
GP-GPU and High Performances Computing
Lecture 10 – Histogram

December 1, 2023

Previously

Organize storage of sparse matrices in order to

ä minimize memory occupancy
ä increase throughput
ä limit data duplication
ä limit tasks duplication

2

Performances comparison

CSR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Speedup

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
GPU CSR (nnz>10000, 873 matrices)
GPU CSR (nnz>100000, 225 matrices)

3

ELL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Speedup

0.00

0.02

0.04

0.06

0.08

0.10

0.12
GPU ELL (nnz>10000, 873 matrices)
GPU ELL (nnz>100000, 225 matrices)

4

COO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Speedup

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175 GPU COO (nnz>10000, 873 matrices)
GPU COO (nnz>100000, 225 matrices)

5

Hybrid

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Speedup

0.00

0.02

0.04

0.06

0.08

0.10

GPU Hybrid (atomic) (nnz>10000, 873 matrices)
GPU Hybrid (atomic) (nnz>100000, 225 matrices)

6

Reduction 𝛼: interleaved addressing

1 reduce(int *g_idata, int *g_odata) {
2 extern __shared__ int sdata[];
3 // load shared mem
4 unsigned int tid = threadIdx.x;
5 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
6 sdata[tid] = g_idata[i];
7 // do reduction in shared mem
8 for (unsigned int s = 1; s < blockDim.x; s *= 2) {
9 __syncthreads();

10 int index = 2 * s * tid;
11 if (index < blockDim.x) {
12 sdata[tid] = sdata[tid] + sdata[tid + s];
13 }
14 // Thread 0 writes result for this block to global mem
15 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
16 }
17 }

7

Reduction 𝛽: strided access

1 reduce(int *g_idata, int *g_odata) {
2 extern __shared__ int sdata[];
3 // load shared mem
4 unsigned int tid = threadIdx.x;
5 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
6 sdata[tid] = g_idata[i];
7 // do reduction in shared mem
8 for (int s = 1; s < blockDim.x; s *= 2) {
9 __syncthreads();

10 if (threadIdx.x % (2 * s) == 0)
11 sdata[threadID] += sdata[threadIdx.x + s];
12 }
13 // Thread 0 writes result for this block to global mem
14 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
15 }

Expected gain : ×2.5

8

Reduction 𝛾: Sequential Addressing

1 reduce(int *g_idata, int *g_odata) {
2 extern __shared__ int sdata[];
3 // load shared mem
4 unsigned int tid = threadIdx.x;
5 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
6 sdata[tid] = g_idata[i];
7 __syncthreads();
8 // do reduction in shared mem
9 for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {

10 if (tid < s) {
11 sdata[tid] += sdata[tid + s];
12 }
13 __syncthreads();
14 }
15 // write result for this block to global mem
16 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
17 }

Expected gain : ×2.

9

Reduction 𝛿: add during load

1 reduce(int *g_idata, int *g_odata) {
2 extern __shared__ int sdata[];
3 // load shared mem
4 unsigned int tid = threadIdx.x;
5 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
6 sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
7 __syncthreads();
8 // do reduction in shared mem
9 for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {

10 if (tid < s) {
11 sdata[tid] += sdata[tid + s];
12 }
13 __syncthreads();
14 }
15 // write result for this block to global mem
16 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
17 }

Expected gain : ×1.8

10

Reduction 𝜀: unroll warp

1 reduce(int *g_idata, int *g_odata) {
2 extern __shared__ int sdata[];
3 // load shared mem
4 unsigned int tid = threadIdx.x;
5 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
6 sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
7 __syncthreads();
8 // do reduction in shared mem
9 for (unsigned int s = blockDim.x/2; s > 32; s >>= 1) {

10 if (tid < s) {
11 sdata[tid] += sdata[tid + s];
12 }
13 __syncthreads();
14 }
15 if (tid < 32) warpReduce(sdata, tid);
16 // write result for this block to global mem
17 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
18 }

Expected gain : ×1.8

11

Reduction: unrolling

1 __device__ void warpReduce(volatile int* sdata, int tid) {
2 sdata[tid] += sdata[tid + 32];
3 sdata[tid] += sdata[tid + 16];
4 sdata[tid] += sdata[tid + 8];
5 sdata[tid] += sdata[tid + 4];
6 sdata[tid] += sdata[tid + 2];
7 sdata[tid] += sdata[tid + 1];
8 }

