

A good source of one way functions:

- integer multiplication/factorization,
- exponentiation / discrete logarithm in a group, e.g. $(\mathbb{F}_q)^*$
- algebraic coding theory, etc

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Coding theory

How to guess the cost of the execution of an algorithm on a given instance?

- in time
- in space

How to guess the cost of the execution of an algorithm on a given instance?

- in time
- in space

Defining a cost model (simplifying assumptions)

• Define units: which operation has cost 1 ? Which data can be stored in space 1 ?

=

How to guess the cost of the execution of an algorithm on a given instance?

- in time
- in space

Defining a cost model (simplifying assumptions)

- Define units: which operation has cost 1 ? Which data can be stored in space 1 ?
- Cost only depends on the input size (or a parameter related to it):
 - · uniform across all instances
 - worst case analysis, (sometimes average case analysis)

$$C(n) =$$

How to guess the cost of the execution of an algorithm on a given instance?

- in time
- in space

Defining a cost model (simplifying assumptions)

- Define units: which operation has cost 1 ? Which data can be stored in space 1 ?
- Cost only depends on the input size (or a parameter related to it):
 - · uniform across all instances
 - worst case analysis, (sometimes average case analysis)
- · Asymptotic analysis : mostly care about large instances

$$C(n) = O(n^2)$$

Asymptotics

Landau notation:

• f(n) = O(g(n)) iff $f(n) \le Kg(n) \ \forall \ n \ge n_0$ for some K > 0 and $n_0 \ge 0$

•
$$f(n) = \Omega(g(n))$$
 iff $g(n) = \mathcal{O}(f(n))$

• $f(n) = \Theta(g(n))$ iff $f(n) = \mathcal{O}(g(n))$ and $g(n) = \mathcal{O}(f(n))$

Equivalently, f(n) = O(g(n)) if f(n)/g(n) is bounded by a constant for all *n* sufficiently large.

Asymptotics

Landau notation:

- f(n) = O(g(n)) iff $f(n) \le Kg(n) \ \forall \ n \ge n_0$ for some K > 0 and $n_0 \ge 0$
- $f(n) = \Omega(g(n))$ iff $g(n) = \mathcal{O}(f(n))$
- $f(n) = \Theta(g(n))$ iff $f(n) = \mathcal{O}(g(n))$ and $g(n) = \mathcal{O}(f(n))$

Equivalently, f(n) = O(g(n)) if f(n)/g(n) is bounded by a constant for all *n* sufficiently large.

Example

$$2n^{3} - 3n^{2}\log n + 5n + 12 = \Theta(n^{3})$$

$$n + 1 = O(\frac{1}{1000}n)$$

$$n \log n = O(n^{2})$$

$$n^{2} + 100000n^{1.9} = \Omega(n^{2})$$

$$(3n + 1)\log^{2} n \neq O(n\log n)$$

$$2^{n} \neq O(n^{k}) \text{ for any } k \in \mathbb{Z}$$

poly-logarithmic notations (*soft-O*)

 $f(n) = \mathcal{O}^{\tilde{\ }}(g(n)) \text{ iff } f(n) = \mathcal{O}\left(g(n)\log^e g(n)\right) \text{ for some } e > 0$

poly-logarithmic notations (*soft-O*)

 $f(n) = \mathcal{O}^{\sim}(g(n)) \text{ iff } f(n) = \mathcal{O}\left(g(n)\log^e g(n)\right) \text{ for some } e > 0$

Example

$$n \times \log n \times \log \log n = \mathcal{O}(n)$$

→ Quasi-linear cost.

Linear or Exp time ?

Size of an integer *n* represented in base 2 : $s = \lceil \log_2 n \rceil$ bits.

$$n = \Theta(2^s) = \Theta(exp(s))$$

 \rightsquigarrow any algorithm working on an integer *n* with cost linear in *n* takes actually an exponential time in the input size.

Nowadays' computers are quite fast

Speed of a PC: 3GHz $\rightsquigarrow 3 \times 10^9 \times 4 \times 2$ int64_t mult. per sec.

- Video projector is at 3m of the screen: $300\,000 km/s \rightsquigarrow 10^{-8} s$
- · 240 multiplications done before the light reaches the screen

Nowadays' computers are quite fast

Speed of a PC: 3GHz $\rightsquigarrow 3 \times 10^9 \times 4 \times 2$ int64_t mult. per sec.

- Video projector is at 3m of the screen: $300\,000 km/s \rightsquigarrow 10^{-8} s$
- · 240 multiplications done before the light reaches the screen
- Age of the universe : 15 billion $\times 365 \times 24 \times 3600 \approx 5.10^{17} s \approx 2^{59} s$

Nowadays' computers are quite fast

Speed of a PC: 3GHz $\rightsquigarrow 3 \times 10^9 \times 4 \times 2$ int64_t mult. per sec.

- Video projector is at 3m of the screen: $300\,000 km/s \rightsquigarrow 10^{-8} s$
- · 240 multiplications done before the light reaches the screen
- Age of the universe : 15 billion $\times 365 \times 24 \times 3600 \approx 5.10^{17} s \approx 2^{59} s$
- Number of electrons in the universe : $\approx 10^{64} \approx 2^{213}$

Nowadays' computers are quite fast

Speed of a PC: 3GHz $\rightsquigarrow 3 \times 10^9 \times 4 \times 2$ int64_t mult. per sec.

- Video projector is at 3m of the screen: $300\,000 km/s \rightsquigarrow 10^{-8} s$
- · 240 multiplications done before the light reaches the screen
- Age of the universe : 15 billion $\times 365 \times 24 \times 3600 \approx 5.10^{17} s \approx 2^{59} s$
- Number of electrons in the universe : $\approx 10^{64} \approx 2^{213}$
- · Costs for algorithms working with 128 bit integers

	Cost	S	s^2	s^3	s^4	$n=2^s$
	Nb of ops					
	Time on a 2.5Ghz PC	5.3 <i>ns</i>	$0.68 \mu s$	$87.4 \mu s$	11.2 <i>ms</i>	$2^{93.5}s$
00.5	24.5					

 $\sim 2^{93.5}s \approx 2^{34.5} \times \approx 2.4 \times 10^{10} \times$ the age of the universe !

