
GP-GPU
and

High Performances Computing

Cours 1
Introduction

What day are you born ? (keep the day in your head)

2

Add the digits

3

If number is greater than 10, keep the last digit

4

If number is less than 10, keep the digit

5

Say the number aloud

6

Find the smallest number in your row - in the room.

7

TOP 500

8

HPCG 500

9

Green 500

10

General information

11

General course information

Contact - Christophe Picard

- christophe.picard@univ-grenoble-alpes.fr
- Offices :

- 174 – IMAG Building – 1st floor
- C102 - Ensimag Building - 1st floor

- Email headers: [CGPU]
- Course notes available on my website

Class organization

- Lectures and labs
- One written exam and a project

12

About the project

➔ It is your project. You choose the subject.
➔ It can be a group project (2 or 3).
➔ It should be related to your major (MMIS, MSIAM, MoSiG).
➔ You may reused project from other courses, but you should propose an

improvement.
➔ It must involve some programming (Python, C, C++, Julia, Fortran).
➔ It must involve some design. You are not allowed to just use a library for

parallelism.
➔ You must submit your proposal for project by October 13th 2024.

13

Grading the project

The grade will depend on :

➔ the quality of the code.

➔ the quality of the report.

➔ the design of the parallelism.

➔ the performances.

➔ the number of students in the project.

➔ the difficulty of the subject.

14

Introduction

15

What's a computer look like?

Turing machine

16

What's a computer look like?

A universal Turing Machine

17

What's a computer look like?

Von Neumann Architecture

18

Properties of “computers”

➔ Sequential processing
◆ Control or logical flow

➔ Algorithm costs measured in this model
◆ Big-O notation counts number of sequential steps/bits for storage

➔ This is the basis for the CS curriculum
◆ And it’s just wrong
◆ Computers are not sequential and performance is more nuanced than counting the number of steps

➔ We look at computers as parallel entities
◆ Do many tasks concurrently
◆ Tasks interfere with each other
◆ More accurately reflects hardware and bottlenecks

➔ What about parallel computation models?
◆ Exist but not useful, because reality collides with the abstraction

19

PRAM Model

20

21

A64FX
CPU
4 NUMA nodes
12 compute cores each

Memory : 32 GB

FLOPS : 13.5 10^12

22

Apple M1
CPU
8 compute cores

GPU
Up to 128 execute unit
Up to 8 threads

FLOPS : 2.6 10^12

23

NVIDIA RTX
GPU
Up to 4,608 threads

Memory : 24Gb

FLOPS : 16.3 10^12

Serial computing should be re-invented

➔ Realities of computing
◆ There are tons of wasted cycles
◆ CPU utilization typically <10% (of useful work)

➔ Many other things limit performance
◆ Pipeline stalls
◆ Lock interference
◆ Waiting for I/O and network
◆ Data dependencies

➔ Writing serial programs is broken
◆ Parallelism is everywhere
◆ Must exploit it to realize time efficiency, power savings

24

About parallelism

➔ Why do I want to write parallel programs?
◆ to solve problems faster (strong scaling)
◆ to solve bigger problems (weak scaling and memory)

➔ Why I do not want to write parallel programs?
◆ tools are more difficult to use: expect 10x programming effort
◆ for many problem performance does not improve

This course will help to decide when to develop a parallel approach and how to write it.

25

Context

➔ Decrease time to solution.

➔ Solve larger problem.

➔ Combine resources of several processing units: gain access to more memory

and more processing power.

➔ Harness the processing power of modern architectures.

➔ Use idle computer to perform embarrassing parallelism computation

(SETI@home).

➔ Improve the precision of computations in a limited time (weather forecast).

26

How to achieve efficient parallelism?

➔ Processors: multicore, memory, network, accelerators, instructions.

➔ Compilers: dedicated library, automatic parallelism.

➔ Algorithms: tailored algorithms.

➔ Mathematics: adapted numerical methods, evolutionary methods.

27

Few words on hardware

28

A student HPC system

29

A “real” HPC system

30

What you will be working with!

➔ 33 RTX 6000 are available.
➔ Ressources are on virtual machine (up to 3 students on each card)
➔ Technical details :

◆ CUDA Threads 4,608
◆ NVIDIA Tensor threads 576
◆ NVIDIA RT 72
◆ GPU 24 GB GDDR6
◆ Performances FP32 - 16,3 TFLOPS

31

32

Conclusions

Every computer is a parallel computer

➔ Parallel computers need independent work to run their many cores (or other resources)
efficiently

Themes of this class

➔ Identify available parallelism in application
➔ Design parallel approaches
➔ Understand parallel hardware and how to optimize parallel performance

33

