Numerical analysis of the magnetization switching of a multilayered device driven by a current

Clément Jourdana

Work in collaboration with Naoufel BEN ABDALLAH, Elise FOUASSIER and David SANCHEZ

Institut de Mathématiques de Toulouse, Team MIP, University Paul Sabatier, Toulouse, FRANCE

<u>Introduction</u>

A spintronics subject:

- Spintronics, an emerging electronical technology, exploits the spin of electrons and its
- associated magnetic moment, instead of its charge (as it is the case in numerous components).
 The underlying physics studies interactions between local moments and spin accumulation of conduction electrons.

A recent discovered by Slonczewski [4] and Berger [1] :

- In 1996, both Slonczewski and Berger introduced the concept of switching the orientation
- of a magnetic layer of a multilayered structure by the current perpendicular to the layers.

 The main idea is of a spin transfer from a polarized current to the magnetization of the layer.

Numerous applications:

- Magnetic memories,
- Fast magnetic logic,
- Microwave frequency devices in telecommunication...

I Physical device

Fig.1 - A multilayered ferromagnetic device.

A multilayered device:

- A large ferromagnetic layer FE : thickness L \approx 100 nm
 - magnetization $\vec{M}_{\scriptscriptstyle FE}\!\!=\!\!(0,-\sin\theta,\cos\theta)$
- A thin ferromagnetic layer FF : thickness l \approx 1-5 nm
- initial magnetization \vec{M}_{FF} =(0,0,1)
- A non ferromagnetic layer NM : it avoids exchanges between FE and FF it will be replaced by interface conditions

Mechanism of the spin transfer:

- 1- We introduced an electrical current in the device, perpendicularly to layers
- 2- FE polarizes the spin density \vec{m} in the direction of $\vec{M}_{\scriptscriptstyle FE}$
- 3- Because of θ (\approx 30°), \vec{m} reaches FF with a transverse component \vec{m}_{\perp}
- 4- A torque is created between \vec{m}_{\perp} and \vec{M}_{FF} (spin transfer)
- 5- If the spin transfer is sufficiently strong, $\vec{M}_{\scriptscriptstyle FF}$ can move (or even can switch)

II Mathematical equations

Modeling proposed by Zhang, Levy and Fert [3]

System of two coupled equations:

 \bullet Spin density \vec{m} solution to a diffusive equation :

$$\frac{\partial \vec{m}}{\partial t} - 2D_0 \frac{\partial^2 \vec{m}}{\partial x^2} + \frac{J}{\hbar} \left(\vec{m} \times \vec{M} \right) = -\frac{\vec{m}}{\tau_{sf}}$$

- where J quantifies interactions between \vec{m} and \vec{M} (0.1-0.4 eV),
 - $\tau_{sf} \approx 10^{-12} s$ is the relaxation time of spin switching,
 - $D_0 \approx 10^{-3} m^2 \cdot s^{-1}$ is the diffusive constant of the metal,
 - $\hbar = \frac{h}{2\pi}$ with h the Plank constant : $h = 6,62.10^{-34} J.s.$
- \bullet Magnetization \vec{M} solution to a Landau-Lifshitz equation :

$$\frac{d\vec{M}}{dt} = -\gamma \vec{M} \times (\vec{H}_e + J\vec{m}) + \alpha \vec{M} \times \frac{d\vec{M}}{dt}$$

where $-\gamma > 0$ and $\alpha > 0$ are two constants,

- \vec{H}_e is the magnetic field. In our study, we work with

$$\vec{H}_e = -c(\vec{M}.\vec{u})\vec{u} + \nu \frac{\partial^2 \vec{M}}{\partial x^2}$$

where $-\vec{u}$ is a unit vector which gives the anisotropy direction, -c and ν are two constants in the order of 1.

