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ABSTRACT 
 
In this paper, we present DLSH Distributed Locality Sensitive 
Hashing , a similar-data search technology. The huge growth in 
the size of video content has broken the traditional multi-media 
index hosting and look-up solutions, these are not able to scale to 
the size of the current and projected index requirements.  
Distributed LSH (D-LSH) addresses this need of a highly scalable 
multi-media index. DLSH performs better for finding approximate 
near neighbors on  extremely large scales , as DLSH distributes 
close points on single boxes, and far points on different boxes 
based on projections. 

Index terms 

duplicate video detection, video signature, video similarity, 
image similarity, large scale index with nearest neighbor search. 

1. INTRODUCTION 
Multimedia Content (Audio, Image & Video), matching  
techniques rely on  content fingerprinting  in which software 
identifies, extracts and then compresses characteristic components 
of a content , enabling that content to be uniquely identified by its 
resultant “fingerprint”. For searching multimedia, content these 
fingerprints have to be stored in the indexes which can   support 
quick lookup of similar content factoring both spatial and 
temporal changes from original content. 

These fingerprint indexes should support huge amount of content 
covering movies, music, sport, news etc. The challenge is 
compounded by the fact that traditional hash look-up techniques 
cannot be used here as, a comparison for absolute equality may 
fail even when two video segments are perceptually identical. The 
current state of art for multi-media look-up technique is based on 
Locality Sensitive Hashing (LSH) which does a fuzzy match. LSH 
has a serious limitation in terms of index size as the in-memory 
index is constrained by the physical memory of the single box. 

Based on an extensive evaluation of few indexing solutions, we 
have observed that there is a broad gap in the solutions available 
today. Solutions for similarity matches work well with limited 
index size say with few hundred hrs. of video index but fails as 
the index size grows to, large sizes, say  10,000+  hrs of video 
content which roughly translates into 2 Million fingerprints in the 

index. These limitations make the existing solutions unviable for 
the size and range of multimedia content Yahoo! handles. 

The challenges in building a large scale index for similarity search 
can be broadly classified under three areas:  

       1. Similarity (Fuzzy) Matching 

       2. Scalability 

       3. Look up Time 

Our solution takes a leave from the Distributed Hash Tables 
(DHT) approach, used in scaling large scale index in P2P, which 
distributes the index and lookup over the network. The challenge 
in using DHT approach in multi-media look-up has been that LSH 
is more of a fuzzy match (Nearest Neighbor match), as against an 
exact match in the DHT case. 

Our solution utilizes a similar approach of distributing large index 
over the network, however in the context of fuzzy matches .Hence 
the name DLSH (Distributed - `Locality Sensitive Hashing`)..   

2.  EXISTING TECHNIQUES  
 

A simple brute force approach could be used to iterate through 
each feature vector in a simple index and to calculate the distance 
to the query object. However, our index may contain billions of 
objects—each object described by a feature vector that contains 
hundreds of dimensions. Therefore, it is important that we find a 
solution that does not depend on linear search of the index. 
Existing methods to accomplish this search include trees and 
hashes. 

 

2.1 Distributed Hash Table (DHT) 
Distributed hash tables (DHTs) are a class of decentralized 
distributed systems that provide a lookup service similar to a hash 
table: (key, value) pairs are stored in the DHT, and any 
participating node can efficiently retrieve the value associated 
with a given key. This allows DHTs to scale to extremely large 
numbers of nodes and to handle continual node arrivals, 
departures, and failures. But as the hash returned values variate 
largely even in small deviation in input, i.e.,  a well designed  
hash function separates two symbols that are close together into 
different buckets. This makes a hash table a good means of 
finding exact matches but not in approximate matching. To find 
approximate (near) matches efficiently, we use k-d trees and 
locality sensitive hash. 
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By building a tree of objects, we can start at the top node when 
given a query, ask if our query object is to the left or to the right 
of the current node, and then recursively descend the tree. In a 
multidimensional space, this idea becomes the k-d tree algorithm. 
The problem with multidimensional algorithms such as k-d trees 
is that k-d trees are not suitable for efficiently finding the nearest 
neighbor in high dimensional spaces. We end up testing nearly all 
the nodes in the data set and the computational complexity grows 
to O(n1-1/k +m) time, where m is the number of the reported 
points, and k the dimension of the k-d tree. 

