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Abstract-We modified the FitzHugh-Nagumo model of an excitable medium so that it describes 
adequately the dymanics of pulse propagation in the canine myocardium. The modified model is 
simple enough to be used for intensive 3-dimensional (3D) computations of the whole heart. It 
simulates the pulse shape and the restitution property of the canine myocardium with good precision. 

In 1952, Hodgkin and Huxley proposed the first quantitative mathematical model of wave 
propagation in squid nerve [l]. This work has had a great impact on modeling of various 
nonlinear phenomena in biology. On the basis of this model Noble in 1962 developed the 
first physiological model of cardiac tissue [2]. Further studies in this field resulted in the 
development of several realistic ionic models of cardiac tissue which were derived from 
voltage clamp and patch clamp experiments [3-61. 

Ionic models accurately reproduce most .of the basic properties of cardiac tissue. These 
include the depolarization and repolarization phases of the action potential, restitution 
properties, dynamical changes in ionic concentration, etc. Such models are suitable for 
modeling solitary myocites, myocardiac fibers and even synthytium, which may consist of 
up to tens of thousands of myocardiac cells [7]. 

However, ionic models are not very suitable for modeling many important problems, 
such as the problem of re-entrant cardiac arrhythmias. The main difficulty is that small 
space and time steps are required to integrate ionic models, whereas re-entry occurs only in 
quite large spatial regions of cardiac tissue. For example, the usual value for the spatial 
integration step for the Beeler-Reuter model is about 0.1 mm [8]; this means that at least 
one million cells are needed to represent each cubic centimeter of cardiac tissue. 

To avoid computational difficulties researchers often use other models of cardiac tissue, 
especially the two-variable FitzHugh-Nagumo (FHN) models [9, lo]. These models permit 
analytical estimations and are numerically effective for studying 2D and 3D pulse dynamics 
in the heart [ll-141. Although successfully describing qualitative aspects of excitation 
propagation, they fail to simulate several quantitative parameters of cardiac tissue such as 
the shape of the action potential and restitution properties of the tissue. 

Restitution of cardiac tissue shows how duration of action potential, APD, depends on 
cycle length, CL [15]. In myocardium there is quite a strong dependence: for example, 
ventricular APD in canine myocardium changes from 330 ms at CL = 5000 ms to 150 ms at 
CL = 350 ms [15]. Such a shortening of action potential is very important, especially at the 
initial moment of formation of cardiac arrhythmia when the heart rate suddenly increases. 
The restitution should also be taken into account for those processes which involve changes 
in the period of heart excitation. This occurs, for example, during a drift of a vortex, which 
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results in a Doppler shift [16]; in the process of overdriving anti-arrhythmic stimulation, 
when there is an interference of external high frequency sources with the inherent 
frequency of arrhythmia [ 171. Recent theoretical investigations show that restitution 
property is important for the appearance of instabilities of wave propagation in quasi 1D 
loops [ 181, and in generation of fibrillation-like 2D patterns due to the spiral break-up [ 191. 

Several attempts have been made to improve FHN models so that they would describe 
quantitative parameters of cardiac tissue such as the shape of action potential [20] and the 
restitution property of cardiac tissue [21-231. These modifications did in fact improve the 
models. However, in our opinion, the modified models involve unnecessarily complicated 
mathematical representation of the equations which makes them difficult to use for 
qualitative analysis. Some of these models use step-wise functions, which may reduce the 
stability of numerical computations. 

In this paper we propose a simple model which simulates the restitution property of 
cardiac tissue, adequately represents the shape of action potential and can be used 
effectively in computer simulations, particularly, in whole heart modeling. The proposed 
model is as simple as the original FHN model [9]. Note that in our approach we do not try 
to simulate internal cell dynamics, i.e., to mimic adequately all the membrane currents 
which occur in a cardiomyocite. We have tried to design simple equations which describe 
properly the integral characteristics of the propagation pulse in canine myocardium. In 
other words our approach is to solve ‘the inverse problem’. 

Our model consists of two equations describing fast and slow processes: 

au/at = q3x&3u/ax; - ku(u - a)(u - 1) - uu 

au/a = E(U, u)(-u -ku(u - a - 1)) 
(1) 

where E(U, U) = &o + ,u~u/(u + h), k = 8, a = 0.15, r. = 0.002, ,u~ and h are the para- 
meters to be fixed later and dij is the conductivity tensor accounting for the heart tissue 
anisotropy. 

