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Abstract Reducing the time complexity is made possible by us- 
ing more than one processors [ l ,  3, 8, 9, 131. Saxena et 

Delaunay triangulation has been much used in such up- al. [ 131 have proposed two parallel algorithms on the or- 
plications as volume rendering, shape representation, ter- thogonal tree network of n x n processers; one is for 2- 
rain modeling and so on. The main disadvantage of Delau- dimensional DT with the time complexity of O(log2 n) and 
nay triangulation is large computation time required to ob- the other is for 3-dimensional DT with the time complexity 
tain the triangulation on an input points set. This time can of O(m’/2 logn), where n represents the number of points 
be reduced by using more than one processors, and several and m represents the number of tetrahedra constructed 
parallel algorithms for Delaunay triangulation have been in case of $dimensional DT. Even though their algo- 
proposed. In this papel; we propose an improved paral- rithms are quite efficient, they require special architecture. 
le1 algorithm for Delaunay triangulation, which partitions In general distributed memory parallel computers, 
the bounding convex region of the input points set into a Cignoni et al. have proposed two parallel algorithms in 
number of regions by using Delaunay edges and generates [8]; one (called ’ParDeWall’) from a sequential algorithm 
Delaunay triangles in each region by applying an incremen- (called ’Delaunay Wa11[7]’) based on divide & conquer 
tal construction approach. Partitioning by Delaunay edges paradigm and the other (called ’ParInCoDe’) from a se- 
makes it possible to eliminate merging step requiredfor in- quential algorithm (called ’Incremental Construction of De- 
tegrating subresults. I t  is shown from the experiments that launay Triangulation[7I’) based on an incremental construc- 
the proposed algorithm has good load balance and is more tion method. ParDeWall algorithm exploits parallelism 
eficient than Cignoni et al.’s algorithm[8] and ourprevious found when a set of points is recursively partitioned by 
algorithm[9]. some cutting planes and each subregion containing only one 

cutting plane is assigned to one processor. Each proces- 
sor generates a set of triangles called simplex wall whose 
edges are crossing its corresponding cutting plane and then 
partitions its subregion by a newly 
Though this algorithm is simple, 
is very limited since subproblems are generated in the form 
of binary tree and parallelism comes from subproblems of 
the same level. We cannot obtain good scalability of it due 
to small degree of parallelism. The parallelism exploited 
in ParInCoDe algorithm comes from geometric partitioning 
of a set of points. Geometric partitioning means that the 
bounding box containing all points can be divided by sub- 
boxes (subregions) and each subregion is assigned to one 
processor. Each processor builds all Delaunay triangles pos- 

1. Introduction 

A triangulation for a given set of points is a well known 
topic of computational geometry [ 1 1,121 and has many ap- 
plications such as finite element analysis, solid modeling, 
shape representation, terrain modeling, volume rendering 
and computer vision [4,5,6]. Delaunay triangulation (DT) 
has been most attractive for triangulation due to its special 
feature that the circumscribed circle of a triangle must not 
contain other points than points of the triangle. 

There have been much research in DT. The time com- 

points is Q(n log n) under uniprocessor environment[ 121. 
plexity Of constructing Delaunay for a set Of sible for any points inside its assigned region. Then, we get 
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the final set of Delaunay triangles by simple merging par- 
tial results generated by each processor. However, this al- 
gorithm suffers from overlapping processing because each 
processor generates many identical triangles. And their 
method causes load imbalance among processors and, even 
worse, it does not work in a certain case. In addition, this 
type of algorithm like ParInCoDe requires good load bal- 
ance among processors in order to get nontrivial speedup. 
But, the load balancing issue is completely ignored in [8]. 

