On a Bloch type model with electron-phonon interactions: modeling and numerical simulations

Brigitte Bidégaray-Fesquet ${ }^{1}$, Clément Jourdana ${ }^{1}$, Kole Keita ${ }^{2}$
${ }^{1}$ Univ. Grenoble Alpes (UGA), CNRS, Grenoble INP ${ }^{\dagger}$, LJK, 38000 Grenoble, France
${ }^{\dagger}$ Institute of Engineering Univ. Grenoble Alpes
${ }^{2}$ Univ. Jean Lorougnon Guédé (UJLoG), 2 BP V 25 DALOA 12, Ivory Coast

Bloch model for quantum dots
Addition of electron-phonon interactions
Numerical issues and e-ph simulations

Electron-phonon (e-ph) Hamiltonian

The starting point is to use field quantification to write an e-ph Hamiltonian.
Assumptions:
e-ph interactions cannot lead the electron to change species:

$$
H^{e-p h}=H^{\iota-p h}+H^{v-p h} .
$$

Only polar coupling to optical phonons is considered
(leads to the fastest dynamics in low excitation regime)
The corresponding Fröllich interaction Hamiltonian is given by

$$
\begin{aligned}
& H^{c-p h}=\frac{1}{|\mathcal{B}|} \int_{\mathcal{B}_{\alpha, \alpha \alpha^{\prime} \in \mathcal{T}^{c}}} G_{\mathbf{q}, \alpha, \alpha^{\prime}}^{c} c_{\alpha}^{\dagger}\left(b_{\mathbf{q}}+b_{-q}^{\dagger}\right) c_{\alpha^{\prime}} d \mathbf{q}, \\
& H^{v-p h}=\frac{1}{|\mathcal{B}|} \int_{\mathcal{B}} \sum_{\alpha, \alpha^{\prime} \in \mathbb{T N}^{v}} G_{\mathrm{q}, \alpha, \alpha^{\prime}}^{v} v_{\alpha}^{\dagger}\left(b_{\mathbf{q}}+b_{-\mathrm{q}}^{\dagger}\right) v_{\alpha^{\prime}} \mathrm{dq}
\end{aligned}
$$

c_{j}^{\dagger} and c_{j} (resp. v_{j}^{\dagger} and v_{j}) are creation and annihilation operators for conduction (resp. valence) electrons and b_{q}^{\dagger} and b_{q} are those for phonons. The phonon mode \mathbf{q} belongs to the Brillouin zone \mathcal{B} of the underlying crystal.

For $e \in\{c, v\}, G_{\mathrm{q}}^{e}$ is a matrix whose coefficients are expressed in terms of the wave functions associated to each energy level:
$G_{\mathbf{q}, \alpha, \alpha^{\prime}}^{e}=\mathcal{E}_{\mathbf{q}} \int \psi_{\alpha}^{e_{\alpha}^{*}}(\mathbf{r}) \exp (i \mathbf{q} \cdot \mathbf{r}) \psi_{\alpha_{\alpha}^{e}}^{e}(\mathbf{r}) \mathrm{d} \mathbf{r}$,
\mathcal{E}_{q} being the Frölich constant defined such that $G_{\mathrm{q}}^{e *}=G_{-\mathrm{q}}^{e}$