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory

Integer arithmetic

Fixed precision 32, 64 bits : word size integers

uint32_t: $[0..2^{32} - 1]$

int32_t: $[-2^{31} + 1..2^{31} - 1]$

Atomic cost:

• add, mul, sub: ≈ 1 clock cycle;

uint64_t: $[0..2^{64} - 1]$ int64_t: $[-2^{63} + 1..2^{63} - 1]$

- div, mod : ≈ 10 clock cycles

Fixed precision 32, 64 bits (24, 53): word size integers

uint32_t:
$$[0..2^{32} - 1]$$
 uint64_t: $[0..2^{64} - 1]$

int32_t: $[-2^{31} + 1..2^{31} - 1]$ int64_t: $[-2^{63} + 1..2^{63} - 1]$

Atomic cost:

• add, mul, sub: ≈ 1 clock cycle;

- div, mod :
$$\approx 10$$
 clock cycles

Alternatively, one can store integers on floating point types:

float:
$$[-2^{23} + 1..2^{23} - 1]$$

double: $[-2^{52} + 1..2^{52} - 1]$

 \rightsquigarrow faster on most CPUs, but slightly smaller representation capacity

Fixed precision 32, 64 bits (24, 53): word size integers

uint32_t:
$$[0..2^{32} - 1]$$
 uint64_t: $[0..2^{64} - 1]$

int32_t: $[-2^{31} + 1..2^{31} - 1]$ int64_t: $[-2^{63} + 1..2^{63} - 1]$

Atomic cost:

• add, mul, sub: ≈ 1 clock cycle;

- div, mod :
$$\approx 10~{\rm clock}~{\rm cycles}$$

Alternatively, one can store integers on floating point types:

float:
$$[-2^{23} + 1..2^{23} - 1]$$

double: $[-2^{52} + 1..2^{52} - 1]$

 \rightsquigarrow faster on most CPUs, but slightly smaller representation capacity

 \rightsquigarrow used for small integers; small finite fields/rings, ...

Integer arithmetic

Multi-precision

- · No native hardware support
- Software emulation: C/C++ libraries GMP/MPIR:
 vectors of 64 bits unsigned words (called limbs)

Basic arithmetic no longer have unit cost:

 \leadsto depend on the number of limbs

$$s = \#$$
of limbs $= (\log_2 n)/64 = \log_{2^{64}} n$

Multiprecision Integer arithmetic

Addition		$\mathcal{O}\left(s ight)$
	Classic	$\mathcal{O}\left(s^2\right)$
Multip.		
Division		$\mathcal{O}\left(s^2\right)$
GCD	Euclidean Alg.	$\mathcal{O}\left(s^{2}\right)$

Multiprecision Integer arithmetic

Addition			$\mathcal{O}\left(s ight)$
Multip.	Classic	s < 32 words	$\mathcal{O}\left(s^{2} ight)$
	Karatsuba	32 < s < 256	$\mathcal{O}\left(s^{1.585}\right)$
	Toom-Cook		$\mathcal{O}\left(s^{1.465}\right)$
	FFT	s > 10000 words	$\mathcal{O}\left(s\log s\right) = \mathcal{O}^{\sim}(s)$
Division			$\mathcal{O}\left(s^{2} ight)$
			$\mathcal{O}\left(Mult(s)\right) = \mathcal{O}^{\sim}(s)$
GCD	Euclidean Alg.		$\mathcal{O}\left(s^{2} ight)$
	Fast Euclid. Alg.		$\mathcal{O}(M(s)\log s) = \mathcal{O}^{\sim}(s)$

Theorem (Master Theorem)

Consider a divide and conquer algorithm, dividing the input in *b* parts of equal size, and making *a* recursive calls. Define $\alpha = \log_b a$. If its cost satisfies

$$\begin{cases} C(n) = aC(\frac{n}{b}) + f(n) \\ C(1) = c \end{cases}$$

then

1. If
$$f(n) = \mathcal{O}(n^{\alpha - \epsilon})$$
 for some $\epsilon > 0$ then $C(n) = \Theta(n^{\alpha})$ 2. If $f(n) = \Theta(n^{\alpha})$ then $C(n) = \Theta(n^{\alpha} \log n)$ 3. If $f(n) = \Omega(n^{\alpha + \epsilon})$ for some $\epsilon > 0$ and $af(n/b) \le kf(n)$ with $k \le 1$ then $C(n) = \Theta(f(n))$

Theorem

For every $a, b \in \mathbb{Z}$, there is a unique pair $q, r \in \mathbb{Z}$ with $0 \le r < |b|$ such that a = bq + r.

Theorem

For every $a, b \in \mathbb{Z}$, there is a unique pair $q, r \in \mathbb{Z}$ with $0 \le r < |b|$ such that a = bq + r.

Proof by a slow algorithm.

```
q_{1} \leftarrow 0;
r_{1} \leftarrow a;
ui \leftarrow 1;
while r_{i} \ge 0 do
\begin{bmatrix} r_{i+1} \leftarrow r_{i} - b; \\ q_{i+1} \leftarrow q_{i} + 1; \\ i = i + 1; \end{bmatrix}
return (q, r) \leftarrow (q_{i}, r_{i})
```

Theorem

For every $a, b \in \mathbb{Z}$, there is a unique pair $q, r \in \mathbb{Z}$ with $0 \le r < |b|$ such that a = bq + r.

Proof by a slow algorithm.

```
q_{1} \leftarrow 0;
r_{1} \leftarrow a;
ui \leftarrow 1;
while r_{i} \ge 0 do
\begin{bmatrix} r_{i+1} \leftarrow r_{i} - b; \\ q_{i+1} \leftarrow q_{i} + 1; \\ i = i + 1; \end{bmatrix}
return (q, r) \leftarrow (q_{i}, r_{i})
```

- q is the quotient
- r is the remainder, also called the residue of a modulo b, denoted by
 r = a mod b

Theorem

For every $a, b \in \mathbb{Z}$, there is a unique pair $q, r \in \mathbb{Z}$ with $0 \le r < |b|$ such that a = bq + r.

