
Distributed Locality Sensitivity Hashing

 Smita Wadhwa

 smitaw@yahoo-inc.com

 Video Platform, Yahoo!

 Pawan Gupta

pawan_z@yahoo.com

Video Platform, Yahoo!

ABSTRACT

In this paper, we present DLSH Distributed Locality Sensitive
Hashing , a similar-data search technology. The huge growth in
the size of video content has broken the traditional multi-media
index hosting and look-up solutions, these are not able to scale to
the size of the current and projected index requirements.
Distributed LSH (D-LSH) addresses this need of a highly scalable
multi-media index. DLSH performs better for finding approximate
near neighbors on extremely large scales , as DLSH distributes
close points on single boxes, and far points on different boxes
based on projections.

Index terms

duplicate video detection, video signature, video similarity,
image similarity, large scale index with nearest neighbor search.

1. INTRODUCTION
Multimedia Content (Audio, Image & Video), matching
techniques rely on content fingerprinting in which software
identifies, extracts and then compresses characteristic components
of a content , enabling that content to be uniquely identified by its
resultant “fingerprint”. For searching multimedia, content these
fingerprints have to be stored in the indexes which can support
quick lookup of similar content factoring both spatial and
temporal changes from original content.

These fingerprint indexes should support huge amount of content
covering movies, music, sport, news etc. The challenge is
compounded by the fact that traditional hash look-up techniques
cannot be used here as, a comparison for absolute equality may
fail even when two video segments are perceptually identical. The
current state of art for multi-media look-up technique is based on
Locality Sensitive Hashing (LSH) which does a fuzzy match. LSH
has a serious limitation in terms of index size as the in-memory
index is constrained by the physical memory of the single box.

Based on an extensive evaluation of few indexing solutions, we
have observed that there is a broad gap in the solutions available
today. Solutions for similarity matches work well with limited
index size say with few hundred hrs. of video index but fails as
the index size grows to, large sizes, say 10,000+ hrs of video
content which roughly translates into 2 Million fingerprints in the

index. These limitations make the existing solutions unviable for
the size and range of multimedia content Yahoo! handles.

The challenges in building a large scale index for similarity search
can be broadly classified under three areas:

 1. Similarity (Fuzzy) Matching

 2. Scalability

 3. Look up Time

Our solution takes a leave from the Distributed Hash Tables
(DHT) approach, used in scaling large scale index in P2P, which
distributes the index and lookup over the network. The challenge
in using DHT approach in multi-media look-up has been that LSH
is more of a fuzzy match (Nearest Neighbor match), as against an
exact match in the DHT case.

Our solution utilizes a similar approach of distributing large index
over the network, however in the context of fuzzy matches .Hence
the name DLSH (Distributed - `Locality Sensitive Hashing`)..

2. EXISTING TECHNIQUES

A simple brute force approach could be used to iterate through
each feature vector in a simple index and to calculate the distance
to the query object. However, our index may contain billions of
objects—each object described by a feature vector that contains
hundreds of dimensions. Therefore, it is important that we find a
solution that does not depend on linear search of the index.
Existing methods to accomplish this search include trees and
hashes.

2.1 Distributed Hash Table (DHT)
Distributed hash tables (DHTs) are a class of decentralized
distributed systems that provide a lookup service similar to a hash
table: (key, value) pairs are stored in the DHT, and any
participating node can efficiently retrieve the value associated
with a given key. This allows DHTs to scale to extremely large
numbers of nodes and to handle continual node arrivals,
departures, and failures. But as the hash returned values variate
largely even in small deviation in input, i.e., a well designed
hash function separates two symbols that are close together into
different buckets. This makes a hash table a good means of
finding exact matches but not in approximate matching. To find
approximate (near) matches efficiently, we use k-d trees and
locality sensitive hash.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

978-1-4244-5176-0/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

By building a tree of objects, we can start at the top node when
given a query, ask if our query object is to the left or to the right
of the current node, and then recursively descend the tree. In a
multidimensional space, this idea becomes the k-d tree algorithm.
The problem with multidimensional algorithms such as k-d trees
is that k-d trees are not suitable for efficiently finding the nearest
neighbor in high dimensional spaces. We end up testing nearly all
the nodes in the data set and the computational complexity grows
to O(n1-1/k +m) time, where m is the number of the reported
points, and k the dimension of the k-d tree.