Another parallel algorithm has been proposed by Guy E. 
Blelloch et al. in [3]. The algorithm is based on projec- 

is determined by a region which is represented by a border 
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tions and a divide & conquer paradigm. Each subproblem (a> dd(e,p) = r 

consisting on subregions the border. of by Delaunay using At each a median edges call the and line region the cut set of is of the divided points internal inside into points two or Outer Half Space /Q of e 

and a corresponding path of Delaunay edges which is ob- 
tained through projections and a lower convex hull. Once 
the subproblem has no more internal points (all points of ; e  

-r < 0 the region is on the border), Delaunay triangles in the region 
are generated by the special end-game strategy. This paral- 

P .-... 
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lel algorithm is easy to implement and is of practical use. 
But the degree of parallelism is very limited for the same 
reason in ParDeWall algorithm. Moreover, the convex hull 
of points must be given in addition to points as inputs. 

We have proposed a parallel algorithm in [9] which 
achieves nontrivial speedup by way of good load balance 
and elimination of overlapping processing in ParInCoDe al- 

(b) dd(e,p) = -r 

Figure 1. Delaunay distance(dd(e,p)) where e 
is a Delaunay edge and p is a point. 

gorithm. The main pitfall of our previous algorithm is that it 
requires a merging scheme on partial results and the merg- 
ing scheme is executed sequentially on only one processor, 
resulting in limited speedup. In addition, it is required that 
the first Delaunay triangle generated by each processor must 
exist entirely in its own subregion. 

In this paper, we propose an improved parallel algorithm 
which eliminates all pitfalls of our previous algorithm pro- 
posed in [9]. The proposed algorithm uses the partitioning 
method which is based on projections, and generates Delau- 
nay triangles in the subregion by applying an incremental 
construction approach. 

in the convex hull of points. In this paper, we consider De- 
launay triangulation in E2 space (a plane). 

The duality between Delaunay triangulations and 
Voronoi diagrams is well known[ll, 121, and thus algo- 
rithms are given for the construction of the former from the 
letter. However, it is generally more efficient to directly 
construct the triangulation, and in fact the construction time 
is O(n)[12]. 

Incremental construction method was originally pro- 
posed by McLain[ 101 to construct Delaunay triangulation, 
which directly use the empty circumcircle property of the 
triangulation. 

the incremental Our proposed algorithm uses a variant of McLain's orig- 
inal method, which was proposed by Cignoni et al. in [7]. 
Given a Delaunay edge e, the method constructs a new De- 
launay triangle by selecting the point which minimizes De- 
launay distance defined as d d ( e , p )  for each point p : 

if c E the outer half space of e 

2. 

Given a finite set s Of points in the plane, a 
triangulation[l2] is defined as joining the points of S by 
nonintersecting straight line segments so that every region 
internal to the convex hull is a 
gulation is called Delaunay if i 
circle property: the circu 
gulation does not contain 
The concept of a triangulation can be extended to Ed space. 
For instance, the triangulation in E3 is to obtain tetrahedra 

(1) 

where r and c are the radius and the center of the circumcir- 
cle around e and p ,  respectively (see Figure 1). 

The efficiency of the incremental construction method is 
low (O(nz) in the worst case), but the method is practically 

r 
-r otherwise d d ( e , p )  = { 
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good by using some speedup techniques such as hashing 
and the uniform grid[2]. 

3. Partitioning methods 

The proposed algorithm partitions a convex bounding re- 
gion of given points into subregions according to paths con- 
sisting of Delaunay edges. A path which partitions subre- 
gions is constructed by a projection-based method on De- 
launay edges[3]. 

We consider two partitioning methods using the paths. 
One divides a region into two subregions according to a 
vertical path, and then each subregion divides according to a 
horizontal path. This is recursively continued until the num- 
ber of subregions equals to that of processors. The other di- 
vides a region into m subregions according to just vertical 
(or, horizontal) paths where m is the number of processors. 

3.1. The projection-based construction of a path 
consisting of Delaunay edges 

Given a set P of points in E2 space, a vertical (or hor- 
izontal) path which consists only of Delaunay edges and 
passes through a point p E P and divides the convex hull 
of P into two regions, can be constructed by the following 
method[ 31 : 

1. Let L be the line 5 = p ,  (or y = pv) where p = 

2. Project all points of P on a 3-D paraboloid centered 
at p (see Figure 2(b)), and then project them on the 
vertical plane (or the horizontal plane) along the line L 
(see Figure 2(c)). The set P’ of projected points is: 

(P,,P,) (see Figure W)). 

