GP-GPU and High Performances Computing

Lecture 10 — Histogram

December 1, 2023

Organize storage of sparse matrices in order to

> minimize memory occupancy
> increase throughput
> limit data duplication

limit tasks duplication

\

Performances comparison

CSR

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

2

3456

7

GPU CSR (nnz>10000, 873 matrices)
GPU CSR (nnz>100000, 225 matrices)

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Speedup

ELL

GPU ELL (nnz>10000, 873 matrices)
GPU ELL (nnz>100000, 225 matrices)

\//\

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Speedup

6(0]0)

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

A

0

1

2

3456

7

GPU COO (nnz>10000, 873 matrices)
GPU COO (nnz>100000, 225 matrices)

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Speedup

Hybrid

GPU Hybrid (atomic) (nnz>10000, 873 matrices)
GPU Hybrid (atomic) (nnz>100000, 225 matrices)

0 1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Speedup

Reduction «: interleaved addressing

1 reduce(int »g_idata, int *g_odata) {

2 extern __shared__ int sdatal];

3 // load shared mem

4 unsigned int tid = threadIdx.x;

5 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
6 sdata[tid] = g_idatal[il;

7 // do reduction in shared mem

8 for (unsigned int s = 1; s < blockDim.x; s *= 2) {

9 __syncthreads();

10 int index = 2 * s * tid;

11 if (index < blockDim.x) {

12 sdata[tid] = sdata[tid] + sdata[tid + s];

13 }

14 // Thread 0 writes result for this block to global mem
15 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

16 }

17 }

Reduction g: strided access

1 reduce(int *g_idata, int *g_odata) {
2 extern __shared__ int sdatal[];

3 // load shared mem

4 unsigned int tid = threadIdx.x;

5 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

6 sdata[tid] = g_idatal[il;

7 // do reduction in shared mem

8 for (int s = 1; s < blockDim.x; s *= 2) {

9 __syncthreads();

10 if (threadIdx.x % (2 * s) == 0)

11 sdata[threadID] += sdata[threadIdx.x + sl;

12 }

13 // Thread 0 writes result for this block to global mem
14 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

15 }

Expected gain : x2.5

Reduction +: Sequential Addressing

1 reduce(int »g_idata, int *g_odata) {

2 extern __shared__ int sdatal];

3 // load shared mem

4 unsigned int tid = threadIdx.x;

5 unsigned int i = blockIdx.xxblockDim.x + threadIdx.x;
6 sdata[tid] = g_idatal[il;

7 __syncthreads();

8 // do reduction in shared mem

9 for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {
10 if (tid < s) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdatal[0];

D R
e N T S

}

-
3

Expected gain : x2.

Reduction §: add during load

1 reduce(int »g_idata, int *g_odata) {

2 extern __shared__ int sdatal];

3 // load shared mem

4 unsigned int tid = threadIdx.x;

5 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
6 sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];

7 __syncthreads();

8 // do reduction in shared mem

9 for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {

10 if (tid < s) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdatal[0];

D R
e N T S

}

-
3

Expected gain: x1.8

Reduction &: unroll warp

reduce(int *g_idata, int =g_odata) {

}

extern __shared__ int sdatal];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x#2) + threadIdx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
// do reduction in shared mem
for (unsigned int s = blockDim.x/2; s > 32; s >>= 1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
if (tid < 32) warpReduce(sdata, tid);
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdatal[0];

Expected gain: x1.8

Reduction: unrolling

1 __device__ void warpReduce(volatile int* sdata, int tid) {
2 sdata[tid] += sdata[tid + 32];

3 sdata[tid] += sdata[tid + 16];

1 sdata[tid] += sdata[tid + 8];

5 sdata[tid] += sdata[tid + &4];

6 sdata[tid] += sdata[tid + 2];

7 sdata[tid] += sdata[tid + 1];

8

Reduction: compile time unrolling

Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 21;
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