Proof by a slow algorithm.

```
q_{1} \leftarrow 0;
r_{1} \leftarrow a;
ui \leftarrow 1;
while r_{i} \ge 0 do
r_{i+1} \leftarrow r_{i} - b;
q_{i+1} \leftarrow q_{i} + 1;
i = i + 1;
return (q, r) \leftarrow (q_{i}, r_{i})
```

- q is the quotient
- r is the remainder, also called the residue of a modulo b, denoted by
 r = a mod b
- Cost: nb of iter.: $q \approx a/b \approx 2^{s_a-s_b}$ $\rightsquigarrow C(s_a, s_b) = O(s_a 2^{s_a-s_b})$

Theorem

For every $a, b \in \mathbb{Z}$, there is a unique pair $q, r \in \mathbb{Z}$ with $0 \le r < |b|$ such that a = bq + r.

Proof by a slow algorithm.

```
q_{1} \leftarrow 0;
r_{1} \leftarrow a;
ui \leftarrow 1;
while r_{i} \ge 0 do
r_{i+1} \leftarrow r_{i} - b;
q_{i+1} \leftarrow q_{i} + 1;
i = i + 1;
return (q, r) \leftarrow (q_{i}, r_{i})
```

- q is the quotient
- r is the remainder, also called the residue of a modulo b, denoted by
 r = a mod b
- Cost: nb of iter.: $q \approx a/b \approx 2^{s_a-s_b}$ $\rightsquigarrow C(s_a, s_b) = O(s_a 2^{s_a-s_b})$
- using elementary school division algorithm $C(s_a, s_b) = O(s_b(s_a - s_b))$

Definition (GCD = Greatest Common Divisor)

The GCD of a and b is the greatest integer g dividing both a and b

Example

- GCD(12, 16) = 4
- $GCD(12, 17) = 1 \rightsquigarrow 12$ and 17 are *coprime*

Property

- GCD(-a,b) = GCD(a,b))
- GCD(a,b) = GCD(b,a))
- GCD(a,b) = GCD(a-b,b)
- $GCD(a,b) = GCD(a \mod b,b)$

where $a \mod b$ is the remainder of the euclidean division of a by b.

GCD and Euclidean Algorithm

Problem

Given $a, b \in \mathbb{Z}$, find g = GCD(a, b)

begin

```
egin{aligned} r_0 &= a; \ r_1 &= b; \ \mathbf{while} \ r_i &\neq 0 \ \mathbf{do} \ & \ r_{i+1} &= r_{i-1} \mod r_i \ i &= i+1; \end{aligned}
```

$$/ * r_{i-1} = r_i q_i + r_{i+1} * /$$

• The last $r_i \neq 0$ is the gcd of *a* and *b*

GCD and Euclidean Algorithm

Bezout relation

If g = GCD(a, b), then there exist $u, v \in \mathbb{Z}$, coprime such that g = ua + vb

begin

$$r_{0} = a, u_{0} = 1, v_{0} = 0;$$

$$r_{1} = b, u_{1} = 0, v_{1} = 1;$$

while $r_{i} \neq 0$ do

$$r_{i+1} = r_{i-1} \mod r_{i};$$

$$u_{i+1} = u_{i-1} - q_{i}u_{i};$$

$$v_{i+1} = v_{i-1} - q_{i}v_{i};$$

$$i = i + 1;$$

$$/ * r_{i-1} = r_i q_i + r_{i+1} * /$$

- The last $r_i \neq 0$ is the gcd of a and b
- invariant $u_i a + v_i b = r_i$ for all $i \rightsquigarrow$ Bezout coefficients

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory

Finite ring and fields: $\mathbb{Z}/n\mathbb{Z}$

Integers modulo n

 $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ equiped with addition et mult. *modulo* n.

- use integer arithmetic
- reduce the results mod *n*

Finite ring and fields: $\mathbb{Z}/n\mathbb{Z}$

Integers modulo n

 $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ equiped with addition et mult. *modulo* n.

- use integer arithmetic
- reduce the results mod *n*

Addition	c = a + b;
	if $(c \ge n) c = c - n;$
Opposé	if (a) $c = n - a$; else $c = a$;
Multiplication	c = a * b;
	if (c >= n) c = c $n;$ // c modulo n
Inverse	

Modulo *n* any non-zero element does not necessarily have an inverse: $2^{-1} \mod 4$

Computing the modular inverse $a^{-1} \mod n$

 $\mathsf{GCD}(a,n) = 1 \Leftrightarrow ua + vn = 1 \Leftrightarrow ua = 1 \mod n \Leftrightarrow a^{-1} = u \mod n.$

Corollary

 $\mathbb{Z}/p\mathbb{Z}$ is a field iff p is prime

Corollary

Any finite field is isomorphic to either

- $\mathbb{Z}/p\mathbb{Z}$ for a prime p or
- $\mathbb{Z}/p\mathbb{Z}[X]/(Q)$ where $Q \in \mathbb{Z}/p\mathbb{Z}[X]$ is irreducible

Introduction

Complexity analysis

Computational Arithmetic

Integer arithmetic

Arithemtic of Integers modulo

The Chinese Remainder Theorem

Computational Algebra

Coding theory

Problem (Sunzi Suanjing)

	(n	$\mod 3$	=	2,			
Find n knowing that {	n	$\mod 5$	=	3,			
	n	$\mod 7$	=	2			
$\rightsquigarrow n = 23 + 105k$ for $k \in \mathbb{Z}$.							
\rightsquigarrow unique integer between 0 and 104							

Problem (Sunzi Suanjing)

	$n \mod 3 = 2,$					
Find n knowing that <	$n \mod 5 = 3,$					
	$n \mod 7 = 2$					
$\rightsquigarrow n = 23 + 105k$ for $k \in \mathbb{Z}$.						
\rightsquigarrow unique integer between 0 and 104						

Theorem

If p, q are coprime and x, y are residues modulo p and q. Then $\exists ! A \in \mathbb{Z}_+, A < pq$, such that

$$\begin{cases} A = x \mod p \\ A = y \mod q \end{cases}$$

The Chinese remainder theorem

Theorem (Alternative formulation)

If p, q are coprime, then there is an isomorphism between the rings

 $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \equiv \mathbb{Z}/(pq)\mathbb{Z}.$

Theorem (Alternative formulation)

If p, q are coprime, then there is an isomorphism between the rings

 $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \equiv \mathbb{Z}/(pq)\mathbb{Z}.$

