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Bloch model for quantum dots

Quantum dot description

We use a conduction and valence electron description.

Due to the 3D confinement, energy levels in a quantum dot are quantized:
- conduction energy levels (ǫcj)j∈Ic,
- valence energy levels (ǫvj)j∈Iv.

To describe the time evolution of the energy level occupations, we define a
global electron density matrix by

ρ =

(
ρc ρcv

ρvc ρv

)
(1)

where
- ρc and ρv are the conduction and valence densities. Their diagonal terms,
called populations, are the occupation probabilities and their off-diagonal
terms, called coherences, describe the intra-band transitions.
- ρcv and ρvc = ρcv

∗

describe the inter-band transitions.

Maxwell-Bloch equations

The time evolution of ρ can be driven by a free electron Hamiltonian associated
to electron level energies and the interaction with an electromagnetic wave. It
is described by a Liouville type equation

i~∂tρ = [E0 +E ·M, ρ], (2)

where
- [A,B] denotes the commutator AB − BA,
- E0 = diag({ǫcj}, {ǫ

v
j}),

- M is the dipolar moment matrix

(expressed in terms of the wave functions associated to each level),

- E is a time-dependent electric field.

It can be coupled with Maxwell equations:

∂tE = c2 curlB− µ0c
2J, (3)

∂tB = − curlE, (4)

where B is the magnetic field. The coupling is expressed via the current
density J given by

J = naTr(M∂tρ)

where na is the quantum dot volume density.

Self-Induced Transparency experiments

We consider two 3-level test cases with 1 conduction level and 2 valence levels.
The energy between the conduction level and the first valence level is ~ω0.
In the 1st case (dashed line on the scheme below), the transition between the
2 valence levels is 2~ω0. Instead, in the 2nd case (solid line), it is also ~ω0.

An electromagnetic pulse, whose center frequency is also ω0, propagates
through the dots. When the transition between the 2 valence levels is res-
onant with the field (right), the SIT phenomenon is destroyed. Instead, it
suffices to get both valence levels far apart enough to recover the SIT.
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Time evolution of populations (Left: ǫv2 − ǫv1 = 2~ω0 ; Right: ǫ
v
2 − ǫv1 = ~ω0).

Addition of electron–phonon interactions

Electron–phonon (e–ph) Hamiltonian

The starting point is to use field quantification to write an e–ph Hamiltonian.

Assumptions:
- e–ph interactions cannot lead the electron to change species:

He−ph = Hc−ph +Hv−ph.

- Only polar coupling to optical phonons is considered

(leads to the fastest dynamics in low excitation regime).

The corresponding Fröhlich interaction Hamiltonian is given by

Hc−ph =
1

|B|

∫

B

∑

α,α′∈Ic

Gc
q,α,α′ c†α

(
bq + b†−q

)
cα′ dq, (5)

Hv−ph =
1

|B|

∫

B

∑

α,α′∈Iv

Gv
q,α,α′ v†α

(
bq + b†−q

)
vα′ dq. (6)

c†j and cj (resp. v†j and vj) are creation and annihilation operators for

conduction (resp. valence) electrons and b†q and bq are those for phonons.
The phonon mode q belongs to the Brillouin zone B of the underlying crystal.

For e ∈ {c, v}, Ge
q is a matrix whose coefficients are expressed in terms of the

wave functions associated to each energy level:

Ge
q,α,α′ = Eq

∫
ψe∗α (r) exp(iq · r)ψeα′(r) dr, (7)

Eq being the Fröhlich constant defined such that Ge∗
q = Ge

−q.