© W NG A W N

}

Expected gain: x1.4

Reduction ¢: unroll warp

reduce(int +g_idata, int *g_odata) {

}

extern __shared__ int sdatal];
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x#2) + threadIdx.x;
unsigned int gridSize = blockSize*2xgridDim.x;
sdata[tid] = 0;
while (i < n) {
sdatal[tid] += g_idata[i] + g_idata[i+blockSize];
i += gridSize;
I3
__syncthreads();
// do reduction in shared mem
for (unsigned int s = blockDim.x/2; s > 32; s >>= 1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();

if (tid < 32) warpReduce(sdata, tid);
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdatal[0];

Expected gain: x1.4

Histogram computation

The key techniques for compacting input data in parallel sparse methods
for reduced consumption of memory bandwidth

> better utilization of on-chip memory
> fewer bytes transferred to on-chip memory

> retaining regularity

Sparse data examples

» A method for extracting notable features and patterns from large data
sets

> Feature extraction for object recognition in images
> Fraud detection in credit card transactions
> Correlating heavenly object movements in astrophysics

> Basic histograms - for each element in the data set, use the value to
identify a “bin counter” to increment

Example with text data

> Define the bins as four-letter sections of the alphabet: a-d, e-h, i-|, n-p,

> For each character in an input string, increment the appropriate bin
counter.

> In the phrase “Programming Massively Parallel Processors” the output
histogram is:

10

8

6

Algorithm 1: Simple binning

> Partition the input into sections
> Have each thread to take a section of the input
> Fach thread iterates through its section.
> For each letter, increment the appropriate bin counter

Algorithm 1: iteration 1

S

Thread 0 Thread 1 Thread 2 Thread 3

ad eh| H mp| gt ux yz

Algorithm 1: iteration 2

1 1

Thread 0 Thread 1

l

Thread 2

a-d

q-t

u-x

y-z

!

Thread 3

Input Partitioning Affects Memory Access Efficiency

> Sectioned partitioning results in poor memory access efficiency
> Adjacent threads do not access adjacent memory locations
> Accesses are not coalesced
> DRAM bandwidth is poorly utilized

‘1‘1‘1‘1‘1‘222223333344444

> Change to interleaved partitioning
> All threads process a contiguous section of elements
> They all move to the next section and repeat
> The memory accesses are coalesced

B Bn B B B

21

Algorithm 1b: iteration 2

Interleaved memory accesses

Thread 0 Thread 1 Thread 2 Thread 3

T

110 4 2]0 0

o
&
®
Ed

-l m-p q-(‘uvx y-z

22

A reduction point of view

Mapping histogram count to reduce

ad eh | il [mp| gt ux | yz

R (4] a 2} 2} 1 2} 8
0 8 2} 5} 1] 2} e
G 8 1 2} 2} (] 2] 8

23

Reduction accross threads

e e 6 0 | 1 o o
0| | e o1 o 0 o
6’4“971 e 8 8 6 | 8
R e | e o o | 1]e o
A 1 e o o o e @

2%

Data races

Interleaved memory accesses

Thread 0 Thread 1 Thread 2 Thread 3

T

011021100

a-d ‘ eh il mp gt 1 u-x | y-z

25

Read-Modify-Write Used in Collaboration Patterns

For example, multiple bank tellers count the total amount of cash in the safe

> Each grab a pile and count
> Have a central display of the running total

> Whenever someone finishes counting a pile, read the current running
total (read) and add the subtotal of the pile to the running total

(modify-write)

> A bad outcome
Some of the piles were not accounted for in the final total

26

A Common Parallel Service Pattern

For example, multiple customer service agents serving waiting customers

» The system maintains two numbers,
> the number to be given to the next incoming customer (1)
> the number for the customer to be served next (S)

> The system gives each incoming customer a number (read 1) and
increments the number to be given to the next customer by 1 modify
(write 1)

> A central display shows the number for the customer to be served next

> When an agent becomes available, he/she calls the number (read S)
and increments the display number by 1 (modify-write S)
> Bad outcomes

Multiple customers receive the same number, only one of them
receives service
Multiple agents serve the same number

27

A Common Arbitration Pattern

For example, multiple customers booking airline tickets in parallel Each

> Brings up a flight seat map (read)
> Decides on a seat

> Updates the seat map and marks the selected seat as taken
(modify-write)

> A bad outcome
Multiple passengers ended up booking the same seat

28

Data Race in Parallel Thread Execution

Thread 0 Thread 1
0ld = Mem[x] old = Mem[x]
New = Old + 1 New = Old + 1
Mem[x] = New Mem[x] = New

Old and New are per-thread register variables.

Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be after
threads 1 and 2 have completed?

Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution
timing between the two threads, which is referred to as a data race

29

Execution scenario 1

Thread 0 Thread 1
1 0ld = Mem[x] // © 1
2 New = Old + 1 // 1 2
3 Mem[x] = New // 1 3
4 4 0ld = Mem[x] // 1
5 5 New=01d+1//2
3 6 Mem[x] = New // 2

> Thread 1: 0ld = 0
> Thread 2: 0ld = 1
> After the sequence : Mem[x]

]
N

30

Execution scenario 2

Thread 0 Thread 1
L 1 0ld = Mem[x] // ©
2 2 New = Old + 1 // 1
g 3 Mem[x] = New // 1
4 0ld = Mem[x] // 1 4
5 New = Old + 1 // 2 5
6 Mem[x] = New // 2 6

> Thread 1: 0ld 1
> Thread 2: 0ld 0

> After the sequence : Mem[x]

]
N

31

Execution scenario 3

Thread 0 Thread 1
1 0ld = Mem[x] // © 1
2 New = Old + 1 // 1 2
3 3 0ld = Mem[x] // 1
4 Mem[x] = New // 1 4
5 5 New=01d+1//1
3 6 Mem[x] = New // 1

> Thread 1: 01d 0
> Thread 2: 0ld 0
> After the sequence : Mem[x]

]
=

32

Execution scenario 4

Thread 0 Thread 1
L 1 0ld = Mem[x] // ©
2 2 New = Old + 1 // 1
3 0ld = Mem[x] // 1 3
A 4 Mem[x] = New // 1
5 New = Old + 1 // 1 5
6 Mem[x] = New // 1 6

> Thread 1: 01d 0
> Thread 2: 0ld 0
> After the sequence : Mem[x]

]
=

B

Atomic operation

The goal of atomic operation is to ensure that

Thread 0 Thread 1
1 0ld = Mem[x] // © 1
2 New = Old + 1 // 1 2
3 Mem[x] = New // 1 3
. 4 old = Mem[x] // 1
5 5 New = Old + 1 // 2
. 6 Mem[x] = New // 2
or
Thread 0 Thread 1
1 1 old = Mem[x] // 0
2 2 New = Old + 1 // 1
s s Mem[x] = New // 1
4 old = Mem[x] // 1 4
5 New = Old + 1 // 2 5

6 Mem[x] = New // 2 6

34

Atomic operation

Mem[x]= 0

Thread 0 Thread 1
1 old = Mem[x] // 0 1
2 New = Old + 1 // 1 2|
3 3 old = Mem[x] // 1
4 Mem[x] = New // 1 4
5 5 New = Old + 1 // 1
6 6 Mem[x] = New // 1

> Both threads receive 0 in Old
> Mem[x] becomes 1

B85

Concepts of atomic operations

> A read-modify-write operation performed by a single hardware
instruction on @ memory location address

> Read the old value, calculate a new value, and write the new value to the
location

> The hardware ensures that no other threads can perform another
read-modify-write operation on the same location until the current
atomic operation is complete
> Any other threads that attempt to perform an atomic operation on the same
location will typically be held in a queue
> All threads perform their atomic operations serially on the same location

36

Atomic operations

> Performed by calling functions that are translated into single
instructions:
add, sub, inc, dec, min, max, exch (exchange), CAS (compare and

swap)
> Atomic Add
int atomicAdd(int* address, int val);
> reads the 32-bit word old from the location pointed to by address in

global or shared memory, computes (old + val), and stores the result
back to memory at the same address. The function returns old.