The model involves dimensionless variables U, u and t. The actual transmembrane 
potential E, and time t can be obtained with the formulae: 

E[mV] = 100~ - 80 t[ms] = 12.9t[t.u.]. (2) 

In this case the rest potential E,,,, is -80 mV and the amplitude of the pulse is 100 mV. 
‘Time was scaled assuming APD measured at the level of 90% of repolarization, APD, = 
,330 ms [15]. 

The nullclines of our model are shown in Fig. 1. The right-hand side of equation (1) is 
similar to that of the original FHN model [9]. The nonlinear function for the fast variable u 
has a cubic shape as in Ref. [9]. In contrast to the FitzHugh paper, we used the term UC 
instead of v. This improves the description of the shape of action potential (Fig. 2) 
124, 2.51. Particularly, in the model (1) the left branch of the nullcline {u, = 0} does not 
enter the region where u < 0. This prevents the system from becoming super-repolarized, 
which occurs typically in the original FHN model, but does not exist in real myocardium. 
In contrast to the linear nullcline of the slow variable, {ur = 0) [9], we used a quadratic 
term in our model. Because of this, {u, = 0} in a large region is parallel to the nullcline of 
the fast variable, {u, = O}. Such nullcline geometry is more appropriate for the heart 
tissue, than the linear nullcline {v, = 0} which is normally used (compare with experiment- 
ally observed nullclines [24]). The dependence of E on u and U, which is absent in the 
original FHN model, allows us to tune the restitution curve to that experimentally observed 
by adjusting the parameters p1 and &. 

Elharrar and Surawicz [15] show that the shape of the restitution curve in the canine 
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Fig. 1. Nullclines for equation (1): { uI = 0) is depicted with a thick solid line; { ur = 0) -with a thick dashed line. 
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Fig. 2. Pulse profile depending on the period of stimulation, T: (a) free pulse (T = a, APD = APL&,): 
(b) T = 2.5APDo: (c) T = APD,,. 

myocardium can be well approximated by the formula: 

APD = CL/(aCL + b) 

where APD denotes the duration of the action potential, and CL is the cycle length. This 
formula can be rewritten in a dimensionless form convenient for mathematical analysis: 

l/apd = 1 + b/cl 

where apd = APD/APDo, cl = CLIAPD,, and APDo denotes APD of a free propagating 
pulse. 
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We computed several restitution curves for different values of parameters ,~i, h and 
found that the best fit was at ,M~ = 0.2, ,LQ = 0.3. In Fig. 3 we plot the various experimental 
curves obtained by [15] and the restitution curve obtained in our model. It can be seen that 
the shape of the restitution curve in our model is the same as in the experiments: it is well 
approximated by a straight line l/u& = kl + k2/cl. The values of coefficients kl and kz in 
our model are kI = 1.016 f 0.0043 and k2 = 1.059 + 0.011. The parameter k,, the slope of 
the line, is responsible for the restitution properties at small CL. kI reflects the restitution 
properties at large CL. These values are very close to those measured experimentally [15]. 
The small error in parameters kl and k2 in our model (estimated by the method of least 
squares) shows that the dependence of l/upd on l/cl is linear with good accuracy, as it is in 
the experiments. We believe that the restitution curve obtained in our model can be 
considered as acceptable in simulations of restitution properties of cardiac 
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Fig. 3. Restitution property of the medium: (a) upd vs cl. Solid line-averaged restitution property for the canine 
myocardium plotted on the basis of data in [15]; circles-@ simulated in equation (1); (b) restitution property 
l/upd vs l/cl. Thin solid lines represent the experimental data from [15]. Thick solid line is the best fit of 

experimental data; dashed line-apd simulated in equation (1). 
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We studied pulse propagation in periodically stimulated 1D cable of 400 elements. We 
found no pulse instability when the period of stimulation was decreased up to the minimal 
possible value. The period of propagating waves was constant and equal to the period of 
stimulation. 

We have measured the velocity-curvature relation for periodic wave trains in two 
dimensions and found that for small curvature, k, the dependence is described by the 
formula c = co + kD with good accuracy; here co is the velocity of the plane waves, D is 
the effective diffusion coefficient. We have found that the period of waves has no effect on 
the value of D which is equal to 1 in dimensionless equations (1) provided that d, = 1. 