2.3 Locality Sensitive Hashing (LSH)
LSH is based on the simple idea that, if two feature vectors are
close together, then after a “projection / mapping / (dimensional
reduction)” operation in k-dimensions, these two points will
remain close together. The major drawback of the basic LSH
indexing method is that it may require a large number of hash
tables to cover most nearest neighbors. The size of each hash table
is proportional to the data-set size, since each table has as many
entries as the number of data objects in the dataset. When the
space requirement for the hash tables exceed the main memory
size, looking up a hash bucket may require a disk I/O, causing
substantial delay to the query process. LSH, therefore, is not able
to scale on large size of index, which is required by multimedia
content.

Table 1. Comparison of Existing Techniques

Technology Characteristics Limitations

Distributed

Hash Table

Distributed

Scalable

Fast Look up

No Support for
Fuzzy Match

K dimensional
Tree

Fuzzy Match

Fast Look up

Reduced precision
with large index
size

No support for
higher dimension

Locality Sensitive
Hashing

Fuzzy Match

Fast Look up

Support for
higher dimension

Index size limited
to physical memory
in a box

3. DISTRIBUTED LOCALITY SENSITIVE
HASHING
To address the above issues associated with the DHT exact
matching, trees lookup time, LSH scalability issues, we propose a
new method called DLSH, which uses a more systematic
approach to explore hash buckets on a larger scale.

Distributed Locality-Sensitive Hashing (DLSH) is an algorithm
for solving the (approximate/exact) Near Neighbor Search in high
dimensional spaces. It is based on LSH (Locality Sensitive
Hashing) which performs probabilistic dimension reduction of
high-dimensional data. The basic idea is to hash the input items so
that similar items are mapped to the same buckets with high
probability (the number of buckets being much smaller than the
universe of possible input items).Thus, DLSH is basically LSH
performed on several machines which Yahoo! serves.

Figure 1. Distributed Locality Sensitivity Hashing workflow with

applications supported.

DLSH, decentralized distributed systems, that provide a lookup
service similar to a LSH. Responsibility for maintaining index and
look up is now distributed across various machines/nodes.
Mapping is initially done to reduce dimensions of fingerprints and
is further used for node identification. Each node in turn maintains
an index table and does lookup, in a second level of hashing,
based on it. After determining the fingerprints which map to the
same index, Euclidean distance between the points are calculated
to find approximation of distance between two points. Based on
the threshold distance, near neighbors are calculated. This allows
DLSH to scale to extremely large numbers of nodes and to handle
continual node arrivals, departures, and failures.

It provides a distributed and highly scalable, multi-media indexing
and lookup solution to manage the huge size and large range of
video content .

4. ALGORITHM OVERVIEW
The key idea of the DLSH is to use a projections/mappings to
check multiple buckets that are likely to contain the nearest
neighbors of a query object. Given the property of locality
sensitive hashing, we know that if an object is close to a query
object q but not hashed to the same bucket as q, it is likely to be in
a bucket that is “close by” (i.e., the hash values of the two buckets

2.2 K-dimensional Tree (k-d tree):

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

only differ slightly). So our goal is to locate these “close by”
buckets, thus increasing the chance of finding the objects that are
close to the query point q.

Figure 2. Projections of high dimensional near points getting

mapped nearby in two dimensional plane, similarly high
dimensional far points getting mapped far apart in two

dimensional plane

LSH approach with large number of points in the index becomes a
bottleneck in terms of time complexity and accuracy. To resolve
this, DLSH provides multiple index levels and also divides the
first index level into bands.

The first level of index is divided in bands, where each band
represents the node for second level of indexing. The bands
contain continuous h1 values, where number of bands is
dependent on the scale of index and no of servers provided. At the
first level of index, fingerprints are mapped and based on the
values obtained; the computation is further delegated to second
indexing level. On second level of indexing, another projection in
singular dimension is used to index the points. The points falling
far apart will be placed in different buckets, whereas near points
falling in approximately same buckets.

h1(a1,a2,…..,ak) =((Σ
k

Figure 3 .Functions to calculate first level of index and second
level of indexing

Final nearest neighbor matches are found with finding the
Euclidean distance between the two original points.

 sqrt((a1-a2)2 + (b1-b2)2 + + (z1-z2)2

Figure 4 . Approximation to nearest neighbor matching using
Euclidean distance computation.