2.3 Locality Sensitive Hashing (LSH) 
LSH is based on the simple idea that, if two feature vectors are 
close together, then after a “projection / mapping / (dimensional 
reduction)” operation in k-dimensions, these two points will 
remain close together. The major drawback of the basic LSH 
indexing method is that it may require a large number of hash 
tables to cover most nearest neighbors. The size of each hash table 
is proportional to the data-set size, since each table has as many 
entries as the number of data objects in the dataset. When the 
space requirement for the hash tables exceed the main memory 
size, looking up a hash bucket may require a disk I/O, causing 
substantial delay to the query process. LSH, therefore, is not able 
to scale on large size of index, which is required by multimedia 
content. 

 

Table 1. Comparison of Existing Techniques   

Technology Characteristics Limitations 

 

Distributed 

Hash Table 

Distributed 

Scalable 

Fast Look up 

No Support for 
Fuzzy Match 

 

K dimensional 
Tree 

Fuzzy Match 

Fast Look up 

 

Reduced precision 
with large index 
size 

No support for 
higher dimension 

Locality Sensitive 
Hashing 

Fuzzy Match 

Fast Look up 

Support for 
higher dimension 

Index size limited 
to physical memory 
in a box 

 
 
 
3. DISTRIBUTED LOCALITY SENSITIVE 
HASHING 
To address the above issues associated with the DHT exact 
matching, trees lookup time, LSH scalability issues, we propose a 
new method called DLSH, which uses a more systematic 
approach to explore hash buckets on a larger scale. 

Distributed Locality-Sensitive Hashing (DLSH) is an algorithm 
for solving the (approximate/exact) Near Neighbor Search in high 
dimensional spaces.  It is based on LSH (Locality Sensitive 
Hashing) which performs probabilistic dimension reduction of 
high-dimensional data. The basic idea is to hash the input items so 
that similar items are mapped to the same buckets with high 
probability (the number of buckets being much smaller than the 
universe of possible input items).Thus, DLSH is basically LSH 
performed on several machines which Yahoo! serves. 

 
Figure 1. Distributed Locality Sensitivity Hashing workflow with 

applications supported. 

 

DLSH, decentralized distributed systems, that provide a lookup 
service similar to a LSH. Responsibility for maintaining index and 
look up is now distributed across various machines/nodes. 
Mapping is initially done to reduce dimensions of fingerprints and 
is further used for node identification. Each node in turn maintains 
an index table and does lookup, in a second level of hashing, 
based on it. After determining the fingerprints which map to the 
same index, Euclidean distance between the points are calculated 
to find approximation of distance between two points. Based on 
the threshold distance, near neighbors are calculated. This allows 
DLSH to scale to extremely large numbers of nodes and to handle 
continual node arrivals, departures, and failures. 

It provides a distributed and highly scalable, multi-media indexing 
and lookup solution to manage the huge size and large range of 
video content . 

 

 

 
4. ALGORITHM OVERVIEW 
The key idea of the DLSH is to use a projections/mappings to 
check multiple buckets that are likely to contain the nearest 
neighbors of a query object. Given the property of locality 
sensitive hashing, we know that if an object is close to a query 
object q but not hashed to the same bucket as q, it is likely to be in 
a bucket that is “close by” (i.e., the hash values of the two buckets 

2.2 K-dimensional Tree (k-d tree): 
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only differ slightly). So our goal is to locate these “close by” 
buckets, thus increasing the chance of finding the objects that are 
close to the query point q. 

