GP-GPU and High Performances Computing

Lecture 06 - Patterns

November 15, 2024

» Patterns

> Avoiding memory conflicts

Y

to learn parallel scan (prefix sum) algorithms based on reductions and
reverse reductions

> to learn the concept of double buffering

> to understand tradeoffs between work efficiency and latency

\

to learn how to develop hierarchical algorithms (across multiple
kernels)

Inclusive scan

Prefix Sum-Scan

Frequently use for parallel work assignment and ressource allocation.

Y

A key primitive in numerous parallel algorithms to convert serial
computation into parallel computation.

\

> Fundamental parallel computation pattern.

\

Efficient design for data intensive computations.

Prefix scan

Definition 1

The all prefix-sums operation takes a binary associative operator & and
an array of n elements

[IO?xl?“‘>In—1]
and returns the array

[20, (To @ 1), ., (T @71 D ... D T,_4)]

Example . ‘ ‘
For @ the classical addition between integer, the prefix sum operation on

3,1,7,0,4,1,6,3]

returns
3,4,11,11,15, 16, 22, 25]

Assume that we have a 100-inch bread to feed 10
> We know how much each person wants in inches
[3,5,2,7,28,4,3,0,8,1]

> How do we cut the bread quickly?
> How much will be left

1. Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2
inches third, etc.

2. Method 2: calculate prefix-sum array

[3,8,10,17, 45, 49, 52, 52, 60, 61]

(39 inches left)

Typical Applications of Scan

» Scan is a simple and useful parallel building block
> Convert recurrences :
from sequential into parallel:

1 for(j=1;j<n;j++) 1 forall(j) { temp[j] = f(3) };
2 out[j] = out[j-1] + f(j);' 2 scan(out, temp);
> Useful for many parallel algorithms:

> Histograms

> Reduction and broadcast in O(log
n) time

> Sparse-Matrix-Vector-Multiply
(SpMV) using Parallel prefix (scan)
in O(log n) time

> Adding two n-bit integers in O(log
n) time

> Multiplying n-by-n matrices in
O(log n) time

> Inverting n-by-n triangular
matrices in O(log2 n) time

> Inverting n-by-n dense matrices
in O(log2 n) time Segmented Scan

Parallel page layout in a browser
(Leo Meyerovich, Ras Bodik)
Solving n-by-n tridiagonal
matrices in O(log n) time
Traversing linked lists

Computing minimal spanning
trees

Evaluating arbitrary expressions
in O(log n) time

Computing convex hulls of point
sets

Evaluating recurrences in O(log n)
time

2D parallel prefix, for image
segmentation (Catanzaro, Keutzer)

An Inclusive Sequential Addition Scan

Algorithm 1: Inclusive scan

Data: A sequence [z, 71, 7, ...]
Result: [yo, ¥1, ¥, --.)

1Yo = 2o

2y =Tot Ty

3 Yy =Tot T+ Ty

4 ..

Which translates into the recursive definition

Yy = Yi1 T T

A Work Efficient C Implementation

1 y[o] = x[e];
2 for (i = 1; i < Max_i; i++)
3 y[i] =y [i-1] + x[i];

Computationally efficient:
N additions needed for N elements - O(N)!

Only slightly more expensive than sequential reduction.

A Naive Inclusive Parallel Scan

Assign one thread to calculate each y element

Have every thread to add up all x elements needed for the y element

Yo = To
Y1 =To + 2y

Yo = To + Ty + Ty

Remarque

Parallel programming is easy as long as you do not care about perfor-
mance.

A Better Parallel Scan Algorithm

1. Read input from device global memory to shared memory.
2. Iterate log(n) times; stride from 1to n-1: double stride each iteration.

> Active threads stride to n-1(n-stride threads).

> Thread j adds elements j and j-stride from shared memory and writes result
into element j in shared memory.

> Requires barrier synchronization, once before read and once before write.

