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Introduction

A spintronics subject :

• Spintronics, an emerging electronical technology, exploits the spin of electrons and its
associated magnetic moment, instead of its charge (as it is the case in numerous components).
• The underlying physics studies interactions between local moments and spin accumulation
of conduction electrons.

A recent discovered by Slonczewski [4] and Berger [1] :

• In 1996, both Slonczewski and Berger introduced the concept of switching the orientation
of a magnetic layer of a multilayered structure by the current perpendicular to the layers.
• The main idea is of a spin transfer from a polarized current to the magnetization of the layer.

Numerous applications :

• Magnetic memories,
• Fast magnetic logic,
• Microwave frequency devices in telecommunication...

I Physical device

Fig.1 - A multilayered ferromagnetic device.

A multilayered device :

• A large ferromagnetic layer FE : thickness L≈ 100 nm

magnetization ~M
FE

=(0,− sin θ, cos θ)

• A thin ferromagnetic layer FF : thickness l≈ 1-5 nm

initial magnetization ~M
FF

=(0,0,1)

• A non ferromagnetic layer NM : it avoids exchanges between FE and FF
it will be replaced by interface conditions

Mechanism of the spin transfer :

1- We introduced an electrical current in the device, perpendicularly to layers

2- FE polarizes the spin density ~m in the direction of ~M
FE

3- Because of θ (≈ 30◦), ~m reaches FF with a transverse component ~m⊥

4- A torque is created between ~m⊥ and ~M
FF

(spin transfer)

5- If the spin transfer is sufficiently strong, ~M
FF

can move (or even can switch)

II Mathematical equations

Modeling proposed by Zhang, Levy and Fert [3]

System of two coupled equations :

• Spin density ~m solution to a diffusive equation :

∂ ~m

∂t
− 2D0

∂2~m

∂x2
+

J

h̄
(~m × ~M) = −

~m

τsf

where - J quantifies interactions between ~m and ~M (0.1-0.4 eV),
- τsf ≈ 10−12s is the relaxation time of spin switching,
- D0 ≈ 10−3m2.s−1 is the diffusive constant of the metal,
- h̄ = h

2π with h the Plank constant : h = 6, 62.10−34J.s.

• Magnetization ~M solution to a Landau-Lifshitz equation :

d ~M

dt
= −γ ~M × ( ~He + J ~m) + α ~M ×

d ~M

dt

where - γ > 0 and α > 0 are two constants,

- ~He is the magnetic field. In our study, we work with

~He = −c( ~M.~u)~u + ν
∂2 ~M

∂x2

where - ~u is a unit vector which gives the anisotropy direction,
- c and ν are two constants in the order of 1.

Dimensionless equations

To treat different spatial and temporal scales, we define the small parameter
ǫ = l/L. Finally, we obtain equations in ]-1;0[ (FE) and in ]0;1[ (FF)





ǫ2∂ ~m

∂t
−

∂2~m

∂x2
+

(~m × ~M)

ǫ2
= −~m

in ] − 1, 0[

d ~M

dt
= − ~M ×

(
c( ~M.~u)~u +

~m

ǫ
+ ν

∂2 ~M

∂x2

)
+ α ~M ×

d ~M

dt





ǫ4∂ ~m

∂t
−

∂2~m

∂x2
+ (~m × ~M) = −ǫ2~m

in ]0, 1[

d ~M

dt
= − ~M ×

(
c( ~M.~u)~u +

~m

ǫ
+

ν

ǫ2

∂2 ~M

∂x2

)
+ α ~M ×

d ~M

dt

In FE,
~m × ~M

ǫ2
⇒ Polarization of ~m in the direction of ~M

In FF,
ν

ǫ2

∂2 ~M

∂x2
⇒ A spatial homogeneous magnetization

Boundary conditions

For Landau-Lifshitz, we choose homogeneous Neumann conditions




∂x
~M

FE
(−1, t) = 0 , ∂x

~M
FE

(0−, t) = 0
∀t ∈ [0, T ]

∂x
~M

FF
(0+, t) = 0 , ∂x

~M
FF

(1, t) = 0

For the diffusive equation, we choose Dirichlet for x=-1. The value corresponds
to the injected current.

