GP-GPU
and
High Performances Computing

Lecture 2
GP-GPU Architecture

mpere Architecture

PCI Express 4.0 Host Interface

Memery Controfler

§
o
2
g
t
v
E

Memory Controliar Memory Con

Memory Con

Raster Engine
s

902009 Ksowo

Warp Scheduler +

Register File (16,384 x 32.bit)

st LosT

+ Dispaich (32 thread/cik)

Register File (16,384 x 32-bit)

LosT oSt SFU

Warp Scheduler +

Register File (18,384 x 32-bit)

FP32 FP32 TENSOR
+ CORE
INT32

AmperefSM Holding

wsT ST

+ Dispatch (32 thread/cik)

Register File (16,384 x 32-bit)

fp32 and 16Xfp32 (shader cores

oSt

ST wsT st SFU

128KB L1 Data Cache / Shared Memory

Tex

Tox

GP-GPU computing in this course?

Programming Interfaces

V4 “‘nm &,
OpenCL nVIDIA

CUDA

<Vu liKan.

OpenAGC

eeeeeeeeeeeeeeeeeeeeeeeee

The CUDA Programming Model

—=> CUDA s a recent programming model, designed for GPUs with
€ Manycore architectures
¢ \Wide SIMD parallelism
€ Scalability

= CUDA provides:
€ Athread abstraction to deal with SIMD
€ Synchronization & data sharing between small groups of threads

CUDA programs are written in C + extensions
OpenCL uses very similar programming model

N

Nvidia Card Technology

General card (e.g. GeForce RTX 3090)

=> Available cores:
€ Generic CUDA Cores
¢ Tensor Cores
€ Ray Tracing Cores
-> Floating-point format:
€ simple-precision: many units, high perf
€ double-precision: very few units, low perf

Cannot be inserted into clusters

Computing capabilities are not certified

Professional card (e.g. Quadro RTX A6000)

-=> Available cores:
€ Generic CUDA Cores
€ Tensor Cores

-> Floating-point format:
€ simple-precision: many units, high perf
€ double-precision: many units, high perf

Can be used in cluster for high performance
computing

Computing capabilities are certified

CPU vs GPU - General overview

Multi-Cores CPU Multi-Cores CPU

Core 1 Core 2

|]|]|]|] SIMD |]|]|][| SIMD

Core 3 Core 4

|]|]|]|] SIMD |]|]|]|] SIMD

CPU uses GPU as a scientific coprocessor for SIMD computing

From the architecture to the programming

Programming model

GPU Chip <«<—>» \Virtual machine architecture =<€——>
and language

The reason why

Floating power cost
A typical CPU chip with 1024 floating points units

= Size : 100mmA2
= Power consumption : 200 W
=> Processing power : 20 TFLOPS

In order to get 1 exa flops, we need

= 50 000 chips
> 10 MW

Communication cost (per flops)

N 2 2 7

64-bit double precision : 26 pJ
256-bit buses : 20 pJ +256 pJ + 1nJ
256-bit access : 50pJ

RW DRAM : 16nJ

Off-chip Link : 500pJ

Cost per data movement (roughly, in 2015)

Communication cost (per flops)

Move data 1mm on chip : 6 pJ

Single floating point operation : 100 pJ
Move data 20 mm on chip : 120 pJ
Move data off chip (within SMP) : 250 pJ
Move data into DRAM : 2000 pJ

Move data off chip : > 2500 pJ

N2 0 K R

10

How to decrease energy cost?

11

What is inside a GPU ?

Shader Core Shader Core
Shader Core Shader Core
Shader Core Shader Core
Shader Core Shader Core

Task
dispatcher

A GP-GPU is a heterogeneous multi-processor optimized for graphics

12

CPU model working

Fetch/Decode

Out of order control logic

Fancy branch predictor

Memory pre-fetcher

Data cache

Remove components that are dedicated to on single instruction stream run fast

13

2 Cores

Fetch/Decode

Fetch/Decode

2 Cores run 2
threads
concurrently

Halle

Halle

14

16 Cores

>

16 Cores run
16 threads
concurrently

FRI133:
3311111

15

Do we really need multiple decoders?

Fetch/Decode

A L Ul A

In classical computer, this organisation is called,
single instruction, multiple data (SIMD).