Phonon-assisted densities
We introduce phonon-assisted density matrices

Then, the time evolution of ρ due to e - ph interactions can be cast as
$\left.i \hbar \partial_{t}\right|_{e-p h}=\frac{1}{|\mathcal{B}|} \int_{\mathcal{B}}\left[G_{\mathbf{q}}, S_{\mathbf{q}}+S_{-\mathrm{q}}^{*}\right] \mathrm{dq} \equiv P(S)$,
where
$G_{\mathbf{q}}=\left(\begin{array}{cc}G_{\mathrm{q}}^{c} & 0 \\ 0 & G_{\mathrm{q}}^{v}\end{array}\right)$ and $S=\left\{S_{\mathbf{q}}, \mathbf{q} \in \mathcal{B}\right\}$
To close the system, we now look for the time evolution of $S_{\mathbf{q}}$, for each $\mathbf{q} \in \mathcal{B}$: - making explicit the commutators between $H^{e-p h}$ and the other Hamiltonians - using the Wick theorem to approximate the means involving four operators. After computations, we obtain
$\left.i \hbar \partial_{t} S_{\mathbf{q}}\right|_{e-p h}=E_{\mathbf{q}} S_{\mathbf{q}}+\frac{1}{2}\left\{G_{\mathbf{q}}^{*}, \rho\right\}+\left(\frac{1}{2}+n_{\mathbf{q}}\right)\left[G_{\mathbf{q}}^{*}, \rho\right]+C\left(\rho, G_{\mathbf{q}}^{*}\right) \equiv E_{\mathbf{q}} S_{\mathbf{q}}+Q_{\mathbf{q}}(\rho)$
where

- $\{A, B\}$ denotes the skew-commutator $A B+B A$,
$-n_{\mathrm{q}}$ is the phonon density expressed in terms of the phonon energy E_{q} by the Bose Einstein statistics,
- $C\left(\rho, G_{\mathrm{q}}^{*}\right)$ is a non-linear term expressed as
$C\left(\rho, G_{\mathrm{q}}^{*}\right)=-\widetilde{\rho} G_{\mathrm{q}}^{*} \tilde{\rho}+\operatorname{Tr}\left(G_{\mathrm{q}}^{*} \tilde{\rho} \tilde{\rho}\right.$
where $\tilde{\rho}=\rho\left(\begin{array}{cc}I^{c} & 0 \\ 0 & -I^{v}\end{array}\right)$
), $I^{c / v}$ being the conduction/valence identity matrices.

Quantum dot description

anctic pulse, whose center frequency is also ω_{0}, propaga onant with dots. When the transition between the 2 valence levels is suffices to get both valence levels far apart enough to recover the SIT.

Self-Induced Transparency experiments

We consider two 3 -level test cases with 1 conduction level and 2 valence level. The energy between the conduction level and the first valence level is $\hbar \omega_{0}$. In the 1st case (dashed line on the scheme below), the transition between th 2 valence levels is $2 \hbar \omega_{0}$. Instead, in the 2 nd case (solid line), it is also $\hbar \omega_{0}$.

Maxwell-Bloch equations

The time evolution of ρ can be driven by a free electron Hamiltonian associated is described by a Liouville type equation

$$
i \hbar \partial_{t} \rho=\left[E_{0}+\mathbf{E} \cdot \mathbf{M}, \rho\right],
$$

where
$-[A, B]$ denotes the commutator $A B-B A$,
$E_{0}=\operatorname{diag}\left(\left\{\epsilon_{j}^{c}\right\},\left\{\epsilon_{j}^{v}\right\}\right)$,
\mathbf{M} is the dipolar moment matrix
(expressed in terms of the wave functions associated to each level),
\mathbf{E} is a time-dependent electric field.

It can be coupled with Maxwell equations:

$$
\begin{aligned}
& \partial_{t} \mathbf{E}=c^{2} \operatorname{curl} \mathbf{B}-\mu_{0} c^{2} \mathbf{J}, \\
& \partial_{t} \mathbf{B}=-\operatorname{curl} \mathbf{E},
\end{aligned}
$$

where \mathbf{B} is density \mathbf{J} given by

$$
\mathbf{J}=n_{a} \operatorname{Tr}\left(\mathbf{M} \partial_{t} \rho\right)
$$

where n_{a} is the quantum dot volume density.

Due to the 3D confinement, energy levels in a quantum dot are quantized: - conduction energy levels $\left(\epsilon_{j}^{c}\right)_{j \in \mathcal{I}^{c}}$
\square

- ρ^{c} and ρ^{v} are the conduction and valence densities. Their diagonal terms, called populations, are the occupation probabilities and their off-diagonal terms, called coherences, describe the intra-band transitions. $\rho^{c v}$ and $\rho^{v c}=\rho^{c v^{*}}$ describe the inter-band transitions.