Isomorphism:

$$f: \qquad \mathbb{Z}/(pq)\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$$

$$n \mapsto (n \mod p, n \mod q)$$

$$f^{-1}: \qquad \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \to \qquad \mathbb{Z}/(pq)\mathbb{Z}$$

$$(x, y) \mapsto \qquad xq(q^{-1} \mod p) + yp(p^{-1} \mod q) \mod pq$$

The Chinese remainder theorem

Theorem

If m_1, \ldots, m_k are pairwise relatively prime,

$$\mathbb{Z}/m_1\mathbb{Z}\times\cdots\times\mathbb{Z}/m_k\mathbb{Z}\equiv\mathbb{Z}/(m_1\ldots m_k)\mathbb{Z}.$$

Isomorphism:

$$f: \qquad \mathbb{Z}/(m_1 \dots m_k)\mathbb{Z} \rightarrow \mathbb{Z}/m_1\mathbb{Z} \times \dots \times \mathbb{Z}/m_k\mathbb{Z}$$

$$n \mapsto (n \mod m_1, \dots, m \mod m_k)$$

$$f^{-1}: \qquad \mathbb{Z}/m_1\mathbb{Z} \times \dots \times \mathbb{Z}/m_k\mathbb{Z} \rightarrow \qquad \mathbb{Z}/(m_1 \dots m_k)\mathbb{Z}$$

$$(x_1, \dots, x_k) \mapsto \qquad \sum_{i=1}^k x_i \Pi_i Y_i \mod \Pi$$

$$\left(\Pi = \Pi^k \cdot m_i \right)$$

where $\begin{cases} \Pi &= \Pi_{i=1} m_i \\ \Pi_i &= \Pi/m_i \\ Y_i &= \Pi_i^{-1} \mod m_i \end{cases}$

Theorem (Alternative formulation)

If m_1, \ldots, m_k are pairwise relatively prime and a_1, \ldots, a_k are residues modulo resp. m_1, \ldots, m_k . Then $\exists ! A \in \mathbb{Z}_+, A < \prod_{i=1}^k m_i$, such that

 $A = a_i \mod m_i \ \forall i = 1 \dots k.$

Analogy with the polynomials

Over the ring of polynomials K[X] (for any field K),

 $P(a) = P \mod (X - a)$

Evaluate P in a

$$\leftrightarrow$$

Reduce *P* modulo X - a

Analogy with the polynomials

Over the ring of polynomials K[X] (for any field K),

 $P(a) = P \mod (X - a)$

Evaluate P i	n a	\leftrightarrow Reduce <i>P</i> m	nodulo $X - a$
	Polynomials	Integers	-
	Evaluation:		-
	$y = P \mod (X - a)$	$y = N \mod m$ y = "Evaluation" of N in m	
	y = P(a)	y = "Evaluation" of N in m	-
	Interpolation:		
	$P = \sum_{i=1}^{k} y_i \frac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a_i - a_j)}$	$ N = \sum_{i=1}^{k} y_i \prod_{j \neq i} m_j (\prod_{j \neq i} m_j)^{-1[m_i]} $	

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Algebraic structures

Finite groups

Galois fields

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Algebraic structures

Finite groups

Galois fields

Coding theory

Groups, Rings, Fields

Definition (informally)

A group (G, *, 1): is a set G with an associative law * such that

- 1 is a neutral element x * 1 = 1 * x = x
- every element of G is invertible: $\forall x \in G \exists y \in G, x * y = y * x = 1$
- Examples: $(\mathbb{Z}, +, 0); (\mathbb{Q} \setminus \{0\}, \times, 1)$

Groups, Rings, Fields

Definition (informally)

A group (G, *, 1): is a set G with an associative law * such that

- 1 is a neutral element x * 1 = 1 * x = x
- every element of *G* is invertible: $\forall x \in G \exists y \in G, x * y = y * x = 1$
- Examples: $(\mathbb{Z}, +, 0); (\mathbb{Q} \setminus \{0\}, \times, 1)$

A ring $(R, +, \times, 0, 1)$ is

- a group (R, +, 0)
- with an associative law \times with neutral element 1.
- such that $0 \times x = 0$
- Examples: $(\mathbb{Z}, +, \times, 0, 1); (\mathbb{Z}/n\mathbb{Z}, +, \times, 0, 1); (\mathbb{Z}[X], +, \times, 0, 1)$

Groups, Rings, Fields

Definition (informally)

A group (G, *, 1): is a set G with an associative law * such that

- 1 is a neutral element x * 1 = 1 * x = x
- every element of *G* is invertible: $\forall x \in G \exists y \in G, x * y = y * x = 1$
- Examples: $(\mathbb{Z}, +, 0); (\mathbb{Q} \setminus \{0\}, \times, 1)$

A ring $(R, +, \times, 0, 1)$ is

- a group (R, +, 0)
- with an associative law \times with neutral element 1.
- such that $0 \times x = 0$
- Examples: $(\mathbb{Z}, +, \times, 0, 1); (\mathbb{Z}/n\mathbb{Z}, +, \times, 0, 1); (\mathbb{Z}[X], +, \times, 0, 1)$

A field $(F, +, \times, 0, 1)$ is

- a ring $(F, +, \times, 0, 1)$
- where every element except 0 has an inverse for \times
- equivalently such that $(F \setminus \{0\}, \times, 1)$ is a group.
- Examples: $(\mathbb{Q}, +, \times, 0, 1); (\mathbb{Z}/p\mathbb{Z}, +, \times, 0, 1)$ for p prime

An example of a finite ring: $\mathbb{Z}/n\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ equiped with addition and mult. *modulo* n.

- $(\mathbb{Z}/n\mathbb{Z}, +, \times, 0, 1)$ is a ring
- not necessarily a field: e.g. n = pq

 $\rightsquigarrow pq = 0 \mod n$

 \rightsquigarrow if *p* is invertible, then $p^{-1}pq = q = 0 \mod n$

 \rightsquigarrow neither *p* nor *q* have an inverse mod *n*

An example of a finite ring: $\mathbb{Z}/n\mathbb{Z}$

 $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ equiped with addition and mult. *modulo* n.