In GPU Computing, this is called warp (Nvidia).

16

Multilevel parallelism

A chip with such a design as :

16 cores

8 Multiplication and Addition units per core
16 Instructions streams

256 Gflop/s at 1 Ghz

A real cheap will be at least 64 times larger.

The one we will be using at 10240 cores.

17

Program execution

Fetch/Decode

E I _ _ |
c 2 1T 10 ’
B

Each thread will receive a copy of the program.

Each program will be executed on a different subset
of data.

This is called Single Program Multiple Data (SPMD).

18

Dealing with instruction flow

Time

ALU

[[2][e][«][s][e][7][e]

N O O |
Y O [

L]
L]

<unconditional flow>

if (x < 0) {
y = 1logl0 (x);

y +t= Wp;
out = y * WO;
} else {
out = WO;

}

<Some unconditional
flow>

19

Dealing with instruction flow

Time ALU

[l2][s]le][s]le][7][e]
[][:H:][:H:][:H:][] <unconditional flow>
HER RN
[][] if (x < 0)
[:][] [] [] [j y = loglO (x);
I I R O e y += Wp;
0 O 0 O out = y * WO;
\\\\\\\\\\\/////////// } else {

out = WO;

}
<Some unconditional
flow>

Dealing with instruction flow

Time ALU

[l2][s]le][s]le][7][e]
DDDDDDDD <unconditional flow>
I
([E][] if (x < 0) |
LI O 0O O y = logl0 (x);
DD D D D y += Wp;
DD D D |:| out =y * WO;
. . . } else {
\.7 out = WO;
}
<Some unconditional

Dealing with instruction flow

Tim

ALU

e
[[z][s][«][s][e][7][¢]

=]
L]
[l

L] CEEECC]
L] EEEECC]
N O v [0
N O v [
N O [50

][/
L&
L[/=&

{

<unconditional flow>

if (x < 0) {
y = 1logl0 (x);

y += Wp;
out = y * WO;
} else {
out = WO;

}
<Some unconditional
flow>

The hardware is dealing with non-executing units.

22

Walit state

vVl

When a processing element is waiting on data from a previous operation, a
waiting state occurs

Each memory operation is 100-1000 cycles
Stalls are avoided using caches and processors logics

23

Core organization

Each thread in a warp share

N 2

Vi

An instruction stream to decode

An execution context for storage (64kB per thread)
8 SIMD functional unit

One control unit

Each core can run a group of 32 threads, a warp.
Warps can be interleaved to run simultaneously (up to 320)
Up to 10240 threads context can be stored

24

Stream Multiprocessors architecture

A GPU is a set of N Stream multiprocessors

>
>

N independent « SIMT » machines
Sharing the GPU board memory

Current (Ampere) architecture

Vol by

several instruction decoders/units

64 hardware threads

warps of 32 threads

less strongly synchronized

32K-128K registers distributed among all
hardware threads (and not shared)

A fast memory shared between all running
threads (of the SM)

several schedulers of warps of threads

Device

Multiprocessor N

-
-
.

Multiprocessor 2

Multiprocessor 1

Processor 1 Processor2 **

* | Processor M

Instruction
Unit

25

Tensor cores

Ampere architecture has 64 tensor cores
1 Tensor Core is able to achieve a flow of product-add on a flow of 4x4 matrices

—=> D =A.B: produces a flow of D output matrices
= D =A.B + C, with accumulation of A.B product flow into C matrix

=> Atensor core is a hardware implementation of a matrix operator

26

Some specifics about our cards

R

\7

Frequency: 1410-1800 GHz
Memory size: 46GB
Memory bandwidth: 768 GiB/s

Cuda Core: 10752
€ Tensor Core: 336
€ RTCore: 84

Precision

€ Half: 38.709 TFlops
€ Single: 38.709 TFlops
4 Double: 1.210 TFlops

Programming interface:
¢ Cuda8.6

4 OpenCL 3.0

¢ Vulkan1.2

27

Conclusions

A GPU is a CPU

=> Parallel computers need independent work to run their many cores (or other resources)
efficiently

Themes of this class

-> Difference between CPU and GP-GPU
-> Different levels in a GPU
=> Overview of main challenges in GP-GPU computing

28