{(qv - Pv, Ilq - Pl12) I Q E PI 
(or{(qZ-%711q-p112) I q E P ) ) .  

3. Construct the lower convex hull of P’. The set of edges 
in P corresponding to this lower convex hull is a path 
consisting of Delaunay edges. 

From now on, we assume that all paths are constructed 
by this method, thereby satisfying all these properties. 

3.2. The partitioning method 1 

Given a set P of points, the convex bounding region of 
P is divided into 2k subregions, where the number of pro- 
cessors is 2k for an integer I C ,  by the following method: 

1. Find the point q that is the median along the z (or y) 
axis of points of the region. 

2. Construct a vertical (or horizontal) path H passing q. 
Since a region is specified by a set of directed paths, 

(a) A path of Delaunay edges through a point p E P 

(b) Points projected on the paraboloid 

(c) The lower convex hull of points (E P’) projected 
on the vertical plane 

Figure 2. A path of Delaunay edges con- 
structed by projections and a lower convex 
hull 
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Region (subregion 1 + subregion 2) 
H 
B 

specified by a path B -~ 

Subregion 2 
specified 
by HR 

(= El U B1)  

Subregion 1 
specified 
by HL 

(= HI U B 2 )  

Figure 3. An example of the merged paths at 
the 2nd level. Hl U B2 and U B1 are the 
merged paths H L  and HR for the subregion 1 
and 2, repectively. 

we assume that H has its own 
of generality, assume that a vertical path has a direction 
from top to bottom and a horizontal path has a direc- 
tion from left to right. Let Z? be the path traversed in 
the opposite direction of H .  

3.  Divide the region into two subregions by the path H :  

(a) One subregion includes all the points on the left 
(or down) side of H as well as the points on H .  
We can specify thi gion by the path H L  
obtained from H a path representing the 
given region. 

(b) The other subregion includes all the points on the 
right (or up) side of H as well as the points on 
H .  This subregion is specified by the path HR 
obtained from H and the path representing the 
given region. 

4. Recursively repeat 1-3 for each subregion vertically or 
horizontally in turn until the number of subregions be- 
comes 2k. 

Checking the geometric relationships between Delaunay 
edges of H and those of the curren er is required whcn 
we construct merged paths H L  a for a given H be- 
cause a portion of the path H may be outside of the current 
region. For example of Figure 3 ,  consider a region specified 
by a path B. The region is partiboned by a path H and we 
can see that a portion of the path H ,  H z ,  is outside of the re- 
gion, where H and B intersect at a point p and are divided 
by the point into H I ,  H2, B I ,  and B2, respectively. This 
portion of the path H is not needed to specify a subregion, 
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(a) After merge (b) Partitioning and tnangles 
generated by each processor 

Figure 4. An example of the partitioning using 
the method 1 for 4 processors 

i.e., subregion 1 can be specified by H L  (= H I  U Bz j where 
Hz i s  not included. 

igure 4 shows an example of a partitioning result us- 
ing this method when there are 4 (= a 2 )  processors. Note 
that the construction of the merged paths H L  and HE is not 
needed at the first level, since the convex bounding region 
of P is completely divided into two subregions by the path 
H .  

3.3. The partitioning method 2 

Given a set P of n points, the convex bounding region of 
P is divided into m subregions, where m is the number of 
processors, by the following method: 

1. Find the (m - 1) points q2 that are the [$]th largest 
points along the x (or y j  axis of all points of P (z = 
1 . . . (m - I)). 

2. Construct vertical (or horizontal) paths H, passing 4%. 
Let R, be the path traversed in the opposite direction 
of Hi. 

3 .  The 1st partition is the subregion on the left (or down) 
side of the path H I ,  which is represented by HI and 
the points on the left (or down) side of or on H1. 