~m
FE

(−1, t) = ~m
L

∀t ∈ [0, T ]

Then, for x=0, we preserve the continuity.




~m
FE

(0−, t) = ~m
FF

(0+, t)
∀t ∈ [0, T ]

ǫ
∂ ~m

FE
(0−, t)

∂x
=

∂ ~m
FF

(0+, t)

∂x

Finally, for x=1, we want a free evolution for remaining quantities. So, we
build a Fourier condition.

∂ ~m
FF

(1, t)

∂x
= −A~m

FF
(1, t) ∀t ∈ [0, T ]

where A is a positive matrix.

III Discretization of the coupled system

Diffusive equation discretization

To discretize the diffusive equation, we use an implicit method of finite differ-
ences. For example in ]0,1[, the discretized equation is

ǫ4 ~mn+1(x) − ~mn(x)

∆t
−

~mn+1(x + h
FF

) − 2~mn+1(x) + ~mn+1(x − h
FF

)

h2
FF

+ (~mn+1(x) × ~M(x)) = −ǫ2~mn+1(x)

where ∆t is our time step and h
FF

our space step.

Landau-Lifshitz equation discretization

To discretize the Landau-Lifshitz equation, two points are essential :

• The magnetization norm is preserved in time. To keep this property, we
use a Crank-Nicholson scheme [5]

~Mn+1 − ~Mn

∆t
= −

~Mn + ~Mn+1

2
× f( ~Mn+1, ~m) + α

~Mn + ~Mn+1

2
×

~Mn+1 − ~Mn

∆t

• To solve the implicit scheme, we used two different methods : a Newton
method [2] and a Gauss-Seidel projection method [6].

A prediction-correction method to couple equations

To avoid a very small time step, we implement a prediction-correction method

~mn, ~Mn ⇒ M̃(~mn, ~Mn) ⇒ ~mn+1(M̃, ~mn) ⇒ ~Mn+1(~mn+1, M̃)

IV Numerical results

Observation of a magnetization switching

Fig.2 - Evolution of the component Mz during the time (3D view and projection).

In Fig.2, abscissa axis corresponds to space with FE in ]-1;0[ and FF in ]0;1[
and ordinate axis represents time. We observe a switching of the vertical
component Mz. Horizontal components Mx and My are less significant.

During a magnetization switching, we find 3 steps :
1- ~M

FF
stays at an initial position (0,0,1)

2- It goes down rotating around the unit sphere
3- It stabilizes around a point close to the inferior pole

Fig.3 - Evolution of ~M during the time around the unit sphere.

Impact of the injected current

Fig.4 - Projection of the component Mz in the case ‖~m(−1)‖ = 0.5 and 1.2.

Fig.5 - Projection of the component Mz in the case ‖~m(−1)‖ = 1.4 and 2.

To observe the impact of the injected current, we change the value of the
Dirichlet condition mL.

• mL = 0.5, ~M
FF

does not move
• mL = 1.2, ~M

FF
oscillates and then comes back to the initial position

• mL = 1.4, oscillations are not absorbed and we obtain a switching
• mL = 2, the switching occurs in a shorter time without too many oscillations

It exists a switching threshold. A sufficiently strong current is needed to create
important interactions between the spin density and the magnetization.

IV Perspectives

This model allows to observe magnetization switching and it is in accordance with physical
experiments (in particular, with the notion of threshold concerning the injected current).

Future work :

- Study of the real model proposed by Zhang, Levy and Fert
which couples the spin density with the charge density,

- Building of an asymptotic expansion (when ǫ approaches zero),
- 3D study of such devices...
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