
GP-GPU and High Performances Computing
Lecture 09 – Performance Evaluation

December 9, 2024



Previsouly

Sequential
problem

D
ec

om
p

o
si

ti
on

Tasks

P
la

n
ifi

ca
ti

on

P2

P0

P3

P1

Process

S
tr

u
ct

u
ra

ti
on

P2

P0

P3

P1

Parallel
Programs

A
ff

ec
ta

ti
o
n

P2

P0

P3

P1

Processing
Units

2



Computing performance

Performance is defined by 2 factors

ä Computational requirements (what needs to be done)
ä Computing resources (what it costs to do it)

Computational problems translate to requirements

Factors: hardware, time, energy, money

3



Why is it important

ä Performance itself is a measure of how well the computational
requirements can be satisfied

ä We evaluate performance to understand the relationships between
requirements and resources ⟹ Decide how to change methodology to
target objectives

ä Performance measures reflect decisions about how and how well
approaches are able to satisfy the computational requirements

4



Some definition of parallelism

Performance issues when using a parallel computing environment:
Performance with respect to parallel computation

ä Performance is why we do parallelism
ä Parallel performance versus sequential performance
ä If the “performance” is not better, parallelism is not necessary

Parallel processing includes techniques and technologies necessary to
compute in parallel: Hardware, networks, operating systems, parallel
libraries, languages, compilers, algorithms, tools, . . .

Parallelism must deliver performance: How? How well?

5



What can we expect?

If each processor is rated at 𝑘 − 𝐺𝐹𝑙𝑜𝑝𝑠 and there are 𝑝 processors, should
we see 𝑘𝑝𝐺𝐹𝑙𝑜𝑝𝑠 performance?

If it takes 100 seconds on 1 processor, shouldn’t it take 10 seconds on 10
processors?

Several causes affect performance

ä Each must be understood separately
ä But they interact with each other in complex ways: solution to one
problem may create another or one problem may mask another

Scaling (system, problem size) can change conditions

Need to understand performance space

6



Analytical measure



Embarrassingly Parallelism

An embarrassingly parallel computation is one that can be obviously divided
into completely independent parts that can be executed simultaneously

ä In a truly embarrassingly parallel computation there is no interaction
between separate processes

ä In a nearly embarrassingly parallel computation results must be
distributed and collected/combined in some way

Embarrassingly parallel computations have potential to achieve maximal
speedup on parallel platforms

ä If it takes 𝑇 time sequentially, there is the potential to achieve 𝑇 /𝑃 time
running in parallel with 𝑃 processors

ä What would cause this not to be the case always?

7



Scalability

ä A program can scale up to use many processors: What does that mean?
ä How do you evaluate scalability?
ä How do you evaluate scalability goodness?
ä Comparative evaluation: if double the number of processors, what to
expect? Is scalability linear?

ä Use parallel efficiency measure: is efficiency retained as problem size
increases?

ä Apply performance metrics

8



A measure of performance

Evaluation

ä Sequential runtime 𝑇𝑠𝑒𝑞 is a function of problem size and architecture
ä Parallel runtime 𝑇𝑝𝑎𝑟 is a function of problem size, parallel architecture
and number of processors used in the execution

ä Parallel performance affected by algorithm and architecture

Definition (Scalability)
Ability of parallel algorithm to achieve performance gains proportional
to the number of processors and the size of the problem

9



Performance Metrics and Formulas

ä 𝑇1 is the execution time on a single processor
ä 𝑇𝑝 is the execution time on a p processor system
ä 𝑆(𝑝) is the speedup

𝑆(𝑝) = 𝑇1/𝑇𝑝

ä 𝐸(𝑝) is the efficiency

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝑆𝑝/𝑝

ä 𝐶𝑜𝑠𝑡(𝑝) is the cost

𝐶𝑜𝑠𝑡 = 𝑝𝑇𝑝

ä Parallel algorithm is cost-optimal
Parallel time = sequential time (𝐶(𝑝) = 𝑇1, 𝐸(𝑝) = 100%)

10



Performance metrics



Time execution

Optimizing an application of fixed size is difficult

ä If parallel management cost are high (synchronization and
communication) parallel acceleration low.

ä If complexity (spatial or temporal) of parallel approach is much greater
than the best sequential algorithm, final gain is weak.