4. The mth partition is the subregion on the right (or up) 
side of the path Hm-l,  which is represented by Hm-l 
and the points on the right (or up) side of or on Hm-l. 

5.  The other partitions are the subregions between the 
paths Ha-l and Hi, which are represented by the 
merged path H i  of the two paths and includes all the 
points between or on the paths, 

The construction of H i  is more simpler than that of the 
merged path H L  or HR in the partitioning method 1. H& is 



(a) After merge (b) Partitioning and triangles 
generated by each processor 

Figure 5. An example of the partitioning using 
the method 2 for 4 processors 

constructed by just selecting the Delaunay edges that exist 
on either the paths &I or Hi, but not both. 

Figure 5 shows an example of a partitioning result using 
this method when there are 4 (= 22) processors. 

4. The proposed algorithm 

Given a set P of n points and the number of processors 
2k for an integer k, the proposed algorithm consists of three 
steps: 

Step 1: Partition the convex bounding region of P into 2k 
subregions by either the partitioning method 1 or 2 de- 
scribed in section 3 and assign each subregion to dis- 
joint processor. 

Step 2: Each processor executes the procedure ParDeTri 
of Figure 6 for its assigned subregion. 

Step 3: Simply merge PartialDTlist generated by each 
processor into one set of triangles, called DTlist. 

In Step 1, the partitioning is performed on each proces- 
sor, and each processor just constructs its own subregion 
which is represented by the points and a border of Delau- 
nay edges. The border, called DElist, is used for the input 
of the procedure ParDeTn' in Step 2. 

The function MakeTn'angle in ParDeTn' of Figure 6 gen- 
erates a Delaunay triangle from a Delaunay edge by select- 
ing the point which minimizes the function dd for each point 
in the subregion, described in Section 2. 

The procedure ParDeTn' differs from the routines 
of Cignoni et al.'s ParInCoDe[8] and our previous 
algorithm[9] in that it does not have to specially generate 
the first triangle for the incremental construction since it 
directly uses DElist for the construction, and it does not 
check if or not the edge ex in its own subregion. Thus 
it is released from the condition that the first triangle must 
be entirely in its own subregion. Note that this condition 
is essential in Cignoni et al.'s ParInCoDe and our previous 
algorithm. 

Procedure ParDeTri(P : pointset, D E h t  : edgelist, var 
PartialDTlist : trianglelist); 
Var 

e: edge; 
t: triangle; 

while notempty(DEJist) do begin 
e := Extract(DE1ist); 
t := MakeTriangle(e,P); 
if t # null then begin 

begin 

Insert(t, Partial DTlis t ) ;  
for each e': e' E edges(t) AND e' # e do 

Update(e', DEJis t ) ;  
end; 

end; 
end; 

Procedure Update(e:edge, var L:edge_list); 
begin 

if e E L then Delete(e, L) 
else Insert(e, L);  

end; 

Figure 6. The procedure ParDeTri executed on 
each processor. 

5. Experimental results 

The algorithms are implemented on the INMOS TRAM 
networks which have 32 T800 processors. The input point 
sets for the experiment are generated by using various dis- 
tributions: the uniform distribution, the normal distribution, 
the bubble distribution and the uniform distribution with a 
much narrower width, which are shown in Figure 7(a), 7(b), 
7(c) and 7(d), respectively. In the experiment, the partition- 
ing method 2 divides a region into subregions according to 
horizontal paths. 

The speedups of the algorithms on the INMOS TRAM 
networks are shown in Figure 8. As compared with these, 
the proposed algorithm with the partitioning method 2 is 
always more efficient than the others except the last case. 
In the last case, the proposed algorithm with the partitioning 
method 1 is the best of the algorithms. This means that the 
proposed algorithm is more efficient than Cignoni et al.'s 
algorithm and our previous algorithm in the experiment. 

Figure 8(d) shows a problem of our previous algorithm 
that the algorithm have poor speedup with a number of 
processors since it should execute the sequential merging 
scheme on one processor (in this case, the algorithm have 
the more speedup with 16 processors than 32 processors). 