- $(\mathbb{Z}/n\mathbb{Z}, +, \times, 0, 1)$ is a ring
- not necessarily a field: e.g. n = pq

 $\rightsquigarrow pq = 0 \mod n$

- \rightsquigarrow if *p* is invertible, then $p^{-1}pq = q = 0 \mod n$
- \rightsquigarrow neither *p* nor *q* have an inverse mod *n*

Theorem

 $(\mathbb{Z}/n\mathbb{Z}, +, \times, 0, 1)$ is a field iff *n* is prime.

Constructive proof.

By the Extended Euclidean Algorithm

If $(R, +, \times, 0, 1)$ is a ring, not all elements of *R* are invertible for \times .

Definition (Multiplicative group of a ring *R*)

In a ring $(R, +, \times)$, the subset of the invertible elements w.r.t. \times is a group, called the multiplicative subgroup of *R* and denoted by R^* .

If $(R, +, \times, 0, 1)$ is a ring, not all elements of *R* are invertible for \times .

Definition (Multiplicative group of a ring *R*)

In a ring $(R, +, \times)$, the subset of the invertible elements w.r.t. \times is a group, called the multiplicative subgroup of *R* and denoted by R^* .

- If *R* is a field, any non-zero element is invertible, $\rightsquigarrow R^* = R \setminus \{0\}$
- $(\mathbb{Z}/n\mathbb{Z})^* = \{x \in \mathbb{Z}/n\mathbb{Z} \text{ s.t. } \mathsf{GCD}(x,n) = 1\}$

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Algebraic structures

Finite groups

Galois fields

Coding theory

Definition

finite group: a group with a finite number of elements

order of an element *x*: $o(x) = \#\{x^i, i \in \mathbb{Z}\}$

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: $G = \{g^i, i \in \mathbb{Z}\}$ for some $g \in G$

Definition

finite group: a group with a finite number of elements

order of an element *x*: $o(x) = \#\{x^i, i \in \mathbb{Z}\}$

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: $G = \{g^i, i \in \mathbb{Z}\}$ for some $g \in G$

Theorem (Lagrange)

For any finite group $(G, \times, 1)$ and any $a \in G$, we have $a^{\#G} = 1$.

Corollary

The order of any element divides that of the its group: $\forall a \in G, \ o(a) | \#G$

Definition

finite group: a group with a finite number of elements

order of an element *x*: $o(x) = \#\{x^i, i \in \mathbb{Z}\}$

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: $G = \{g^i, i \in \mathbb{Z}\}$ for some $g \in G$

Theorem (Lagrange)

For any finite group $(G, \times, 1)$ and any $a \in G$, we have $a^{\#G} = 1$.

Corollary

The order of any element divides that of the its group: $\forall a \in G, \ o(a) | \#G$

Theorem (Lagrange-v2)

If *H* is a sub-group of *G*, then #H|#G

Definition

finite group: a group with a finite number of elements

order of an element *x*: $o(x) = \#\{x^i, i \in \mathbb{Z}\}$

order of a finite group: o(G) = #G

cyclic group: a finite group generated by a single element: $G = \{g^i, i \in \mathbb{Z}\}$ for some $g \in G$

Theorem (Lagrange)

For any finite group $(G, \times, 1)$ and any $a \in G$, we have $a^{\#G} = 1$.

Corollary

The order of any element divides that of the its group: $\forall a \in G, \ o(a) | \#G$

Theorem (Lagrange-v2)

If *H* is a sub-group of *G*, then #H|#G

Property

Any sub-group H of a cyclic group G is cyclic.

36

Euler totient function

Definition

• Euler Totient: $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^*$

• Hence
$$\varphi(n) = \#\{x \in \mathbb{Z}/n\mathbb{Z}, \operatorname{GCD}(x, n) = 1\}$$

Euler totient function

Definition

• Euler Totient: $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^*$

• Hence
$$\varphi(n) = \#\{x \in \mathbb{Z}/n\mathbb{Z}, \operatorname{GCD}(x, n) = 1\}$$

Property

- $\varphi(p) = (p-1)$ for p prime
- $\varphi(p^k) = (p-1)p^{k-1}$ for p prime
- $\varphi(mn) = \varphi(m)\varphi(n)$ for GCD(m, n) = 1

Euler totient function

Definition

• Euler Totient: $\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^*$

• Hence
$$\varphi(n) = \#\{x \in \mathbb{Z}/n\mathbb{Z}, \operatorname{GCD}(x, n) = 1\}$$

Property

- $\varphi(p) = (p-1)$ for p prime
- $\varphi(p^k) = (p-1)p^{k-1}$ for p prime
- $\varphi(mn) = \varphi(m)\varphi(n)$ for GCD(m, n) = 1

Example: $n = \prod_{i=1}^{k} p_i^{\alpha_i}$ (prime factor decomposition)

$$\varphi(n) = \prod_{i=1}^{k} p_i^{\alpha_i - 1} (p_i - 1)$$

Property

The number of generators in a cyclic group of order n is $\varphi(n)$

Proof.

If g is a generator. Then,

$$h$$
 is a generator $\Leftrightarrow h = g^i$ and $g = h^k \Leftrightarrow h = h^{ik \mod n} \Leftrightarrow ik = 1 \mod n$.

Theorem (Euler)

Let $a, n \in \mathbb{Z}$. If GCD(a, n) = 1, then $a^{\varphi(n)} = 1 \mod n$.

Theorem (Fermat)

If p is prime, then $a^p = a \mod p \ \forall a \in \mathbb{Z}/p\mathbb{Z}$.

Théorème RSA

Theorem

For n = pq with p and q prime, then

$$\forall k \in \mathbb{Z} \ \forall a \in \mathbb{Z}/n\mathbb{Z} \ a^{1+k\varphi(n)} = a \mod n$$

Théorème RSA

Theorem

For n = pq with p and q prime, then

$$\forall k \in \mathbb{Z} \ \forall a \in \mathbb{Z}/n\mathbb{Z} \ a^{1+k\varphi(n)} = a \mod n$$

Proof.