Dimensionless equations

To treat different spatial and temporal scales, we define the small parameter $\epsilon = l/L$. Finally, we obtain equations in]-1;0[(FE) and in]0;1[(FF)

$$\begin{cases} \epsilon^2 \frac{\partial \vec{m}}{\partial t} - \frac{\partial^2 \vec{m}}{\partial x^2} + \frac{(\vec{m} \times \vec{M})}{\epsilon^2} = -\vec{m} \\ \frac{d\vec{M}}{dt} = -\vec{M} \times \left(c(\vec{M} \cdot \vec{u})\vec{u} + \frac{\vec{m}}{\epsilon} + \frac{\partial^2 \vec{M}}{\partial x^2} \right) + \alpha \vec{M} \times \frac{d\vec{M}}{dt} \end{cases}$$
 in] - 1, 0[

$$\begin{cases} \boldsymbol{\epsilon}^4 \frac{\partial \vec{m}}{\partial t} - \frac{\partial^2 \vec{m}}{\partial x^2} + (\vec{m} \times \vec{M}) = -\boldsymbol{\epsilon}^2 \vec{m} \\ \frac{d\vec{M}}{dt} = -\vec{M} \times \left(c(\vec{M}.\vec{u})\vec{u} + \frac{\vec{m}}{\boldsymbol{\epsilon}} + \frac{\boldsymbol{\nu}}{\boldsymbol{\epsilon}^2} \frac{\partial^2 \vec{M}}{\partial x^2} \right) + \alpha \vec{M} \times \frac{d\vec{M}}{dt} \end{cases}$$
 in]0, 1[

In FE,
$$\frac{\vec{m} \times \vec{M}}{\epsilon^2} \Rightarrow \text{Polarization of } \vec{m} \text{ in the direction of } \vec{M}$$

In FF,
$$\frac{\nu}{\epsilon^2} \frac{\partial^2 \vec{M}}{\partial x^2} \Rightarrow \text{A spatial homogeneous magnetization}$$

Boundary conditions

For Landau-Lifshitz, we choose homogeneous Neumann conditions

$$\begin{cases} \partial_x \vec{M}_{FE}(-1,t) = 0 , \ \partial_x \vec{M}_{FE}(0^-,t) = 0 \\ \partial_x \vec{M}_{FF}(0^+,t) = 0 , \ \partial_x \vec{M}_{FF}(1,t) = 0 \end{cases} \quad \forall t \in [0,T]$$

For the diffusive equation, we choose Dirichlet for x=-1. The value corresponds to the injected current.

$$\vec{m}_{\scriptscriptstyle FE}(-1,t) = \vec{m_{\scriptscriptstyle L}} \quad \forall t \in [0,T]$$

Then, for x=0, we preserve the continuity.

$$\begin{cases} \vec{m}_{FE}(0^-, t) = \vec{m}_{FF}(0^+, t) \\ \epsilon \frac{\partial \vec{m}_{FE}(0^-, t)}{\partial x} = \frac{\partial \vec{m}_{FF}(0^+, t)}{\partial x} \end{cases} \forall t \in [0, T]$$

Finally, for x=1, we want a free evolution for remaining quantities. So, we build a Fourier condition.

$$\frac{\partial \vec{m}_{{\scriptscriptstyle FF}}(1,t)}{\partial x} = -A \vec{m}_{{\scriptscriptstyle FF}}(1,t) \hspace{0.5cm} \forall t \in [0,T] \label{eq:delta_eq}$$

where A is a positive matrix.

III Discretization of the coupled system

Diffusive equation discretization

To discretize the diffusive equation, we use an implicit method of finite differences. For example in]0,1[, the discretized equation is

$$\epsilon^4 \frac{\vec{m}^{n+1}(x) - \vec{m}^n(x)}{\Delta t} - \frac{\vec{m}^{n+1}(x + h_{\scriptscriptstyle FF}) - 2\vec{m}^{n+1}(x) + \vec{m}^{n+1}(x - h_{\scriptscriptstyle FF})}{h_{\scriptscriptstyle FF}^2} \\ + (\vec{m}^{n+1}(x) \times \vec{M}(x)) \ = \ -\epsilon^2 \vec{m}^{n+1}(x)$$

where Δt is our time step and $h_{\scriptscriptstyle FF}$ our space step.

