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Previously

ä Example of scan algorithm
ä Processor hardware

ä Max threads per SM : 2048
ä Max threads per block : 1024
ä Max warps per SM : 64

ä If 2 blocks are assigned to an SM and each block has 1024 threads, how
many warps are there in an SM?

ä Each block is divided into 1024/32 = 32 warps
ä There are 32 * 2 = 64 Warps

ä At any point in time, only 4 of the 64 warps will be selected for
instruction fetch and execution.

ä One instruction is issued for 1 warp at every cycle (by design).
ä 16 cycles are needed to execute 1 instruction on all threads of the block.

ä SM will interleaved warps to optimize execution.
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Definition

Given two squares matrices in 𝐼𝑅𝑊𝑖𝑑𝑡ℎ×𝑊𝑖𝑑𝑡ℎ , 𝑀 and 𝑁, we multiply 𝑀 by 𝑁
to compute a third square matrix in 𝐼𝑅𝑊𝑖𝑑𝑡ℎ×𝑊𝑖𝑑𝑡ℎ, 𝑃:

𝑃 = 𝑀𝑁

In terms of the elements of P, matrix multiplication implies computing, for
all 1 ≤ 𝑖, 𝑗 ≤ 𝑊𝑖𝑑𝑡ℎ

𝑃𝑖𝑗 =
𝑊𝑖𝑑𝑡ℎ
∑
𝑘=1

𝑀𝑖𝑘𝑁𝑘𝑗

The complexity for the naïve computation is 𝒪(𝑊𝑖𝑑𝑡ℎ3).
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Matrix multiply illustrated

a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

. . .
...

an1 an2 . . . anp





b11 b12 . . . b1q

b21 b22 . . . b2q

...
...

. . .
...

bp1 bp2 . . . bpq





c11 c12 . . . c1q

c21 c22 . . . c2q

...
...

. . .
...

cn1 cn2 . . . cnq





a 2
1
×
b 12

a 2
2
×
b 22

a 2
p
×
b p2

+

+ …
+
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Sequential implementation

1 void GMM_CPU(float* M, float* N, float* P, int Width)
2 {
3 for (int i = 0; i < Width; ++i)
4 for (int j = 0; j < Width; ++j) {
5 float sum = 0;
6 for (int k = 0; k <Width; ++k) {
7 float a = M[i * Width + k];
8 float b = N[k * Width + j];
9 sum += a * b;

10 }
11 P[i * Width + j] = sum;
12 }
13 }
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Define the design space

ä 3 possibles choices: 𝑀, 𝑁 or 𝑃.
ä The outer loops are all independent computations.
ä We will focus on the computation of the elements of 𝑃.
ä The inner loop is a scalar product between a row of 𝑀 and a column of

𝑁. It can be parallelize using reduction.
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Workspace decomposition

𝑃 is 2𝐷, one possible choice is to organize threads in 2𝐷 as well:

ä Split the output 𝑃 into square tiles of size
𝑇 𝐼𝐿𝐸_𝑊𝐼𝐷𝑇 𝐻 × 𝑇 𝐼𝐿𝐸_𝑊𝐼𝐷𝑇 𝐻 (a preprocessor user defined
constant).

ä Each thread block produces one tile of [𝑇 𝐼𝐿𝐸_𝑊𝐼𝐷𝑇 𝐻]2 elements.
ä Create [𝑐𝑒𝑖𝑙(𝑊𝑖𝑑𝑡ℎ/𝑇 𝐼𝐿𝐸_𝑊𝐼𝐷𝑇 𝐻)]2 thread blocks to cover the
output matrix.
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Example: tile 2 × 2
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Block size : each block as 2 × 2 = 4 threads.

Number of blocks : 𝑊𝑖𝑑𝑡ℎ
𝑇 𝐼𝐿𝐸_𝑊𝐼𝐷𝑇 𝐻

⟹ 16 blocks.
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Example: tile 4 × 4
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Block size : each block as 4 × 4 = 16 threads.