 $\varphi(n) = (p-1)(q-1)$

- If a is invertible \rightsquigarrow Fermat: $a^{\varphi(n)} = 1 \mod n$
- If $a = 0 \mod n \rightsquigarrow \text{trivial}$
- Otherwise:

modulo p: a invertible \rightsquigarrow Euler $(a^{p-1})^{q-1} = 1 \mod p \rightsquigarrow a^{1+k\varphi(n)} = a \mod p$ **modulo** q: $a = 0 \mod q \rightsquigarrow a^{1+k\varphi(n)} = 0 = a \mod q$

Chinese Remainder Theorem $\rightsquigarrow a^{\varphi(n)} = 1 \mod n$

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Algebraic structures

Finite groups

Galois fields

Galois fields

Algebraic extensions

Consider a field $(K, +, \times)$, and a polynomial $P \in K[X]$ of degree *d*.

- K[X]/(P) is the set of equivalence classes of K[X] modulo P.
- This is the set of the $P \in K[X]$ with degree < d equipped with the following laws

Addition: $S + T = S(X) +_{K[X]} T(X) \mod P$ **Multiplication:** $S \times T = S(X) \times_{K[X]} T(X) \mod P$

• $(K[X]/(P), +, \times)$ is thus a commutative ring, called the *quotient ring* of K[X] by P.

Galois fields

Algebraic extensions

Consider a field $(K, +, \times)$, and a polynomial $P \in K[X]$ of degree *d*.

- K[X]/(P) is the set of equivalence classes of K[X] modulo P.
- This is the set of the $P \in K[X]$ with degree < d equipped with the following laws

Addition: $S + T = S(X) +_{K[X]} T(X) \mod P$ Multiplication: $S \times T = S(X) \times_{K[X]} T(X) \mod P$

• $(K[X]/(P), +, \times)$ is thus a commutative ring, called the *quotient ring* of K[X] by P.

Property

K[X]/(P) is a field iff P is irreducible over K[X].

Galois fields

Algebraic extensions

Consider a field $(K, +, \times)$, and a polynomial $P \in K[X]$ of degree *d*.

- K[X]/(P) is the set of equivalence classes of K[X] modulo P.
- This is the set of the $P \in K[X]$ with degree < d equipped with the following laws

Addition: $S + T = S(X) +_{K[X]} T(X) \mod P$ Multiplication: $S \times T = S(X) \times_{K[X]} T(X) \mod P$

• $(K[X]/(P), +, \times)$ is thus a commutative ring, called the *quotient ring* of K[X] by P.

Property

K[X]/(P) is a field iff P is irreducible over K[X].

Proof.

For all $S \in K[X]/(P)$, GCD(S, P) = 1 hence $\exists U, V, US + VP = 1$ thus S is invertible and $U = S^{-1} \mod P$.

Example

Over $(\mathbb{Z}/2\mathbb{Z})[X]$, let $P = (X + 1)(X^2 + X + 1)$ (non-irreducible).

• Then $(\mathbb{Z}/2\mathbb{Z})[X]/(P)$ is not a field: X + 1 is not invertible since $(X + 1)(X^2 + X + 1) = 0$

Example

Over $(\mathbb{Z}/2\mathbb{Z})[X]$, let $P = (X+1)(X^2 + X + 1)$ (non-irreducible).

- Then $(\mathbb{Z}/2\mathbb{Z})[X]/(P)$ is not a field: X + 1 is not invertible since $(X + 1)(X^2 + X + 1) = 0$
- But (ℤ/2ℤ)[X]/(X² + X + 1) is a field since X² + X + 1 is irreducible. Its elements are {0, 1, X, X + 1}

Example

Over $(\mathbb{Z}/2\mathbb{Z})[X]$, let $P = (X+1)(X^2 + X + 1)$ (non-irreducible).

- Then $(\mathbb{Z}/2\mathbb{Z})[X]/(P)$ is not a field: X + 1 is not invertible since $(X + 1)(X^2 + X + 1) = 0$
- But (ℤ/2ℤ)[X]/(X² + X + 1) is a field since X² + X + 1 is irreducible. Its elements are {0, 1, X, X + 1}

Remark

This is a new finite field, with 4 elements (not of the form $\mathbb{Z}/p\mathbb{Z}$ since p = 4 is not prime)

Finite fields

Property

Any finite field has a p^k elements where p is prime and $k \in \mathbb{Z}_{>0}$. p is called the characteristic of the field.

Finite fields

Property

Any finite field has a p^k elements where p is prime and $k \in \mathbb{Z}_{>0}$. p is called the characteristic of the field.

Up to an isomorphism, all the finite fields are thus

- either the $\mathbb{Z}/p\mathbb{Z}$ with p a prime number
- or the F_p[X]/(Q) with p a prime number and Q an irreducible polynomial of degree k over F_p[X].

Finite fields

Property

Any finite field has a p^k elements where p is prime and $k \in \mathbb{Z}_{>0}$. p is called the characteristic of the field.

Up to an isomorphism, all the finite fields are thus

- either the $\mathbb{Z}/p\mathbb{Z}$ with p a prime number
- or the F_p[X]/(Q) with p a prime number and Q an irreducible polynomial of degree k over F_p[X].

Notation

 \mathbb{F}_q denotes the finite field with q elements (q is necessarily of the form $q = p^k$ with p prime and $k \in \mathbb{Z}_{>0}$)

• $\mathbb{F}_p = \mathbb{Z}_p$ when p is prime

•
$$\mathbb{F}_{p^k} = \mathbb{Z}_p[X]/(Q)$$
 for p prime and $k = \deg Q$

Property

The multiplicative group $G = (\mathbb{F}_{p^k})^*$ is cyclic

Property

The multiplicative group $G = (\mathbb{F}_{p^k})^*$ is cyclic

Proof.

Let $q = p^k$. Let e, be the smallest positive integer s.t. $\forall x \in G \ x^e = 1$. Thus $X^e - 1$ has q - 1 roots in \mathbb{F}_{p^k} . Thus $e \ge q - 1$.

Hence there exists an element $g \in G$ of order *e* generating all elements of *G*.

Property

The multiplicative group $G = (\mathbb{F}_{p^k})^*$ is cyclic

Proof.

Let $q = p^k$. Let e, be the smallest positive integer s.t. $\forall x \in G \ x^e = 1$. Thus $X^e - 1$ has q - 1 roots in \mathbb{F}_{p^k} . Thus $e \ge q - 1$. Hence there exists an element $g \in G$ of order e generating all elements of G.

Definition

The generators of the cyclic group $(\mathbb{F}_{p^k})^*$ are called **primitive elements**.

