
GP-GPU and High Performances Computing
Lecture 09 – Sparse methods

December 1, 2023

Previsouly

2

Sparse matrix computation

Objectives

the key techniques for compacting input data in parallel sparse methods
for reduced consumption of memory bandwidth

ä better utilization of on-chip memory
ä fewer bytes transferred to on-chip memory
ä retaining regularity

3

Sparse data examples

4

Sparse data

Many real-world inputs are
sparse/non-uniform
Signal samples, mesh models, trans-
portation networks, communication
networks, etc.

5

Sparse Matrix

ä Many real-world systems are sparse in nature
ä Solving sparse linear systems

ä Solving these systems require inversion of the coefficient matrix
ä Traditional inversion algorithms such as Gaussian elimination can create
too many “fill-in” elements and explode the size of the matrix

ä Iterative Conjugate Gradient solvers based on sparse matrix-vector
multiplication is preferred

ä Solution of PDE systems can be formulated into linear operations using
sparse matrix-vector multiplication

6

Challenges

Compared to dense matrix multiplication, SpMV

ä Is Irregular/unstructured
ä Has little input data reuse
ä Benefits little from compiler transformation tools

Key to maximal performance

ä Maximize regularity (by reducing divergence and load imbalance)
ä Maximize DRAM burst utilization (layout arrangement)

7

A Simple Parallel SpMV

Row 0 1 0 0 1 0 Thread 0
Row 1 3 2 0 3 0 Thread 1
Row 2 6 0 8 9 2 Thread 2
Row 3 0 0 5 9 0 Thread 3
Row 4 0 0 0 0 25 Thread 4

The simplest algorithm consists in associating one thread with one row of
the input matrix

8

Storage

To simplify the storage we use the following data structures

AA[12] = {1.0, 1.0, 3.0, 2.0, 3.0, 6.0,
8.0, 9.0, 2.0, 5.0, 9.0, 25.0 }

JA[12] = {1, 4, 1, 2, 4, 1, 3, 4, 5, 3, 4, 5}

IA[6] = { 1, 3, 6, 10, 12, 13}

9

CSR: brief

ä The number of elements in 𝐴𝐴 and 𝐽𝐴 is 𝑛𝑛𝑧.
ä The number of elements in 𝐼𝐴 is 𝑛 + 1.
ä 𝐼𝐴(𝑗) point to the start of line 𝑗.
ä There is no underlying structure in the matrix.
ä Fast row access.
ä Slow column access.
ä Storage cost 2𝑛𝑛𝑧 + 𝑛 + 1 instead of 𝑛2.
ä No hypothesis on the density of the original matrix.
ä Alternative : CSC

10

CSR kernel in Cuda

int row = blockDim.x * blockIdx.x + threadIdx.x
if (row < num_rows)
{
float dot = 0;
int row_start = ptr[row];
int row_stop = ptr[row+1];
for (int jj = row_start; jj > row_end; jj++)
dot += data[jj] * x[indices[jj]];
y[row] += dot;

}

11

Challenges with standard CSR kernel

ä Execution divergence: rows are varying by lengths.
⇒ Within each wraps time execution will have a different work load.

ä Memory divergence: uncoalesced accesses.
⇒ Adjacent threads access non-adjacent memory locations

12

Regularizing sparse matrix vector

⇒

ä Pad all rows to the same length
ä Inefficient if a few rows are much
longer than others Transpose
(Column Major) for DRAM
efficiency

ä Both 𝐴𝐴 and 𝐽𝐴
padded/transposed

13

ELLpack kernel

1 int row = blockIdx.x * blockDim.x + threadIdx.x;
2 if (row < num_rows) {
3 float dot = 0;
4 for (int i = 0; i < num_elem; i++) {
5 dot += data[row+i*num_rows]*x[col_index[row+i*num_rows]];
6 y[row] = dot;
7 }
8 }

14

Challenges

ä Every “thread” handles the computation of one sum in local
memory.

ä Balanced workload: add artificial zero elements, no row-pointer
needed.

ä Can result in significant overhead for unbalanced problems.

15

Coordinate storage

ä ELL can cause excessive padding: this padding is caused by a small
number of rows that possessed an excessive large number of non zero
elements.

ä Coordinated format (COO) to take away some elements of this rows.
ä COO stores a list of (row, column, value) tuples.
ä COO storage is efficient only for really sparse matrices.

16

COO for maximal parallelism

ä list row, column and value for every non-zero entry
AA[12] = {1.0, 1.0, 3.0, 2.0, 3.0, 6.0,
8.0, 9.0, 2.0, 5.0, 9.0, 25.0 }
JA[12] = {1, 4, 1, 2, 4, 1, 3, 4, 5, 3, 4, 5}
IA[12] = {1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5}

ä Each thread is assigned a non-zero entry.
ä each thread computes an 𝐴[𝑖, 𝑗] × 𝑥[𝑗] product.
ä products can be sum with segmented reduction algorithm.
ä insensitive to row length distribution.

17

COO kernel

1 int element = blockIdx.x * blockDim.x + threadIdx.x;
2

3 if (element < nnz)
4 atomic_add(y + IA[element], AA[element]*x[JA[element]]);

To accumulate into output vecor, atomic operation are required!

ä Memory footprint: 𝑛𝑧(𝑣𝑎𝑙) + 2 ∗ 𝑛𝑧(𝑖𝑛𝑡)

18

hybrid approach

ä ELL is used to handle typical entries.
ä COO is used to handel exceptional entries, i.e., entries overflowing
standard row size.

19

Hybrid kernel

1 int idx = blockIdx.x * blockDim.x + threadIdx.x;
2 if (idx < n_rows) {
3 int row = idx;
4

5 data_type dot = 0;
6 for (int element = 0; element < elements_in_rows; element++) {
7 int element_offset = row + element * n_rows;
8 dot += ell_data[element_offset] * x[ell_col_ids[element_offset]];
9 }

10 atomicAdd (y + row, dot);
11 }
12

13 for (int element = idx; element < n_elements;
14 element += blockDim.x * gridDim.x) {
15 data_type dot = coo_data[element] * x[col_ids[element]];
16 atomicAdd (y + row_ids[element], dot);
17 }

20

Storage requirements

ä M - number of rows in the matrix
ä N - number of columns in the matrix
ä K - number of nonzero entries in the densest row
ä S - sparsity level [0 -1], 1 being fully-dense

Format Storage Requirement (words)
Dense MN

Compressed Sparse Row (CSR) 2MNS + M + 1
ELL 2MK

Coordinate (COO) 3MNS
Hybrid ELL / COO (HYB) > 3MNS,

< 2MK

21

Conclusion

Conclusion

ä Sparse matrices are hard!
ä There are a lot of ways to represent sparse matrices
ä Different representations have different storage requirements
ä The storage requirements depend differently on the sparsity pattern
ä There is sometimes a need to safeguard against worst-case input
ä There is often a trade-off between regularity and efficiency
ä Some representations are better suited to certain hardware than others
ä It can be difficult to achieve a high compute-to-global-memory-access
ratio when it comes to sparse matrices

22

	Sparse matrix computation
	Conclusion