Landau-Lifshitz equation discretization

To discretize the Landau-Lifshitz equation, two points are essential:

• The magnetization norm is preserved in time. To keep this property, we use a Crank-Nicholson scheme [5]

$$\frac{\vec{M}^{n+1} - \vec{M}^n}{\Delta t} = -\frac{\vec{M}^n + \vec{M}^{n+1}}{2} \times f(\vec{M}^{n+1}, \vec{m}) + \alpha \frac{\vec{M}^n + \vec{M}^{n+1}}{2} \times \frac{\vec{M}^{n+1} - \vec{M}^n}{\Delta t}$$

• To solve the implicit scheme, we used two different methods: a Newton method [2] and a Gauss-Seidel projection method [6].

A prediction-correction method to couple equations

To avoid a very small time step, we implement a prediction-correction method

$$\vec{m}^n, \vec{M}^n \Rightarrow \widetilde{M}(\vec{m}^n, \vec{M}^n) \Rightarrow \vec{m}^{n+1}(\widetilde{M}, \vec{m}^n) \Rightarrow \vec{M}^{n+1}(\vec{m}^{n+1}, \widetilde{M})$$

IV Numerical results

Observation of a magnetization switching

Fig.2 - Evolution of the component M_z during the time (3D view and projection).

In Fig.2, abscissa axis corresponds to space with FE in]-1;0[and FF in]0;1[and ordinate axis represents time. We observe a switching of the vertical component M_z . Horizontal components M_x and M_y are less significant.

During a magnetization switching, we find 3 steps:

- 1- \vec{M}_{FF} stays at an initial position (0,0,1)
- 2- It goes down rotating around the unit sphere

Fig.3 - Evolution of \vec{M} during the time around the unit sphere.

Impact of the injected current

Fig.4 - Projection of the component M_z in the case $||\vec{m}(-1)|| = 0.5$ and 1.2.

Fig.5 - Projection of the component M_z in the case $||\vec{m}(-1)|| = 1.4$ and 2.

To observe the impact of the injected current, we change the value of the Dirichlet condition m_L .

- $m_L = 0.5$, \vec{M}_{FF} does not move
- $m_L = 1.2$, \vec{M}_{FF} oscillates and then comes back to the initial position • $m_L = 1.4$, oscillations are not absorbed and we obtain a switching
- $m_L = 1.4$, oscillations are not absorbed and we obtain a switching $m_L = 2$, the switching occurs in a shorter time without too many oscillations

It exists a switching threshold. A sufficiently strong current is needed to create important interactions between the spin density and the magnetization.

IV Perspectives

This model allows to observe magnetization switching and it is in accordance with physical experiments (in particular, with the notion of threshold concerning the injected current).

Future work:

- Study of the real model proposed by Zhang, Levy and Fert which couples the spin density with the charge density, - Building of an asymptotic expansion (when ϵ approaches zero), - 3D study of such devices...

References

[1] L. Berger. Emission of spin waves by a magnetic multilayer traversed by a current. *Physical Review B*, 54(13):9353–9358, 1996.

[2] M. d'Aquino C. Serpico G. Miano. Geometrical integration of landau-lifshitz-gilbert equation based on the mid-point rule. *Journal of Computational Physics*, 209:730–753, 2005.
[3] S. Zhang P.M. Levy A. Fert. Mechanisms of spin-polarized current-driven magnetization switching. *Europhysics letters*, 88(23), 2002.

[4] J.C. Slonczewski. Japan j. indust. appl. math. J. Magn. Magn. Mater, 159:L1–L7, 1996.
[5] P. Joly O. Vacus. Mathematical and Numerical Studies of 1D Non linear Ferromagnetic Materials. 1996. Rapport de recherche INRIA.

[6] X.P. Wang J. Garcia-Cervera E. Weinan. A gauss-seidel projection method for micromagnetics simulations. *Journal of Computational Physics*, 171:357–372, 2001.