- A primitive element $\alpha \in \mathbb{F}_{p^k}^*$ has order p^k-1 ;
- it is a primitive $(p^k 1)$ -th root of unity:

$$\left\{ \begin{array}{rrr} \alpha^{p^k-1} &=& 1 \\ \alpha^i &\neq& 1 \ \forall 0 < i < p^k-1 \end{array} \right.$$

- A primitive element $\alpha \in \mathbb{F}_{p^k}^*$ has order $p^k 1$;
- it is a primitive $(p^k 1)$ -th root of unity:

$$\begin{cases} \alpha^{p^k - 1} = 1\\ \alpha^i \neq 1 \quad \forall 0 < i < p^k - 1 \end{cases}$$

F_{p^k} is *F_p* to which a primitive (*p^k* − 1)-th root of unity has been added (and all elements induced by the + and × laws). Denoted by *F_p*(*α*).

- A primitive element $\alpha \in \mathbb{F}_{p^k}^*$ has order $p^k 1$;
- it is a primitive $(p^k 1)$ -th root of unity:

$$\begin{cases} \alpha^{p^k - 1} = 1\\ \alpha^i \neq 1 \quad \forall 0 < i < p^k - 1 \end{cases}$$

- *F*_{p^k} is *F*_p to which a primitive (p^k − 1)-th root of unity has been added (and all elements induced by the + and × laws). Denoted by *F*_p(α).
- Let $f_{\alpha} = X^k f_{k-1} \cdots f_0$ be the **minimal polynomial** of α : the monic polynomial $f \in \mathbb{F}_p[X]$ with least degree such that $f(\alpha) = 0 \iff \alpha^k = f_{k-1}\alpha^{k-1} + \cdots + f_0$. Then $\mathbb{F}_p(\alpha) \equiv \mathbb{F}_p[X]/f$

- A primitive element $\alpha \in \mathbb{F}_{p^k}^*$ has order $p^k 1$;
- it is a primitive $(p^k 1)$ -th root of unity:

$$\begin{cases} \alpha^{p^k - 1} = 1\\ \alpha^i \neq 1 \quad \forall 0 < i < p^k - 1 \end{cases}$$

- *F*_{p^k} is *F*_p to which a primitive (p^k − 1)-th root of unity has been added (and all elements induced by the + and × laws). Denoted by *F*_p(α).
- Let $f_{\alpha} = X^k f_{k-1} \cdots f_0$ be the **minimal polynomial** of α : the monic polynomial $f \in \mathbb{F}_p[X]$ with least degree such that $f(\alpha) = 0 \iff \alpha^k = f_{k-1}\alpha^{k-1} + \cdots + f_0$. Then $\mathbb{F}_p(\alpha) \equiv \mathbb{F}_p[X]/f$
- Reciprocally, all construction of the form $\mathbb{F}_{p^k} \equiv \mathbb{F}_p[X]/f$ does not necessarily imply that X generates $(\mathbb{F}_{p^k})^*$.

- A primitive element $\alpha \in \mathbb{F}_{p^k}^*$ has order $p^k 1$;
- it is a primitive $(p^k 1)$ -th root of unity:

$$\begin{cases} \alpha^{p^k - 1} = 1\\ \alpha^i \neq 1 \quad \forall 0 < i < p^k - 1 \end{cases}$$

- *F*_{p^k} is *F*_p to which a primitive (p^k − 1)-th root of unity has been added (and all elements induced by the + and × laws). Denoted by *F*_p(α).
- Let $f_{\alpha} = X^k f_{k-1} \cdots f_0$ be the **minimal polynomial** of α : the monic polynomial $f \in \mathbb{F}_p[X]$ with least degree such that $f(\alpha) = 0 \iff \alpha^k = f_{k-1}\alpha^{k-1} + \cdots + f_0$. Then $\mathbb{F}_p(\alpha) \equiv \mathbb{F}_p[X]/f$
- Reciprocally, all construction of the form $\mathbb{F}_{p^k} \equiv \mathbb{F}_p[X]/f$ does not necessarily imply that X generates $(\mathbb{F}_{p^k})^*$.
- Those f which satisfy this property (X generates $(\mathbb{F}_{p^k})^*$) are called **primitive** polynomials

- A primitive element $\alpha \in \mathbb{F}_{p^k}^*$ has order $p^k 1$;
- it is a primitive $(p^k 1)$ -th root of unity:

$$\begin{cases} \alpha^{p^k - 1} = 1\\ \alpha^i \neq 1 \quad \forall 0 < i < p^k - 1 \end{cases}$$

- *F*_{p^k} is *F*_p to which a primitive (p^k − 1)-th root of unity has been added (and all elements induced by the + and × laws). Denoted by *F*_p(α).
- Let $f_{\alpha} = X^k f_{k-1} \cdots f_0$ be the **minimal polynomial** of α : the monic polynomial $f \in \mathbb{F}_p[X]$ with least degree such that $f(\alpha) = 0 \iff \alpha^k = f_{k-1}\alpha^{k-1} + \cdots + f_0$. Then $\mathbb{F}_p(\alpha) \equiv \mathbb{F}_p[X]/f$
- Reciprocally, all construction of the form $\mathbb{F}_{p^k} \equiv \mathbb{F}_p[X]/f$ does not necessarily imply that X generates $(\mathbb{F}_{p^k})^*$.
- Those f which satisfy this property (X generates $(\mathbb{F}_{p^k})^*$) are called **primitive** polynomials

The Galois fields in practice

Essentially 2 types of implementations:

- polynomial
- logarithmic

The polynomial representation

Simply using the arithmetic of $\mathbb{F}_p[X]$ modulo Q:

- Every element is a polynomial of degree < k with coeffs over 𝔽_p
 → array of size k of elements of ℤ/pℤ
 - see representation of $\mathbb{Z}/p\mathbb{Z}$ for the type of the coefficients (uint64_t, float, double, ...)
 - Case of p = 2: bit-packing technique (see next slide)

The Galois fields in practice

Essentially 2 types of implementations:

- polynomial
- logarithmic

The polynomial representation

Simply using the arithmetic of $\mathbb{F}_p[X]$ modulo Q:

- Every element is a polynomial of degree < k with coeffs over 𝔽_p
 → array of size k of elements of ℤ/pℤ
 - see representation of $\mathbb{Z}/p\mathbb{Z}$ for the type of the coefficients (uint64_t, float, double, ...)
 - Case of p = 2: bit-packing technique (see next slide)
- Addition: remains of degree $< k \rightsquigarrow$ just arithmetic over $\mathbb{Z}/p\mathbb{Z}$
- Mutliplication: $S \times T \mod Q \rightsquigarrow$ euclidean division by Q.