11



Time representation

If parallel algorithm has

ä decreasing execution time
ä limited overhead on one resource

final gain might be important

but analysis of should be continued to consider Execution time vs Ideal
execution time, speedup, efficiency, size-up and scalability,...

12



how to represent time execution

It is best to have an idea of the plot and choose a representation accordingly
to identify simple shapes : 𝑁3, 𝑁2, log(𝑁), with the appropriate 𝑁

For parallel execution, the ideal curve is 𝑇 (𝑃) = 𝑇 (1)/𝑃 but it is hard to
identify simply, hence one should choose an other representation.

We will prefer to have the representation log(𝑇 (𝑃 )) = log(𝑇 (1)) − log(𝑝) or
use a log scale on the graph ⟶ easier to detect distance to theory ⟶
easier to detect distance to other laws

13



Speedup

𝑆(𝑃) = 𝑇 (1)
𝑇 (𝑃)

P

S(P )

1

S(P ) = P

ä 𝑆(𝑃) < 1: parallelism is
erroneous

ä 1 < 𝑆(𝑃) < 𝑝: normal
behavior

ä 𝑆(𝑃) > 𝑝: super linear
speedup

14



Super linear speedup

This observation in the measurement is an anomaly:

ä It should be analyzed to provide clear explanation
ä A correction should be proposed or an optimization should be operated.

Some sample explanation

ä The operation performed are not correct: the result is wrong.
ä Data fit in the total cache of 𝑃 processors.
ä The starting algorithm has been modified and convergence is faster (e.g.
optimized genetic algorithm)

ä Computation is based on tree exploration and the program is stopped

15



Efficiency metrics

Usage rate of available resources or percentage of usage from perfect
speedup

𝑒(𝑃 ) = 𝑆(𝑃)
𝑃

ä 𝑒(𝑃 ) ∈ [0; 1]
ä 𝑒(𝑃 ) > 100% : super-linear speedup.

16



How to choose sequential reference?

Algorithm

ä Same program on one processor.
ä Same algorithm than in sequential.
ä Best sequential algorithm.

Compilation

ä Sequential compilation with the same compiler?
ä Compilation with the best sequential compiler?

Optimizations

ä Sequential optimization allowed by parallelism.
ä Best sequential optimizations

Execution

ä Execution on one processor/core/unit of the parallel computer?
ä Execution on the best sequential computer?

17



Sequential reference: algorithm

All choices are valid. Each choice depends on

ä A different point of view
ä A different concern
ä A different objective in the analysis

One should choose accordingly to its problematic The choice should be
clearly state

Examples

ä Final user : his sequential program on his sequential computer
ä Developer: his parallel program on one processor of his parallel
computer.

18



Sequential reference:

The sequential reference may be obtain

ä Same algorithm, same language, same sequential optimization, same
processor. => Good performances, easy to get

ä Best algorithm, best langage, best sequential optimization, best
processor => Good performances, very hard to get

19



Loosing performances

ä Under usage of each core
ä Sequential sub-optimization
ä No possibility to vectorize loops

ä Under usage of nodes
ä Sequential fractionning
ä Overhead of synchronization
ä Overhead of communication
ä Unbalanced between tasks and loads

ä Weak platform
ä Sequential IO
ä Interconnection network undersized

20



Size up metrics

Objective 1: work on larger problem on more resources

An application that replicate most of the data on all compute unit will
always be memory bound. It won’t be able to scale up.

An application that distribute most of the data on all compute unit will
be able to store more data per compute unit. It will be able to scale up.

21



Size up metrics

Design an application with an initial distribution of data and a communi-
cation scheme with minimal volume.

ä Need to have move initial data from compute unit to compute unit to
allow continuation of computation on data different than its own.

ä Need to have intermediate data move from compute unit to compute
unit to allow continuation of computation from an other compute unit,
with its own data.

22



Execution time

Objective 2 Maintain constant execution time

𝑇 (1 × 𝑛1, 𝑝1) = 𝑇 (2 × 𝑛1, 𝑝2) = 𝑇 (𝑘 × 𝑛1, 𝑝𝑘) = 𝐶

Where 𝑛1 is the size of the problem, 𝑘 is size scale up and 𝑝𝑘 is the number
of compute unit needed to solve the problem at constant time.