12

Reduction: compile time unrolling

1 Template <unsigned int blockSize>
2 __device__ void warpReduce(volatile int* sdata, int tid) {
3 if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
4 if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
5 if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
6 if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
7 if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
8 if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
9 }

Expected gain : ×1.4

13

Reduction 𝜁: unroll warp

1 reduce(int *g_idata, int *g_odata) {
2 extern __shared__ int sdata[];
3 // load shared mem
4 unsigned int tid = threadIdx.x;
5 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
6 unsigned int gridSize = blockSize*2*gridDim.x;
7 sdata[tid] = 0;
8 while (i < n) {
9 sdata[tid] += g_idata[i] + g_idata[i+blockSize];

10 i += gridSize;
11 }
12 __syncthreads();
13 // do reduction in shared mem
14 for (unsigned int s = blockDim.x/2; s > 32; s >>= 1) {
15 if (tid < s) {
16 sdata[tid] += sdata[tid + s];
17 }
18 __syncthreads();
19 }
20 if (tid < 32) warpReduce(sdata, tid);
21 // write result for this block to global mem
22 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
23 }

Expected gain : ×1.4

14

Histogram computation

Objectives

The key techniques for compacting input data in parallel sparse methods
for reduced consumption of memory bandwidth

ä better utilization of on-chip memory
ä fewer bytes transferred to on-chip memory
ä retaining regularity

15

Sparse data examples

ä A method for extracting notable features and patterns from large data
sets

ä Feature extraction for object recognition in images
ä Fraud detection in credit card transactions
ä Correlating heavenly object movements in astrophysics

ä Basic histograms - for each element in the data set, use the value to
identify a “bin counter” to increment

16

Example with text data

ä Define the bins as four-letter sections of the alphabet: a-d, e-h, i-l, n-p,
ä For each character in an input string, increment the appropriate bin
counter.

ä In the phrase “Programming Massively Parallel Processors” the output
histogram is:

a-d e-h i-l m-p q-t u-x y-z0

2

4

6

8

10

17

Algorithm 1: Simple binning

ä Partition the input into sections
ä Have each thread to take a section of the input
ä Each thread iterates through its section.
ä For each letter, increment the appropriate bin counter

18

Algorithm 1: iteration 1

19

Algorithm 1: iteration 2

20

Input Partitioning Affects Memory Access Efficiency

ä Sectioned partitioning results in poor memory access efficiency
ä Adjacent threads do not access adjacent memory locations
ä Accesses are not coalesced
ä DRAM bandwidth is poorly utilized

ä Change to interleaved partitioning
ä All threads process a contiguous section of elements
ä They all move to the next section and repeat
ä The memory accesses are coalesced

21

Algorithm 1b: iteration 2

Interleaved memory accesses

22

A reduction point of view

Mapping histogram count to reduce

23

Reduction accross threads

24

Data races

Interleaved memory accesses

25

Read-Modify-Write Used in Collaboration Patterns

For example, multiple bank tellers count the total amount of cash in the safe

ä Each grab a pile and count
ä Have a central display of the running total
ä Whenever someone finishes counting a pile, read the current running
total (read) and add the subtotal of the pile to the running total
(modify-write)

ä A bad outcome
Some of the piles were not accounted for in the final total

26

A Common Parallel Service Pattern

For example, multiple customer service agents serving waiting customers

ä The system maintains two numbers,
ä the number to be given to the next incoming customer (I)
ä the number for the customer to be served next (S)
ä The system gives each incoming customer a number (read I) and
increments the number to be given to the next customer by 1 modify
(write I)

ä A central display shows the number for the customer to be served next
ä When an agent becomes available, he/she calls the number (read S)
and increments the display number by 1 (modify-write S)

ä Bad outcomes
Multiple customers receive the same number, only one of them

receives service
Multiple agents serve the same number

27

A Common Arbitration Pattern

For example, multiple customers booking airline tickets in parallel Each

ä Brings up a flight seat map (read)
ä Decides on a seat
ä Updates the seat map and marks the selected seat as taken
(modify-write)

ä A bad outcome
Multiple passengers ended up booking the same seat

28

Data Race in Parallel Thread Execution

Thread 0
Old = Mem[x]
New = Old + 1
Mem[x] = New

Thread 1
Old = Mem[x]
New = Old + 1
Mem[x] = New

Old and New are per-thread register variables.

Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be after
threads 1 and 2 have completed?

Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution
timing between the two threads, which is referred to as a data race

29

Execution scenario 1

Thread 0
1 Old = Mem[x] // 0
2 New = Old + 1 // 1
3 Mem[x] = New // 1
4

5

6

Thread 1
1

2

3

4 Old = Mem[x] // 1
5 New = Old + 1 // 2
6 Mem[x] = New // 2

ä Thread 1 : Old = 0
ä Thread 2 : Old = 1
ä After the sequence : Mem[x] = 2

30

Execution scenario 2

Thread 0
1

2

3

4 Old = Mem[x] // 1
5 New = Old + 1 // 2
6 Mem[x] = New // 2

Thread 1
1 Old = Mem[x] // 0
2 New = Old + 1 // 1
3 Mem[x] = New // 1
4

5

6

ä Thread 1 : Old = 1
ä Thread 2 : Old = 0
ä After the sequence : Mem[x] = 2

31

Execution scenario 3

Thread 0
1 Old = Mem[x] // 0
2 New = Old + 1 // 1
3

4 Mem[x] = New // 1
5

6

Thread 1
1

2

3 Old = Mem[x] // 1
4

5 New = Old + 1 // 1
6 Mem[x] = New // 1

ä Thread 1 : Old = 0
ä Thread 2 : Old = 0
ä After the sequence : Mem[x] = 1

32

Execution scenario 4

Thread 0
1

2

3 Old = Mem[x] // 1
4

5 New = Old + 1 // 1
6 Mem[x] = New // 1

Thread 1
1 Old = Mem[x] // 0
2 New = Old + 1 // 1
3

4 Mem[x] = New // 1
5

6

ä Thread 1 : Old = 0
ä Thread 2 : Old = 0
ä After the sequence : Mem[x] = 1

33

Atomic operation

The goal of atomic operation is to ensure that
Thread 0

1 Old = Mem[x] // 0
2 New = Old + 1 // 1
3 Mem[x] = New // 1
4

5

6

Thread 1
1

2

3

4 Old = Mem[x] // 1
5 New = Old + 1 // 2
6 Mem[x] = New // 2

or
Thread 0

1

2

3

4 Old = Mem[x] // 1
5 New = Old + 1 // 2
6 Mem[x] = New // 2

Thread 1
1 Old = Mem[x] // 0
2 New = Old + 1 // 1
3 Mem[x] = New // 1
4

5

6

34

Atomic operation

title

Mem[x]= 0
Thread 0

1 Old = Mem[x] // 0
2 New = Old + 1 // 1
3

4 Mem[x] = New // 1
5

6

Thread 1
1

2

3 Old = Mem[x] // 1
4

5 New = Old + 1 // 1
6 Mem[x] = New // 1

ä Both threads receive 0 in Old
ä Mem[x] becomes 1

35

Concepts of atomic operations

ä A read-modify-write operation performed by a single hardware
instruction on a memory location address

ä Read the old value, calculate a new value, and write the new value to the
location

ä The hardware ensures that no other threads can perform another
read-modify-write operation on the same location until the current
atomic operation is complete

ä Any other threads that attempt to perform an atomic operation on the same
location will typically be held in a queue

ä All threads perform their atomic operations serially on the same location

36

Atomic operations

ä Performed by calling functions that are translated into single
instructions:
add, sub, inc, dec, min, max, exch (exchange), CAS (compare and
swap)

ä Atomic Add
int atomicAdd(int* address, int val);

ä reads the 32-bit word old from the location pointed to by address in
global or shared memory, computes (old + val), and stores the result
back to memory at the same address. The function returns old.

