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Motivations

• New devices (diameter below to 3 nm) : silicon nanowires, carbon nanotubes...

• Ultra-scaled strongly confined structures exhibit electrical behavior

that cannot be accounted for by using the dispersion relation of the bulk material.

• Assumption of infinite periodic structure in the wire cross section,

which allow to derive the usual effective mass theorem, cannot be used anymore.

We find a longitudinal effective mass model,
which consists of a device dependent Schrödinger equation for each n-th band.

• Fully quantum approaches are complex and computationally expensive.

• Boundary conditions are not easily imposed.

• Quantum models usually do not include collisions of charged particles.

We derive a nanowire classical transport model.
Also, we use the quantum transport model in regions where quantum effects are strong

and we couple it to the classical transport model in the rest of the device domain.

I Effective mass model

We consider the Schrödinger equation
in a wire represented by x ∈ R and z ∈ ǫω :
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ψ = 0 for z ∈ ∂ǫω.

me : electron mass,
WL : ǫ-periodic potential generated by the lattice,
V : slowing varying (self consistent) potential,
ǫ : small parameter interpreted as the ”lattice constant”.

Next, the problem is rescaled. In particular, z′ = z
ǫ . For (x, z′) ∈ R × ω,
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Envelope function decomposition

(extending [2] to nanowires)

The orthonormal basis for the decomposition is made of generalized Bloch
waves for k = 0, eigenfunctions in the unit cell U = (−0.5, 0.5) × ω of :
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χn(y, z
′) = 0 on ∂ω, χn 1-periodic in y.
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(2)

For every function ψ ∈ L2(R×ω) there exists a unique sequence {f ǫn....|n ∈ N}
such that the Fourier transform f̂ ǫn has support in (−π/ǫ, π/ǫ) and such that
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K.p model
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with the following quantities
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Effective mass dynamics
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where m∗
n is the n-th band effective mass given by
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II Algorithm and transport strategy

Fig - General organization of the model.

• First step : Resolution of the generalized Bloch problem (2).
It is done only once for a given device.

• Second step : Coupling of 1D transport equations (including the parameters
computed in the first step) and the 3D Poisson equation
by means of a Gummel iterative method.

1) Quantum approach

The macroscopic charge density is given by
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Nn
1D is the 1D density carried by the n-th band. It is given by superimposing

the densities of states injected from Source and Drain :

Nn
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ψn,k is the wave function solution of the stationary Schrödinger equation (re-
sulting of (6)) with transparent boundary conditions. φn(k) is the reservoir
statistic (we use the Boltzmann statistic).

2) Nanowire drift-diffusion model

In the classical model, the 1D density Nn
1D can be described by
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The function Mn is the Maxwellian
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where the repartition function Z is given by
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The surface density Ns satisfies the nanowire drift-diffusion equation

∂tNs − ∂x

(
µkBT∂xNs + µNs∂xVs

)
= 0 with Vs = −kBT log(Z). (12)

This equation is obtained via a diffusive limit from a set of Boltzmann equa-
tions posed on each n-th band, analogously to [3].

3) Hybrid classical-quantum model

The drift-diffusion model is used in large doped regions where the transport
is expected to be classical in a highly collisional regime, whereas the fully
quantum model is chosen for the active zone.

Fig - Schematic representation of hybrid model regions.

Following [1], interface conditions are obtained by imposing continuity of the
current J at interfaces :

J(x1) = J(x2) := J,

e−ϕ(x1)/(kBT ) − e−ϕ(x2)/(kBT ) = ΘQJ.

ϕ is the unknown electro-chemical potential and ΘQ is a positive coefficient
depending on the reflection-transmission coefficient (quantum part). When
we use the Boltzmann statistic, ΘQ can be computed explicitly.

III Numerical results

A simplified carbon nanotube as toy device

We study a carbon nanotube. The wire section (2nm) is tiny and the transport
direction (channel of 10nm) is solved for a gate-all-around FET.

Fig - Scheme of the toy device.

First block results

We present the first eigenstate, 2 eigs. corresponding to a multiple eigenvalue
and one associated with higher energy. We recognize the 12 atom structure.

Fig - Eigenvectors χn at the cross section x = 0 for 1st, 14th, 15th and 35th mode
(from left to right and top to bottom).

Second block results
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Fig - Densities (m−3) in the left and potential energies (eV) in the right for different applied voltages.
These 1D curves are results of an integration of 3D quantities over the 2D wire section.

Fig - 2D slices of density (top) and potential (bottom)
at equilibrium. x-axis is the transport direction.

These slices cross 4 atoms.
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Fig - Current-voltage curves
for different gate potential VGS
(0, 0.025, 0.05 and 0.075 V).

These curves are obtained with the hybrid approach, which improves the result
quality and decreases the computational cost, compared to the fully quantum
model. Even in this over simplified problem, our models are able to capture the
qualitative behavior of the current for ultra-scaled confined nanostructures.
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