On a Bloch type model with electron-phonon interactions:

modeling and numerical simulations
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Bloch model for quantum dots

Addition of electron—phonon interactions

Numerical issues and e—ph simulations

Quantum dot description

We use a conduction and valence electron description.

Due to the 3D confinement, energy levels in a quantum dot are quantized:
- conduction energy levels (€5)jeze,
- valence energy levels (€5) ez,

To describe the time evolution of the energy level occupations, we define a
global electron density matrix by

pC pCU
— 1
o= (1.7) 0
where

- p¢ and p" are the conduction and valence densities. Their diagonal terms,
called populations, are the occupation probabilities and their off-diagonal
terms, called coherences, describe the intra-band transitions.

- p® and p’¢ = p®" describe the inter-band transitions.

Maxwell-Bloch equations

The time evolution of p can be driven by a free electron Hamiltonian associated
to electron level energies and the interaction with an electromagnetic wave. It
is described by a Liouville type equation

thop = [Ey+ E - M, pl, (2)

where

- |A, B] denotes the commutator AB — BA,
- By = diag({€j}, {€]}),

- M is the dipolar moment matrix
(expressed in terms of the wave functions associated to each level),

- E is a time-dependent electric field.

It can be coupled with Maxwell equations:

OE = ¢’ curl B — pioc?J, (3)
0B = —curl E, (4)

where B is the magnetic field. The coupling is expressed via the current
density J given by
J = Mg Tr(M@tp)

where n, is the quantum dot volume density.

Self-Induced Transparency experiments

We consider two 3-level test cases with 1 conduction level and 2 valence levels.
The energy between the conduction level and the first valence level is Aw.
In the 1st case (dashed line on the scheme below), the transition between the
2 valence levels is 2Awy. Instead, in the 2nd case (solid line), it is also Awy.

An electromagnetic pulse, whose center frequency is also wy, propagates
through the dots. When the transition between the 2 valence levels is res-
onant with the field (right), the SIT phenomenon is destroyed. Instead, it
suffices to get both valence levels far apart enough to recover the SIT.
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Time evolution of populations (Left: €5 — €] = 2hwy ; Right: €5 — €] = hwy).

Electron—phonon (e—-ph) Hamiltonian

The starting point is to use field quantification to write an e-ph Hamiltonian.

Assumptions:
- e-ph interactions cannot lead the electron to change species:

He—ph _ Hc—ph_|_ Hv—ph.

- Only polar coupling to optical phonons is considered

(leads to the fastest dynamics in low excitation regime).

The corresponding Frohlich interaction Hamiltonian is given by

C— 1 C
Herh = Bl /B D> Gl Ch (bq + bT_q) cor dq, (5)
o,/ €L°
1
HYPh = ‘E/ Z G o vl (bq +- bT_q) vy dq. (6)
B o,/ eV
i 1

c; and ¢; (resp. wv; and v;) are creation and annihilation operators for

conduction (resp. valence) electrons and bil and bq are those for phonons.
The phonon mode q belongs to the Brillouin zone B of the underlying crystal.

For e € {c, v}, G is a matrix whose coefficients are expressed in terms of the
wave functions associated to each energy level:

G = Ea [ 00 explia - 105 ) dr, 7

Eq being the Frohlich constant defined such that G = G,

Phonon-assisted densities

We introduce phonon-assisted density matrices

SCC SC'U ef T
_ [ Pa “q —
Sq (S&C S””) where  S.° <fa,bqea> , e, fe{cvt.  (8)

q

Then, the time evolution of p due to e—ph interactions can be cast as

. 1 )
thOP|e—pn = Bl /B[Gq, Sq+ 5" Jda = P(S5), (9)
where )
Gy = (Gq OU> and S = {Sq, q € B}. (10)
0 Gy

To close the system, we now look for the time evolution of Sy, for each q € B:
- making explicit the commutators between H* P and the other Hamiltonians,
- using the Wick theorem to approximate the means involving four operators.
After computations, we obtain

. 1 ES 1 £ * -
thOpSqle—ph = Equ"‘§{an pt+(5+nq)Gg, p]+C(p, Gg) = EqSq+Qq(p)

2
(11)
where

- {A, B} denotes the skew-commutator AB + BA,
- ng 1s the phonon density expressed in terms of the phonon energy £

by the Bose-Einstein statistics,

- C(p, G) 1s a non-linear term expressed as
Clp, Gy = —pGap + TGP

~ I° . . . . .
where p = p ( 0 _O[v> , I¢/Y being the conduction/valence identity matrices.

Final e—ph Bloch model

To summarize, the e-ph Bloch model consists in coupling an equation on p
ihowp = [Fy+ E - M, p| + P(95) (12)
with a set of equations on phonon-assisted densities Sy (one for each q)

1h0;Sq = EqSq+ [Eo + E - M, S¢| + Qqlp). (13)

Discretization

We consider a collection of quantum dots scattered in a one dimensional
space along the z direction.

We introduce a uniform discretization of phonon modes using Nq points and
integrals over q are approximated by a simple quadrature formula.

= We compute Ny densities Sy solving Nq independent equations (13).

A finite difference Yee scheme is used for Maxwell equations (3)-(4):

n+% n—i 5t

Y, j+i — By,jj% R g( :?,j+1 R Eﬂ?,j)? (14)
et =g 20 g gy e (15)
z.] A P N Y o
. -1 . n+l 1My n+l n
with By7j+% =0, Eg’j given and J, ;* = —7T7“ (Mx [EO, P, } +M,P(S; ))

Equations (12)-(13) are discretized on a staggered grid in time and each equa-
tion is solved using a Strang splitting procedure:

5t ot B+ B
g = Ag(E,EqJ)AQ(?EW S Mx) (16)
n+% ot E;?’-—I— Eg,—i_l ot n
A (88, Qalp] ) Ao (5 B+ =M, ) A (5 Bl ) S

o= A (% Ey + E;}lex) A (5t, P(S}’“”)) Ay (% By + Eglex) o

(17
initialized by 587]- = (0 and ,0% = A (%, Ey+ Engx) p?. In these expres-
sions, A, Ay and Aj are three semigroups defined by

1B B B

Ai(t, B)A = A—%B, As(t, BJYA=e 7" Aer and As(t,B)A=¢ 1 A.

Scattering term effects

We consider the 3-level test case with €] — €5 = hwy and €5 — €] = 2hwy.
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Time evolution of populations for Ng = 100 (left) and zoom inside the rectangle (right).

e-ph interactions destroy the SI'T phenomenon, even for valence levels far apart
enough. In addition to a relaxation behavior, fast oscillations are generated
for the two valence levels and persist after the electromagnetic pulse.

Conclusion / Perspective

To study the interaction of quantum dots with an electromagnetic field
taking into account e-ph interactions, we proposed an eflicient discretiza-
tion for the coupling between the equation on p and the set of equations on Sy

In the future, we would like to take into account, via a kinetic equation, the
quantum-well wetting layer into which the quantum dots are embedded.
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