37

More Atomic Adds in CUDA

ä Unsigned 32-bit integer atomic add
unsigned int atomicAdd(unsigned int* address, unsigned int val);

ä Unsigned 64-bit integer atomic add
unsigned long long int atomicAdd(unsigned long long int* address, unsigned long long int val);

ä Single-precision floating-point atomic add (capability > 2.0)
float atomicAdd(float* address, float val);

38

Basic kernel for histogram

ä The kernel receives a pointer to the input buffer of byte values
ä Each thread process the input in a strided pattern

1 __global__ void histo_kernel(unsigned char *buffer, long size,
2 unsigned int *histo)
3 {
4 int i = threadIdx.x + blockIdx.x * blockDim.x;
5 // stride is total number of threads
6 int stride = blockDim.x * gridDim.x;
7 // All threads handle blockDim.x * gridDim.x
8 // consecutive elements
9 while (i < size) {

10 int alphabet_position = buffer[i] – “a”;
11 if (alphabet_position >= 0 && alpha_position < 26)
12 atomicAdd(&(histo[alphabet_position/4]), 1);
13 i += stride;
14 }
15 }

39

Performances

Atomic Operations on Global Memory

ä An atomic operation on a DRAM location starts with a read, which has a
latency of a few hundred cycles

ä The atomic operation ends with a write to the same location, with a
latency of a few hundred cycles

ä During this whole time, no one else can access the location

40

title

Each Read-Modify-Write has two full memory access delays

All atomic operations on the same variable (DRAM location) are seri-
alized.

41

Latency determines throughput

ä Throughput of atomic operations on the same DRAM location is the rate
at which the application can execute an atomic operation.

ä The rate for atomic operation on a particular location is limited by the
total latency of the read-modify-write sequence, typically more than
1000 cycles for global memory (DRAM) locations.

ä This means that if many threads attempt to do atomic operation on the
same location (contention), the memory throughput is reduced to <
1/1000 of the peak bandwidth of one memory channel!

42

Example :-)

1. Some customers realize that they missed an item after they started to
check out

2. They run to the isle and get the item while the line waits:
The rate of checkout is drastically reduced due to the long latency of
running to the isle and back.

3. Imagine a store where every customer starts the check out before they
even fetch any of the items:
The rate of the checkout will be 1 / (entire shopping time of each
customer)

43

Improvements

Atomic operations on Shared Memory

ä Very short latency
ä Private to each thread block
ä Need algorithm work by programmers

Avoid atomic operations as much as possible.

44

Privatization

Cost and Benefit of Privatization

ä Cost
ä Overhead for creating and initializing private copies
ä Overhead for accumulating the contents of private copies into the final copy

ä Benefit
ä Much less contention and serialization in accessing both the private copies
and the final copy

ä The overall performance can often be improved more than 10

45

Shared Memory Atomics

ä Each subset of threads are in the same block
ä Much higher throughput than DRAM (100x) or L2 (10x) atomics
ä Less contention – only threads in the same block can access a shared
memory variable

ä This is a very important use case for shared memory!

46

Kernel with privatization

1 __global__ void histo_kernel(unsigned char *buffer, long size,
2 unsigned int *histo)
3 {
4 /// Create private copies of the histo[] array for each thread block
5 __shared__ unsigned int histo_private[7];
6 // Initialize the bin counters in the private copies of histo[]
7 if (threadIdx.x < 7)
8 histo_private[threadidx.x] = 0;
9 __syncthreads();

10

11 /// Build Private Histogram
12 int i = threadIdx.x + blockIdx.x * blockDim.x;
13 // stride is total number of threads
14 int stride = blockDim.x * gridDim.x;
15 while (i < size) {
16 atomicAdd(&(private_histo[buffer[i]/4), 1);
17 i += stride;
18 }
19 /// Build Final Histogram
20 // wait for all other threads in the block to finish
21 __syncthreads();
22 if (threadIdx.x < 7) {
23 atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x]);
24 }
25 }

47

About privatizaion

ä Privatization is a powerful and frequently used technique for
parallelizing applications

ä The operation needs to be associative and commutative
ä Histogram add operation is associative and commutative
ä No privatization if the operation does not fit the requirement
ä The private histogram size needs to be small
ä Fits into shared memory
ä If the histogram is too large to privatize: partially privatize an output
histogram and use range testing to go to either global memory or
shared memory.

48

Conclusion

Conclusions

ä Themes of this class
ä Memory access
ä Race condition
ä Atomic operation
ä Use private memory

49

	Performances comparison
	Histogram computation
	A reduction point of view
	Data races
	Atomic operation
	Performances
	Privatization
	Conclusion