If p = 2:

• 1 bit = \mathbb{F}_2

• 1 byte =
$$(\mathbb{F}_2)^8 \equiv \mathbb{F}_{2^8}$$

• 1 uint64_t $= (\mathbb{F}_2)^{64} \equiv \mathbb{F}_{2^{64}}$, etc

• 1 bit = \mathbb{F}_2

If p = 2:

- 1 byte $= (\mathbb{F}_2)^8 \equiv \mathbb{F}_{2^8}$
- 1 uint64_t $= (\mathbb{F}_2)^{64} \equiv \mathbb{F}_{2^{64}}$, etc

For instance \mathbb{F}_{2^8}

• char a: the binary repr. of a is the coefficient vector of $P \in \mathbb{F}_2[X]$ of degree ≤ 7 s. t. P(2) = a

а	0	1	2	3	4	5	
in binary	000000000	000000001	00000010	00000011	00000100	00000101	
represents	0	1	x	x + 1	x^2	$x^2 + 1$	

• 1 bit = \mathbb{F}_2

If p = 2:

- 1 byte $= (\mathbb{F}_2)^8 \equiv \mathbb{F}_{2^8}$
- 1 uint64_t $= (\mathbb{F}_2)^{64} \equiv \mathbb{F}_{2^{64}}$, etc

For instance \mathbb{F}_{2^8}

• char a: the binary repr. of a is the coefficient vector of $P \in \mathbb{F}_2[X]$ of degree ≤ 7 s. t. P(2) = a

a		0	1	2	3	4	5	
in bin	ary	000000000	00000001	00000010	00000011	00000100	00000101	
repres	ents	0	1	x	x + 1	x^2	$x^2 + 1$	

• addition: bitwise XOR: $a \land b$

• 1 bit = \mathbb{F}_2

If p = 2:

- 1 byte = $(\mathbb{F}_2)^8 \equiv \mathbb{F}_{2^8}$
- 1 uint64_t = $(\mathbb{F}_2)^{64} \equiv \mathbb{F}_{2^{64}}$, etc

For instance \mathbb{F}_{2^8}

• char a: the binary repr. of a is the coefficient vector of $P \in \mathbb{F}_2[X]$ of degree ≤ 7 s. t. P(2) = a

а	0	1	2	3	4	5	
in binary	000000000	00000001	00000010	00000011	00000100	00000101	
represents	0	1	x	x + 1	x^2	$x^2 + 1$	

- addition: bitwise XOR: $a \land b$
- mult: iterated application of mulByX

```
char mulByX (char a) {
    char b = a<<1;
    if (a & 128) b ^= 29
    return b;</pre>
```

- Choose a generator g of $(\mathbb{F}_q)^*$
- Each element $a \neq 0$ is represented by its discrete log. *i* s.t. $a = g^i$.
- a = 0 is represented by a special value (e.g. q 1)

- Choose a generator g of $(\mathbb{F}_q)^*$
- Each element $a \neq 0$ is represented by its discrete log. *i* s.t. $a = g^i$.
- a = 0 is represented by a special value (e.g. q 1)
- multiplication: $a \times b = g^i \times g^j = g^{i+j}$

 \rightsquigarrow addition of the indices $\mod q-1$

 \rightsquigarrow requires to store conversion tables $i \mapsto g^i$ and $j = g^i \mapsto i$

- Choose a generator g of $(\mathbb{F}_q)^*$
- Each element $a \neq 0$ is represented by its discrete log. *i* s.t. $a = g^i$.
- a = 0 is represented by a special value (e.g. q 1)
- multiplication: $a \times b = g^i \times g^j = g^{i+j}$

 \rightsquigarrow addition of the indices $\mod q-1$

 \rightsquigarrow requires to store conversion tables $i \mapsto g^i$ and $j = g^i \mapsto i$

• addition: $g^i + g^j = g^i \times (1 + g^{j-i})$

 \rightsquigarrow requires to also store $k \mapsto \ell$ s.t. $g^{\ell} = 1 + g^k$

- Choose a generator g of $(\mathbb{F}_q)^*$
- Each element $a \neq 0$ is represented by its discrete log. *i* s.t. $a = g^i$.
- a = 0 is represented by a special value (e.g. q 1)
- multiplication: $a \times b = g^i \times g^j = g^{i+j}$

 \rightsquigarrow addition of the indices $\mod q-1$

 \rightsquigarrow requires to store conversion tables $i \mapsto g^i$ and $j = g^i \mapsto i$

• addition: $g^i + g^j = g^i \times (1 + g^{j-i})$

 \rightsquigarrow requires to also store $k \mapsto \ell$ s.t. $g^{\ell} = 1 + g^k$

Exercise

Write the algorithm for the addition, using a precomputed table

- Choose a generator g of $(\mathbb{F}_q)^*$
- Each element $a \neq 0$ is represented by its discrete log. *i* s.t. $a = g^i$.
- a = 0 is represented by a special value (e.g. q 1)
- multiplication: $a \times b = g^i \times g^j = g^{i+j}$

 \rightsquigarrow addition of the indices $\mod q-1$

 \rightsquigarrow requires to store conversion tables $i \mapsto g^i$ and $j = g^i \mapsto i$

• addition: $g^i + g^j = g^i \times (1 + g^{j-i})$

 \rightsquigarrow requires to also store $k \mapsto \ell$ s.t. $g^{\ell} = 1 + g^k$

Exercise

Write the algorithm for the addition, using a precomputed table

Choosing a good generator

X is a simpler generator to compute with.

 \rightsquigarrow the polyn. Q such that $(\mathbb{F}_p[X]/(Q))^*$ is generated by X are the **primitive polynomials** ⁴⁹

Introduction

Complexity analysis

Computational Arithmetic

Computational Algebra

Coding theory