3. Write output from shared memory to device memory.

9
=%
S
<
x
)
=
It
(%)

)

Handling Dependencies

> During every iteration, each thread can overwrite the input of another
thread

> Barrier synchronization to ensure all inputs have been properly
generated

> All threads secure input operand that can be overwritten by another
thread

> Barrier synchronization to ensure that all threads have secured their
inputs
> All threads perform Addition and write output

0 N OO A W N e

}

global__ void scan_kernel_v1(float =X, float Y, int InputSize)

__shared__ float XY[SECTION_SIZE];

int 1 = blockIdx.x*blockDim.x + threadIdx.x;
if (i < InputSize) {

XY[threadIdx.x] = X[il;

// the code below performs iterative scan on XY
for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2)

{

__syncthreads();

float inl = XY[threadIdx.xstridel;
__syncthreads();

XY[threadIdx.x] += ini;

Work efficiencies considerations

> This scan executes log(n) parallel iterations
> The steps do (n —1), (n —2), (n —4),...(n —n/2) adds each
> Total adds: nlog(n) — (n — 1) — O(nlog(n)) work
> This scan algorithm is not work efficient
> Sequential scan algorithm does n adds
> Afactor of log(n) can hurt: 10x for 1024 elements!
> A parallel algorithm can be slower than a sequential one when
execution resources are saturated from low work efficiency

Improving efficiency

Improving Efficiency

> Balanced Trees

> Form a balanced binary tree on the input data and sweep it to and from the
root

> Tree is not an actual data structure, but a concept to determine what each
thread does at each step

> For scan:

> Traverse down from leaves to root building partial sums at internal nodes in
the tree

> Root holds sum of all leaves

> Traverse back up the tree building the output from the partial sums

Reduction Phase Kernel Code

// XY[2*BLOCK_SIZE] is in shared memory
for (int stride = 1;stride <= BLOCK_SIZE; stride *= 2) {
int index = (threadIdx.x+1)*stride*2 - 1;
if(index < 2*BLOCK_SIZE)
XY[index] += XY[index-stride];
__syncthreads();
}

AW N e

w0 N o

Post Reduction Reverse Phase Kernel

for (int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {
__syncthreads();
int index = (threadIdx.x+1)+stridex2 - 1;
if(index+stride < 2+*BLOCK_SIZE) {
XY[index + stride] += XY[index];
}
}
__syncthreads();
if (i < InputSize) Y[i] = XY[threadIdx.x];

© W N O U A W N

Work Analysis of the Work Efficient Kernel

> The work efficient kernel executes log(n) parallel iterations in the
reduction step

> The iterations do n/2,n/4,...1 adds
> Total adds: (n — 1) — O(n) work
> It executes log(n) — 1 parallel iterations in the post reduction reverse
step
> The iterationsdo2—1,4—1,...n/2 — 1 adds
> Total adds: (n — 2)—(log(n) — 1) — O(n) work
> Both phases perform up to no more than 2*(n1) adds

> The total number of adds is no more than twice of that done in the
efficient sequential algorithm

> The benefit of parallelism can easily overcome the 2X work when there
is sufficient hardware

> The work efficient scan kernel is normally more desirable
> Better Energy efficiency
> Less execution resource requirement

> However, the work inefficient kernel could be better for absolute
performance due to its single-step nature if

> There is sufficient execution resource

20

Exclusive scan

Exclusive scan

Definition 2

The all exclusive scan operation takes a binary associative operator & and
an array of n elements

[IO?xl?“‘>In—1]
and returns the array

0,29, (Tg ® x1), ..., (To D2, B ... DT, _5)]

Example] N)))
For @ the classical addition between integer, the exclusive scan operation on

3,1,7,0,4,1,6,3]

returns
[0,3,4,11,11,15, 16, 22]

21

> To find the beginning address of allocated buffers

> Inclusive and exclusive scans can be easily derived from each other; it is
a matter of convenience

3,1,7,0,4,1,6,3]

> Exclusive [0,3,4,11,11,15, 16, 22]
Inclusive [3,4,11,11, 15, 16, 22, 25]

\

22

A simple exclusive scan kernel

> Adapt an inclusive, work in-efficient scan kernel
> Block 0:

> Thread 0 loads 0 into XY[0]
> Other threads load X[threadIdx.x-1] into XY[threadIdx.x]

> All other blocks:
> All thread load X[blockIdx.x*blockDim.x+threadIdx.x-1] into
XY[threadIdex.x]
Similar adaption for work efficient scan kernel but pay attention that
each thread loads two elements

> Only one zero should be loaded
> All elements should be shifted by only one position

Y

23

Dealing with large vectors

> Build on the work efficient scan kernel
> Have each section of 2xblockDim. x elements assigned to a block

> Have each block write the sum of its section into a Sum[] array indexed
by blockIdx.x

> Run the scan kernel on the Sum[] array

> Add the scanned Sum[] array values to the elements of corresponding
sections

> Adaptation of work inefficient kernel is similar.

24

Conclusion

Conclusions

> Themes of this class

> Scan memory pattern
> Introduction to efficiency

25

	Inclusive scan
	Improving efficiency
	Exclusive scan
	Conclusion