The restitution property discussed above has a significant effect on the vortex dynamics. 
Figure 4 illustrates the initiation of the vortex by a stimulation inside the vulnerable 
window [26]. We applied an extra stimulus in the wake of the passing wave (Fig. 4(b)) that 
resulted in the development of the wavebreak (Fig. 4(c)) which then evolved into the 
rotating vortex (Fig. 4(d)). We found that due to restitution, the duration of the pulse in 
Fig. l(a) is approximately two times longer than the duration of pulses in the rotating 
vortex (Fig. 4(d)). 

Figure 5 illustrates the changes in the APD after initiation of a vortex. The vortex was 

Fig. 4. Initiation of a vortex by a premature stimulation. (a) Freely propagating pulse; (b) premature stimulation 
(seen as a narrow white stripe) in the wake of a propagating pulse (white region near the right wall); (c) 
wavehreak developed from a premature stimulation is curled into a vortex (d). Note the difference action potential 

width in (a) and (d). The snapshots were taken at moments 0, 38.8, 51.8 and 245.9 ms. 
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Fig. 5. The APD dynamics during a vortex formation. A vortex was initiated due to a premature stimulation 
inside a vulnerable window (upward triangles) and from a wavebreak (downward triangles). The line marked with 
diamonds is a result of the classic FHN model stimulations. APD of the vortex is equal to APDo in the case of the 

FHN model. 

initiated using two different protocols: stimulation inside vulnerable window (upward 
triangles) [26] and initiation from a wavebreak (downward triangles) [27]. Both the 
protocols show similar evolution of the APD. After several rotations APD decreased to 
the value of 0.53APD,. A different dynamics (APD = const, Fig. 5, diamonds) has been 
observed in the usual FHN model [28]. 

To estimate the computational effectiveness of the model we performed simulations of 
3D re-entry in the whole heart (Fig. 6). We used an electrophysiological computer model 
of the intact right and left ventricles of a canine heart, which was developed by [28-301. In 
this model the heart is located inside a 3D regular grid of size 127 X 127 X 127 elements. 
The geometry of the heart and the material properties of cardiac tissue (e.g., conductivity 
tensor d, in equation (1)) are determined on the basis of anatomical data of geometry of 
the heart and fiber orientation field obtained in experiments by Nielson et al. [31] (see 
Refs [28, 301 for details). 

To initiate a 3D re-entry in the right ventricle (Fig. 6) we induced a wavebreak in a 
partially recovered cardiac tissue. Such initial conditions are similar to those used in the 
experimental procedure of cross field stimulation [32]. Note, that in our case the tissue 
cannot be completely recovered. The length of a pulse in the recovered tissue is extremely 
large and is comparable with the heart size. 

In our simulations the wavebreak did several rotations and formed a stationary rotating 
vortex. This vortex generated waves which propagated around the ventricle cavities and 
collide near the surface of the left ventricle (Fig. 6). The shape of the waves is a screwed 
surface close to the wall of the right ventricle; the shape changes to a distorted plane in the 
left ventricle. 

The performed simulations require approximately 3.5 mins of CPU time of SGI Indy 
computer per one rotation of a scroll wave, which is similar to the performance in the FHN 
model [28] and is quite reasonable for such kind of computations. 

In this paper we propose a simple model which adequately represents the pulse shape 
and the restitution property of the canine myocardium. Obviously, however, the proposed 
equations do not cover as many aspects of the action potential dynamics as do the ionic 
models. Equation (1) simply mimics properties of cardiac tissue under given conditions. 
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For example, when the tissue is treated with drugs, and/or if there is a change in 
extracellular ion concentrations, the coefficients of our model have to be changed. 
However, our model can still be used if one follows this strategy: (i) measure experiment- 
ally the restitution curve and the shape and duration of the action potential under the 
desired conditions, or compute these properties using a detailed ionic model; (ii) fit the 
experimental curve using the approach used in our work. 

A similar strategy can be applied to account for APD changes inside the ventricular wall 
and from base to apex [33]. In this case the parameters of the model, e.g., E,, should be 
described by a 3D field inside the heart. We plan to study the effect of such APD 
dependences on the vortex dynamics in the future works. 
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