GP-GPU and High Performances Computing
 Lecture 09 - Sparse methods

December 1, 2023

Previsouly

Sparse matrix computation

Objectives

the key techniques for compacting input data in parallel sparse methods for reduced consumption of memory bandwidth
> better utilization of on-chip memory
> fewer bytes transferred to on-chip memory
> retaining regularity

Sparse data examples

cage10
cavity21

ASIC_100ks
coater2

scircuit

hvdc1

Sparse data

Many real-world inputs are sparse/non-uniform Signal samples, mesh models, transportation networks, communication networks, etc.

Sparse Matrix

- Many real-world systems are sparse in nature
> Solving sparse linear systems
> Solving these systems require inversion of the coefficient matrix
> Traditional inversion algorithms such as Gaussian elimination can create too many "fill-in" elements and explode the size of the matrix
- Iterative Conjugate Gradient solvers based on sparse matrix-vector multiplication is preferred
> Solution of PDE systems can be formulated into linear operations using sparse matrix-vector multiplication

Challenges

Compared to dense matrix multiplication, SpMV

- Is Irregular/unstructured
> Has little input data reuse
- Benefits little from compiler transformation tools

Key to maximal performance
> Maximize regularity (by reducing divergence and load imbalance)
> Maximize DRAM burst utilization (layout arrangement)

A simple Parallel SpMV

Row 0	1	0	0	1	0	Thread 0
Row 1	3	2	0	3	0	Thread 1
Row 2	6	0	8	9	2	Thread 2
Row 3	0	0	5	9	0	Thread 3
Row 4	0	0	0	0	25	Thread 4

The simplest algorithm consists in associating one thread with one row of the input matrix

Storage

To simplify the storage we use the following data structures

$$
\begin{aligned}
& \operatorname{AA}[12]=\{1.0,1.0,3.0,2.0,3.0,6.0, \\
& 8.0,9.0,2.0,5.0,9.0,25.0\} \\
& \operatorname{JA}[12]=\{1,4,1,2,4,1,3,4,5,3,4,5\} \\
& \operatorname{IA}[6]=\{1,3,6,10,12,13\}
\end{aligned}
$$

CSR: brief

> The number of elements in $A A$ and $J A$ is $n n z$.
> The number of elements in $I A$ is $n+1$.
> $I A(j)$ point to the start of line j.
> There is no underlying structure in the matrix.

- Fast row access.
> Slow column access.
> Storage cost $2 n n z+n+1$ instead of n^{2}.
> No hypothesis on the density of the original matrix.
> Alternative : CSC

CSR kernel in Cuda

```
int row = blockDim.x * blockIdx.x + threadIdx.x
if ( row < num_rows )
{
    float dot = 0;
    int row_start = ptr[row];
    int row_stop = ptr[row+1];
    for (int jj = row_start; jj > row_end; jj++)
    dot += data[jj] * x[indices[jj]];
    y[row] += dot;
}
```


Challenges with standard CSR kernel

> Execution divergence: rows are varying by lengths. \Rightarrow Within each wraps time execution will have a different work load.
> Memory divergence: uncoalesced accesses.
\Rightarrow Adjacent threads access non-adjacent memory locations

Regularizing sparse matrix vector

> Pad all rows to the same length
> Inefficient if a few rows are much longer than others Transpose (Column Major) for DRAM efficiency
> Both $A A$ and $J A$ padded/transposed

ELLpack kernel

```
1 int row = blockIdx.x * blockDim.x + threadIdx.x;
2 if (row < num_rows) \{
\(3 \quad\) float dot \(=0\);
4 for (int i = 0; i < num_elem; i++) \{
    dot += data[row+i*num_rows]*x[col_index[row+i*num_rows]];
        y[row] = dot;
    \}
\}
```


Challenges

> Every "thread" handles the computation of one sum in local memory.
> Balanced workload: add artificial zero elements, no row-pointer needed.
> Can result in significant overhead for unbalanced problems.

Coordinate storage

> ELL can cause excessive padding: this padding is caused by a small number of rows that possessed an excessive large number of non zero elements.
> Coordinated format (COO) to take away some elements of this rows.
> COO stores a list of (row, column, value) tuples.
> COO storage is efficient only for really sparse matrices.

COO for maximal parallelism

> list row, column and value for every non-zero entry

$$
\begin{aligned}
& \operatorname{AA}[12]=\{1.0,1.0,3.0,2.0,3.0,6.0, \\
& 8.0,9.0,2.0,5.0,9.0,25.0\} \\
& \operatorname{JA}[12]=\{1,4,1,2,4,1,3,4,5,3,4,5\} \\
& \operatorname{IA}[12]=\{1,1,2,2,2,3,3,3,3,4,4,5\}
\end{aligned}
$$

> Each thread is assigned a non-zero entry.
> each thread computes an $A[i, j] \times x[j]$ product.

- products can be sum with segmented reduction algorithm.
> insensitive to row length distribution.

COO kernel

```
int element = blockIdx.x * blockDim.x + threadIdx.x;
if (element < nnz)
    atomic_add( y + IA[element], AA[element]*x[JA[element]]);
```

To accumulate into output vecor, atomic operation are required!
> Memory footprint: $n z($ val $)+2 * n z($ int $)$

hybrid approach

> ELL is used to handle typical entries.
> COO is used to handel exceptional entries, i.e., entries overflowing standard row size.

Hybrid kernel

```
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n_rows) {
    int row = idx;
    data_type dot = 0;
    for (int element = 0; element < elements_in_rows; element++) {
            int element_offset = row + element * n_rows;
            dot += ell_data[element_offset] * x[ell_col_ids[element_offset]];
    }
    atomicAdd (y + row, dot);
}
for (int element = idx; element < n_elements;
            element += blockDim.x * gridDim.x) {
    data_type dot = coo_data[element] * x[col_ids[element]];
    atomicAdd (y + row_ids[element], dot);
}
```


Storage requirements

> M - number of rows in the matrix
> N - number of columns in the matrix
> K - number of nonzero entries in the densest row
> S - sparsity level [0-1], 1 being fully-dense

Format	Storage Requirement (words)
Dense	MN
Compressed Sparse Row (CSR)	$2 M N S+M+1$
ELL	$2 M K$
Coordinate (COO)	$3 M N S$
Hybrid ELL / COO (HYB)	$>3 M N S$,
	$<2 M K$

Conclusion

Conclusion

> Sparse matrices are hard!
> There are a lot of ways to represent sparse matrices
> Different representations have different storage requirements
> The storage requirements depend differently on the sparsity pattern
> There is sometimes a need to safeguard against worst-case input
> There is often a trade-off between regularity and efficiency
> Some representations are better suited to certain hardware than others
> It can be difficult to achieve a high compute-to-global-memory-access ratio when it comes to sparse matrices