Figure 9 shows the breakdown of the execution time into 
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(a) The uniform distribution 

(b) The normal distribution 

(c) The bubble distribution 

bution (width:height = 3:lOO) 

Figure 7. The distributions for the experiment. 
The number of points are 1 

20 

15 

Speedup 
10 

5 

1 2  4 8 16 32 
The # of pmcessors 

(a) The uniform distribution 

Cignom's algonthm .... 
Our previous algonthm .x.. 

The proposed algorithm wth the partitionmg method 1 +- 
* O t  The propased algorithm mth the partitioning method 2 - 
l5 t 1 

...... X . . . . .  ........................ . . . . . . . . . . . . . . . .  
I:; 1 ,,:..,:* .X.. ' '  ....... .__ _.. ................ 

Speed"p 

1 2  4 8 16 32 
The # of processors 

(b) The normal distribution 

Cipnom's algorithm . - - 
Our prenous algonthm .x . 20 - 

15 - 

Speedup 
............... 51 

1 2  4 8 16 32 
The # of processors 

(c)  The bubble distribution 

Cignoni's algonthm . 
Our prevlous algonthm .x - 

The proposed algorithm mth the partitioning method 1 c 
The proposed algorithm mth the partitioning method 2 c 

Speedup 
i n  

5 

1 
16 32 1 2  4 8 

The # of profersors 

(d) The uniform distribution (width:height = 3:lOO) 

Figure 8. The speedup graph for the distribu- 
tions. 
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Distribution 
Uniform 

Standard deviation (average) 
0.81 (8.29) secs 

Table 1. The standard deviations of running 
times obtained in executing the proposed al- 
gorithm with 32 processors. 

Normal 
Bubble 
Unform 

(width: height=3: 100) 

the two components of the proposed algorithm (the parti- 
tioning time and the execution time of ParDeTri) for the 
distributions. As the figure shows, the execution time of 
ParDeTri is approximately the same across the partitioning 
methods and the distributions. For the partitioning time, 
the algorithm using the partitioning method 2 requires more 
time than the other in the uniform (width:height = 3:lOO) 
distribution, and less time in the other distributions. It is 
because the partitioning method 2 uses just horizontal paths 
and thus the work of the partitioning method 2 to get lower 
convex hulls of the projected points is more than that of the 
partitioning method 1 for the distribution. This explains the 
reason why the algorithm using the method 1 is faster than 
the algorithm using the method 2 in Figure 8(d). 

In order to show that the proposed algorithm has a good 
load balance, we calculate the standard deviation of exe- 
cution times on processors for each case of the input sets. 
On executing the proposed algorithm on 32 processors, the 
standard deviations and averages of times for the distribu- 
tions are shown in Table 1. Particularly, Figure 10 shows 
the load of each processor for the bubble distribution. 

0.96 (9.86) secs 
1.32 (10.25) secs 
1.62 (15.19) secs 

6. Conclusions 

In this paper, we described an improved parallel algo- 
rithm for Delaunay triangulation that eliminates the sequen- 
tial merging step executed on one processor. The sequen- 

The total execution time (se.) 

2 with the partitioning method 2~~~~~~ time Of 
15 

The distribution (w h=3'100) 

Figure 9. The breakdown of the execution 
time into the two components of the proposed 
algorithm for the distributions. 

The p r o p 4  dgorithm with the partitioning method 1 + 
The p r o p 4  algorithm with the partitiwing method 2 ... . 

20 c 
I t 
1 5 10 15 20 25 30 

The p m e "  # 

Figure 10. The load of each processor for the 
bubble distribution. 

tial merging step significantly limits the speed up. The al- 
gorithm is also released from the restriction that the first 
Delaunay triangle generated by each processor must exist 
entirely in its own subregion. All these improvements are 
possible by using projection-based partitioning methods. 

We consider Delaunay triangulation of points in just E2 
space. However, it is remained as our future work to extend 
the proposed algorithm to Ed spaces for d > 2. 
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