23



Execution time and ressources

Objective 3 Maintain constant execution time with the minimal number of
ressources

𝑇 (1 × 𝑛1, 𝑝1) = 𝑇 (2 × 𝑛1, 𝑝2) = 𝑇 (𝑘 × 𝑛1, 𝑝𝑘) = 𝐶
𝒪(𝑝𝑘) = 𝑘 × 𝑛1

24



Criteria for scale up



Metric 1: based on T

When the size of the problem increase such that we are not able to perform
sequential execution:

ä Not enough memory, not enough storage
ä Execution time too high, compute unit not available.

25



Simple size-up

Definition and criteria for simple up scaling

ä Allow for a size up to deal with larger problem on more compute
unit

ä Beware of energy consomption and other costs

Size up with constant time and minimal compute unit for complexity 𝒪𝑛2

P

Texec

1 2 4 8 16 32 64

n0 = 100

T (100, 1)
n0 = 2 × 100 n0 = 4 × 100 n0 = 8 × 100

26



Complete size-up

Definition and criteria for complete up-scaling

ä Allow for a size up to deal with larger problem on more compute
unit

ä Beware of energy consomption and other costs
ä Allow for a speedup for all sizes of problem
ä Keep the same profile of time evolution

Size up with constant time and minimal compute unit for complexity 𝒪𝑛2

P

Texec

1 2 4 8 16 32 64

n0 = 100

T (100, 1)
n0 = 2 × 100 n0 = 4 × 100 n0 = 8 × 100

27



Plotting scale-up

How to build and use a graph for scale up

ä Measure 𝑡(𝑛, 𝑝) for different size of problem 𝑛 and number of compute
unit 𝑝.

ä Plot 𝑇 (𝑛, 𝑝) using log scale.

Ideal case: for each size of problem, we obtain a line parallel to others.

Validation of scale up: comparing measures to expected curves, slop and
positions.

Use as an abacus: for a given problem size, we may identify a number of
compute unit to use in order to respect a maximum 𝑇𝑒𝑥𝑒𝑐

28



Scale up cheklist

ä meet the needs of computation.
ä required the least possible number of resources.
ä quantify the number of required resources.
ä plan for associated expanses.

29



Laws on performances



Amdahl’s law

Let 𝑓 be the fraction of a program that is sequential. 1 − 𝑓 is the fraction that
can be parallelized

Let 𝑇1 be the execution time on 1 processor

Let 𝑇𝑝 be the execution time on 𝑝 processors

𝑆𝑝 is the speedup

𝑆𝑝 = 𝑇1/𝑇𝑝

= 𝑇1/(𝑓𝑇1 + (1 − 𝑓)𝑇1/𝑝)
= 1/(𝑓 + (1 − 𝑓)/𝑝)

As 𝑝 → ∞, 𝑆𝑝 = 1/𝑓

30



Amdahl’s law

31



Gustafson-Barsis’ Law

Definition (Scalability)
Ability of parallel algorithm to achieve performance gains proportional
to the number of processors and the size of the problem

When does Amdahl’s Law apply?

ä When the problem size is fixed
ä Strong scaling (𝑝 → ∞, 𝑆𝑝 = 𝑆∞ → 1/𝑓)
ä Speedup bound is determined by the degree of sequential execution
time in the computation, not number of processors!!!

ä Perfect efficiency is hard to achieve

32



Gustafson-Barsis’ Law

ä Often interested in larger problems when scaling
ä How big of a problem can be run
ä Constrain problem size by parallel time

ä Assume parallel time is kept constant

𝑇 (𝑝) = 𝐶 = (𝑓 + (1 − 𝑓)) ∗ 𝐶

ä What is the execution time on one processor? Let 𝐶 = 1, then
𝑇 (𝑠) = 𝑓𝑠𝑒𝑞 + 𝑝(1–𝑓𝑠𝑒𝑞) = 1 + (𝑝 − 1)𝑓𝑝𝑎𝑟

ä What is the speedup in this case?