37

More Atomic Adds in CUDA

> Unsigned 32-bit integer atomic add

unsigned int atomicAdd(unsigned int* address, unsigne
> Unsigned 64-bit integer atomic add

unsigned long long int atomicAdd(unsigned long long i
> Single-precision floating-point atomic add (capability > 2.0)

float atomicAdd(float* address, float val);

38

Basic kernel for histogram

{

}

> The kernel receives a pointer to the input buffer of byte values
> Each thread process the input in a strided pattern

global__ void histo_kernel(unsigned char xbuffer, long size,
unsigned int xhisto)

int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
int stride = blockDim.x * gridDim.x;
// All threads handle blockDim.x * gridDim.x
// consecutive elements
while (i < size) {
int alphabet_position = buffer[il H []a[];
if (alphabet_position >= 0 && alpha_position < 26)
atomicAdd(&(histo[alphabet_position/41), 1);
i += stride;

}

39

Performances

Atomic Operations on Global Memory

> An atomic operation on a DRAM location starts with a read, which has a
latency of a few hundred cycles

» The atomic operation ends with a write to the same location, with a
latency of a few hundred cycles

> During this whole time, no one else can access the location

40

Each Read-Modify-Write has two full memory access delays

All atomic operations on the same variable (DRAM location) are seri-
alized.

41

Latency determines throughput

> Throughput of atomic operations on the same DRAM location is the rate
at which the application can execute an atomic operation.

> The rate for atomic operation on a particular location is limited by the
total latency of the read-modify-write sequence, typically more than
1000 cycles for global memory (DRAM) locations.

> This means that if many threads attempt to do atomic operation on the
same location (contention), the memory throughput is reduced to <
1/1000 of the peak bandwidth of one memory channel!

42

1. Some customers realize that they missed an item after they started to
check out

2. They run to the isle and get the item while the line waits:
The rate of checkout is drastically reduced due to the long latency of
running to the isle and back.

3. Imagine a store where every customer starts the check out before they
even fetch any of the items:
The rate of the checkout will be 1/ (entire shopping time of each
customer)

43

Improvements

Atomic operations on Shared Memory

> Very short latency
» Private to each thread block

> Need algorithm work by programmers

Avoid atomic operations as much as possible.

44

Privatization

Cost and Benefit of Privatization

> Cost

> Overhead for creating and initializing private copies

> Overhead for accumulating the contents of private copies into the final copy
> Benefit

> Much less contention and serialization in accessing both the private copies
and the final copy
> The overall performance can often be improved more than 10

45

Shared Memory Atomics

> Each subset of threads are in the same block
> Much higher throughput than DRAM (100x) or L2 (10x) atomics

> Less contention — only threads in the same block can access a shared
memory variable

> This is a very important use case for shared memory!

46

Kernel with privatization

__global__ void histo_kernel(unsigned char xbuffer, long size,

{

}

unsigned int xhisto)

/// Create private copies of the histo[] array for each thread block

__shared__ unsigned int histo_private[7];

// Initialize the bin counters in the private copies of histo[]

if (threadIdx.x < 7)
histo_private[threadidx.x] = 0;
__syncthreads();

/// Build Private Histogram
int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
int stride = blockDim.x * gridDim.x;
while (i < size) {
atomicAdd(&(private_histo[buffer[i]/4), 1);
i += stride;
}
/// Build Final Histogram
// wait for all other threads in the block to finish
__syncthreads();
if (threadIdx.x < 7) {

}

atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x]

)E

47

About privatizaion

> Privatization is a powerful and frequently used technique for
parallelizing applications

> The operation needs to be associative and commutative

> Histogram add operation is associative and commutative

> No privatization if the operation does not fit the requirement
> The private histogram size needs to be small

> Fits into shared memory

> If the histogram is too large to privatize: partially privatize an output
histogram and use range testing to go to either global memory or
shared memory.

48

Conclusion

Conclusions

> Themes of this class
Memory access
Race condition
Atomic operation
Use private memory

\

Yy vy

49

	Performances comparison
	Histogram computation
	A reduction point of view
	Data races
	Atomic operation
	Performances
	Privatization
	Conclusion