Figure 5. DLSH over the network.

DLSH maps similar fingerprints on the same band and different
fingerprints on different bands, thereby enhances the search.
DLSH method is much more time efficient and scalable .DLSH
method can search and index millions of fingerprints to achieve
the same search quality within in fraction of seconds.

5. EXPERIMENTAL RESULTS
All the algorithms and processing flow has been implemented on
a Linux platform in C++. All the experiments were conducted on
a single core with 2 GB RAM.

5.1 Test Suite
We have used two datasets in our evaluation. The two datasets
are-

Image Data contains images crawled from the web. The total
number of images picked is 12.5 million. For each image, we use
the coorelogram tool to extract a 2080-dimensional coorelogram
histogram.

Video Data - Data contains video crawled from the web. The total
number of videos picked is 5.27 million. For each video, we used
polemics video fingerprinting solution.

We simulate the web video duplicate cases and randomly produce
zero to five duplicate copies of videos. These changes include the
random combination of bit rate changes , frame rate changes,
stitched videos, cropped videos . Following are the results of
video data experimentation.

5.1.1 Look up time Results
It takes less than 10msec to give response to a query point request
on the index of 6.5 million feature vectors.

5.1.2 Scalability Results
DLSH scales to even millions of index even when it is running on
single machine .As there is no known practical limit, as the
system is gracefully scaling out by adding more boxes on the
network.

X-Plane

Y- Plane

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

Table 1. Scalability Comparison with Existing
Techniques

Techniques Number of Feature
Vectors *

DLSH > 12,700,000**

LSH ~ 900,000

k-d tree ~ 210,000

* for above numbers ,the size of each feature vector was 2145
floats.

** no known limitations.

5.1.3 Accuracy Results
DLSH gives very high degree of accuracy even on the very large
index size. The tests have been conducted for finding the nearest
neighbors keeping original videos in DLSH index and taking
edited videos as requested query video. The accuracy is same as
LSH which are quoted with precision of 0.9 and recall of 0.85.

6. CONCLUSION
In this paper, we describe how DLSH is highly scalable than LSH
approach, maintaining the accuracy levels of LSH with no known
scaling limitations. This paper shows how DLSH solves the issue
around fast similarity lookups on large multimedia fingerprint
indexes by distributing the index over the network.
 Our experimental results show that the DLSH method is highly
scalable then the basic LSH to achieve desired search accuracy
and query time with large scales desired by multimedia content.

REFERENCES
[1] A. Andoni and P. Indyk, “E2LSH 0.1 User Manual,” Jun.

2005.[Online].Available:http://web.mit.edu/andoni/www/LS
H.

[2] A. Andoni, M. Datar, N. Immorlica, and V.Mirrokni,
“Locality-sensitive hashing using stabledistributions,” in
Nearest Neighbor Methods in Learning and Vision: Theory
and Practice,

[3] A. Andoni and P. Indyk, “Near-optimal hashing algorithms
for near neighbor problem in high dimensions,” in Proc.
Symp. Foundations of Computer Science (FOCS’06), 2006.

[4] www.cs.umd.edu/~mount/ANN/
[5] A. Andoni, P. Indyk, and M. Pˇatras¸cu. On the optimality of

the dimensionality reduction method. Manuscript, 2006.
[6] S. Arya, D.Mount, N. Netanyahu, R. Silverman, and A.Wu.

An optimal algorithm for approximate nearest neighbor
searching. Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 573–582, 1994.

[7] A. Chakrabarti and O. Regev. An optimal randomised cell
probe lower bounds for approximate nearest neighbor
searching. Proceedings of the Symposium on Foundations of
Computer Science, 2004.

[8] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin.
Approximating a finite metric by a small number of tree
metrics. Proceedings of the Symposium on Foundations of
Computer Science, 1998.

[9] J. H. Conway and J. A. Sloane. Soft decoding techniques for
codes and lattices, including the golay code and the leech
lattice. IEEE Trans. Inf. Theor., 32(1):41–50, 1986.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2010 proceedings