 
Figure 2.  Projections of high dimensional near points getting 

mapped nearby in two dimensional plane, similarly high 
dimensional far points getting mapped far apart in two 

dimensional plane 

 

LSH approach with large number of points in the index becomes a 
bottleneck in terms of time complexity and accuracy. To resolve 
this, DLSH provides multiple index levels and also divides the 
first index level into bands. 

The first level of index is divided in bands, where each band 
represents the node for second level of indexing.  The bands 
contain continuous h1 values, where number of bands is 
dependent on the scale of index and no of servers provided. At the 
first level of index, fingerprints are mapped and based on the 
values obtained; the computation is further delegated to second 
indexing level. On second level of indexing, another projection in 
singular dimension is used to index the points. The points falling 
far apart will be placed in different buckets, whereas near points 
falling in approximately same buckets. 

 

h1(a1,a2,…..,ak) =((Σ
k
 

Figure 3 .Functions to calculate first level of index and second 
level of indexing 

 

Final nearest neighbor matches are found with finding the 
Euclidean distance between the two original points. 

                     sqrt((a1-a2)2 + (b1-b2)2 + .... + (z1-z2)2 

Figure 4 . Approximation to nearest neighbor matching using 
Euclidean distance computation. 

   
Figure 5.  DLSH over the network. 

DLSH maps similar fingerprints on the same band and different 
fingerprints on different bands, thereby enhances the search. 
DLSH method is much more time efficient and scalable .DLSH 
method can search and index millions of fingerprints to achieve 
the same search quality within in fraction of seconds. 

 

5. EXPERIMENTAL RESULTS 
All the algorithms and processing flow has been implemented on 
a Linux platform in C++. All the experiments were conducted on 
a single core with 2 GB RAM. 

 

5.1 Test Suite 
We have used two datasets in our evaluation. The two datasets 
are- 

Image Data contains images crawled from the web. The total 
number of images picked is 12.5 million. For each image, we use 
the coorelogram tool to extract a 2080-dimensional coorelogram 
histogram. 

Video Data - Data contains video crawled from the web. The total 
number of videos picked is 5.27 million. For each video, we used 
polemics  video fingerprinting solution. 

We simulate the web video duplicate cases and randomly produce 
zero to five duplicate copies of videos. These changes include the 
random combination of bit rate changes , frame rate changes, 
stitched videos, cropped videos . Following are the results of  
video data experimentation. 

5.1.1 Look up time Results  
It takes less than 10msec to give response to a query point request 
on the index of 6.5 million feature vectors. 

5.1.2 Scalability Results 
DLSH scales to even millions of index even when it is running on 
single machine .As there is no known practical limit, as the 
system is gracefully scaling out by adding more boxes on the 
network. 

X-Plane 

Y- Plane
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Table 1. Scalability Comparison with Existing 
Techniques  

Techniques Number of Feature 
Vectors * 

DLSH > 12,700,000** 

LSH ~ 900,000  

k-d tree ~ 210,000 

 

* for above numbers ,the size of each feature vector was 2145 
floats. 

** no known limitations.  

5.1.3 Accuracy Results  
DLSH gives very high degree of accuracy even on the very large 
index size. The tests have been conducted for finding the nearest 
neighbors keeping original videos in DLSH index and taking 
edited videos as requested query video. The accuracy is same as 
LSH which are quoted with precision of 0.9 and recall of 0.85. 

 

6. CONCLUSION  
In this paper, we describe how DLSH is highly scalable than LSH 
approach, maintaining the accuracy levels of LSH with no known 
scaling limitations. This paper shows how DLSH solves the issue 
around fast similarity lookups on large multimedia fingerprint 
indexes by distributing the index over the network. 
 Our experimental results show that the DLSH method is highly 
scalable then the basic LSH to achieve desired search accuracy 
and query time with large scales desired by multimedia content. 
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