Phonon-assisted densities

We introduce phonon-assisted density matrices

Sq =

(
Sccq Scvq
Svcq Svvq

)
where Sefq,α,α′ =

〈
f †α′bqeα

〉
, e, f ∈ {c, v}. (8)

Then, the time evolution of ρ due to e–ph interactions can be cast as

i~∂tρ|e−ph =
1

|B|

∫

B

[Gq, Sq + S∗
−q]dq ≡ P (S), (9)

where

Gq =

(
Gc

q 0

0 Gv
q

)
and S = {Sq, q ∈ B}. (10)

To close the system, we now look for the time evolution of Sq, for each q ∈ B:
- making explicit the commutators betweenHe−ph and the other Hamiltonians,
- using the Wick theorem to approximate the means involving four operators.
After computations, we obtain

i~∂tSq|e−ph = EqSq+
1

2
{G∗

q, ρ}+(
1

2
+nq)[G

∗
q, ρ]+C(ρ,G

∗
q) ≡ EqSq+Qq(ρ)

(11)
where
- {A,B} denotes the skew-commutator AB + BA,
- nq is the phonon density expressed in terms of the phonon energy Eq

by the Bose–Einstein statistics,

- C(ρ,G∗
q) is a non-linear term expressed as

C(ρ,G∗
q) = −ρ̃G∗

qρ̃ + Tr(G∗
qρ̃)ρ̃

where ρ̃ = ρ

(
Ic 0
0 −Iv

)
, Ic/v being the conduction/valence identity matrices.

Final e–ph Bloch model

To summarize, the e-ph Bloch model consists in coupling an equation on ρ

i~∂tρ = [E0 + E ·M, ρ] + P (S) (12)

with a set of equations on phonon-assisted densities Sq (one for each q)

i~∂tSq = EqSq + [E0 +E ·M, Sq] +Qq(ρ). (13)

Numerical issues and e–ph simulations

Discretization

We consider a collection of quantum dots scattered in a one dimensional
space along the z direction.

We introduce a uniform discretization of phonon modes using Nq points and
integrals over q are approximated by a simple quadrature formula.

⇒ We compute Nq densities Sq solving Nq independent equations (13).

A finite difference Yee scheme is used for Maxwell equations (3)-(4):

B
n+1

2

y,j+1

2

= B
n−1

2

y,j+1

2

−
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En+1
x,j = En

x,j − c2
δt

δz
(B

n+1

2

y,j+1

2

− B
n+1

2

y,j−1
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)− µ0c
2δtJ

n+1

2

x,j , (15)

with B
−1

2

y,j+1

2

= 0, E0
x,j given and J

n+1

2

x,j = −
ina
~
Tr

(
Mx

[
E0, ρ

n+1

2

j

]
+MxP (S

n
j )
)
.

Equations (12)-(13) are discretized on a staggered grid in time and each equa-
tion is solved using a Strang splitting procedure:

Sn+1q,j = A3

(δt
2
, EqI

)
A2

(δt
2
, E0 +

En
x,j + En+1

x,j

2
Mx

)
(16)

A1

(
δt,Qq(ρ

n+1

2

j )
)
A2

(δt
2
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En
x,j + En+1

x,j

2
Mx

)
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(δt
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)
Snq,j,

ρ
n+3

2

j = A2

(δt
2
, E0 + En+1

x,j Mx

)
A1

(
δt, P (Sn+1j )

)
A2

(δt
2
, E0 + En+1

x,j Mx

)
ρ
n+1

2

j ,

(17)

initialized by S0
q,j = 0 and ρ

1

2

j = A2

(
δt
2 , E0 + E0

x,jMx

)
ρ0j. In these expres-

sions, A1, A2 and A3 are three semigroups defined by

A1(t, B)A = A−
it

~
B, A2(t, B)A = e−

itB
~ Ae

itB
~ and A3(t, B)A = e−

itB
~ A.

Scattering term effects

We consider the 3-level test case with ǫc1 − ǫv2 = ~ω0 and ǫ
v
2 − ǫv1 = 2~ω0.
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Time evolution of populations for Nq = 100 (left) and zoom inside the rectangle (right).

e-ph interactions destroy the SIT phenomenon, even for valence levels far apart
enough. In addition to a relaxation behavior, fast oscillations are generated
for the two valence levels and persist after the electromagnetic pulse.

Conclusion / Perspective

To study the interaction of quantum dots with an electromagnetic field
taking into account e-ph interactions, we proposed an efficient discretiza-
tion for the coupling between the equation on ρ and the set of equations on Sq.

In the future, we would like to take into account, via a kinetic equation, the
quantum-well wetting layer into which the quantum dots are embedded.
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