𝑆(𝑝) = 𝑇𝑠/𝑇𝑝 = 𝑇𝑠/1 = 𝑓𝑠𝑒𝑞 + 𝑝(1–𝑓𝑠𝑒𝑞) = 1 + (𝑝 − 1)𝑓𝑝𝑎𝑟

33



Definition (Scalability)
Ability of parallel algorithm to achieve performance gains proportional to
the number of processors and the size of the problem

When does Gustafson’s Law apply:

ä When the problem size can increase as the number of processors
increases

ä Weak scaling (𝑆𝑝 = 1 + (𝑝 − 1)𝑓𝑝𝑎𝑟)
ä Speedup function includes the number of processors!!!
ä Can maintain or increase parallel efficiency as the problem scales

34



Amdahl’s law vs Gustafson

P=1 P=2 P=3 P=4

Serial section

Parallelizable section

35



Amdahl’s law vs Gustafson

P=1 P=2 P=3 P=4

Serial section

Parallelizable section

36



DAG Model of Computation

A program seen as directed acyclic graph (DAG) of tasks

ä A task can not execute until all the inputs to the tasks are available
ä These come from outputs of earlier executing tasks
ä DAG shows explicitly the task dependencies

Hardware consists of workers (processing units)

We consider a greedy scheduler of the DAG tasks to workers

⟹ No worker is idle while there are tasks still to execute

37



Example of DAG

a

b

c

d

e

f

g

38



Execution time

𝑇𝑃 is time to execute with 𝑃 workers

𝑇1 is time for serial execution. It is the sum of all tasks

𝑇∞ is time along the critical path

ä Sequence of task execution (path) through DAG that takes the longest
time to execute

ä Assumes an infinite number workers available

39



Example

Let each task take 1 unit of time
ä 𝑇1 = 7: All tasks have to be
executed and in serial order

ä 𝑇∞ = 5: Time along the critical
path

ä In this case, it is the longest
path length of any task order
that maintains necessary
dependencies

a

b

e

f

g

c

d

40



Bounds

Suppose we only have 𝑃 workers. We can write a work-span formula to
derive a lower bound on 𝑇𝑃

max(𝑇1/𝑃 , 𝑇∞) ≤ 𝑇𝑃

𝑇∞ is the best possible execution time

Theorem (Brent)
Capture the additional cost executing the other tasks not on the critical path.

Assume can do so without overhead. Then

𝑇𝑃 ≤ (𝑇1 − 𝑇∞)/𝑃 + 𝑇∞

41



Application

ä 𝑇1 = 7
ä 𝑇∞ = 5
ä For 𝑃 = 2

𝑇2 ≤ (𝑇1 − 𝑇∞)/𝑃 + 𝑇∞

≤ (7 − 5)/2 + 𝑇∞

≤ 6

42



Estimation of running time

ä Scalability requires that 𝑇∞ be dominated by 𝑇1

𝑇𝑃 ≃ 𝑇1/𝑃 + 𝑇∞ if 𝑇∞ ≪ 𝑇1

ä Increasing work hurts parallel execution proportionately
ä The span impacts scalability, even for finite P

43



Available parallelism

Sufficient parallelism implies linear speedup

𝑇𝑝 ∼ 𝑇1/𝑃 if 𝑇1/𝑇∞ ≫ 𝑃

44



Roofline model



Concepts

The total number of FLOPS/s realized is bounded by either:

ä the amount of data delivered to the processor times the operational
intensity (GB/s ⋅FLOPS/GB)

ä the peak processing throughput of the processor

Operational intensity is a measure of how many times you use each byte.

45



Limits

Taking the minimum of these functions describes the roofline. This is the
feasible region for a computation:

no possible program can exceed the roofline
inefficiencies in programs may be less than the roofline

46



Kernels

The idea is to measure a given programs operational intensity, which will
correspond to a vertical line on the plot. The peak of the roofline divides the
world into:

ä memory-bound kernels
ä CPU bound kernels

47



Roofline to Optimize Code

ä Enhance CPU performance to raise peak.
ä unroll loops (increase compute density)
ä SIMD (vector instructions)

ä Improve data movement to shift memory bound
ä sequential data access
ä coherent data access
ä software prefetching

48



Conclusion



Conclusion

ä Different metrics for optimization.
ä Metrics are associated with different objectives.
ä Comparing with the correct sequential approach is critical.

49


	Analytical measure
	Performance metrics
	Criteria for scale up
	Laws on performances
	Roofline model
	Conclusion