Number of blocks : 𝑛
𝑇 𝐼𝐿𝐸_𝑊𝐼𝐷𝑇 𝐻

⟹ 4 blocks.
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Invocation of kernel

1 // TILE_WIDTH is a #define constant
2 dim3 dimGrid(ceil((1.0*Width)/TILE_WIDTH), ceil((1.0*Width)/TILE_WIDTH), 1);
3 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);
4 // Launch the device computation threads!
5 MatrixMulKernel<<<dimGrid, dimBlock>>> (Md, Nd, Pd, Width);
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Kernel function

1 // Matrix multiplication kernel - per thread code
2 __global__ void MatrixMulKernel(float* d_M, float* d_N,
3 float* d_P, int Width) {
4

5 // Pvalue is used to store the element of the matrix
6 // that is computed by the thread
7 float Pvalue = 0;
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Simple multiplication kernel

1 __global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) {
2 // Calculate the row index of the d_P element and d_M
3 int Row = blockIdx.y*blockDim.y+threadIdx.y;
4 // Calculate the column index of d_P and d_N
5 int Col = blockIdx.x*blockDim.x+threadIdx.x;
6 if ((Row < Width) && (Col < Width)) {
7 float Pvalue = 0;
8 // each thread computes one element of the block sub-matrix
9 for (int k = 0; k < Width; ++k)

10 Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col];
11 d_P[Row*Width+Col] = Pvalue;
12 }
13 }
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Memory Bandwidth is Overloaded

That’s a simple implementation:

ä GPU kernel is the CPU code with the outer loops replaced
ä with per-thread index calculations!

Unfortunately, performance is quite bad. Why? With the given approach,

ä global memory bandwidth
ä can’t supply enough data
ä to keep the SMs busy!
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Global memory access

1 __global__ void MatrixMulKernel(float* d_M, float* d_N,
2 float* d_P, int Width) {
3 // Calculate the row index of d_P and d_M
4 int Row = blockIdx.y*blockDim.y+threadIdx.y;
5 // Calculate the column index of d_P and d_N
6 int Col = blockIdx.x*blockDim.x+threadIdx.x;
7 if ((Row < Width) && (Col < Width)) {
8 float Pvalue = 0;
9 // each thread computes one element of the block sub-matrix

10 for (int k = 0; k < Width; ++k)
11 Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col];
12 d_P[Row*Width+Col] = Pvalue;
13 }
14 }
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Each Thread Requires 4B of Data per FLOP

ä Each threads access global memory
ä 4B each, or 8B per pair.
ä (And once TOTAL to P per thread—ignore it.)

–for elements of M and N:
ä With each pair of elements, a thread does a single multiply-add, –2
FLOP—floating-point operations.

ä So for every FLOP, a thread needs 4B from memory: 4B / FLOP.
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Example card

ä One generation of GPUs: 1,000 GFLOP/s of compute power, and 150 GB/s
of memory bandwidth.

ä Dividing bandwidth by memory requirements: 150 GB/S,
Host 4B.Flop = 37.5 GFLOP/S which limits computation!
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Reuse Memory Accesses!

ä 37.5 GFLOPs is a limit.
ä In an actual execution, memory is not busy all the time, and the code
runs at about 25 GFLOPs.

ä To get closer to 1,000 GFLOPs, we need to drastically cut down accesses
to global memory.
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A common programming strategy

ä The dilemma:
ä Matrices M and N are large.
ä They fit easily in global memory, but that’s slow.
ä Shared memory is fast, but M and N don’t fit.

ä The solution:
ä Break M and N into tiles (called blocks in the much older CPU literature).
ä Read a tile into shared memory.
ä Use the tile from shared memory.
ä Repeat until done.
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A common programming strategy

ä In a GPU, only threads in a block can use shared memory.
ä Thus, each block operates on separate tiles: -

ä Read tile(s) into shared memory using multiple threads to exploit
memory-level parallelism.

ä Compute based on shared memory tiles.
ä Repeat.
ä Write results back to global memory.
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Declaring Shared Memory Arrays

1

2 __global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
3 {
4 __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
5 __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
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Outiline of technique

Identify a tile of global data that are accessed by multiple threads

ä Load the tile from global memory into on-chip memory
ä Have the multiple threads to access their data from the on-chip memory
ä Move on to the next block/tile
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Idea: Place global memory data into Shared Memory for reuse

ä Each input element is used to calculate WIDTH elements of 𝑃.
ä Load each element into Shared Memory
ä have several threads use the local version to reduce memory bandwidth.
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Tiled multiply

Break up the execution of the kernel into phases so that the data accesses
in each phase are focused on one subset (tile) of M and N
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Loading a tile

ä All threads in a block participate
ä Each thread loads

ä one M element (corresponding to the global index of the thread)
ä one N element (corresponding to the global index of the thread)

ä in basic tiling code: Assign the loaded element to each thread such that the
accesses within each warp is coalesced (more later)
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Work for block (0,0): load
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Work for block (0,0): use
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We are not there yet

But . . .

ä How can a thread know that another thread has finished its part of the
tile?

ä Or that another thread has finished using the previous tile?

There is a need to synchronize
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Leveraging parallel strategies

ä Bulk synchronous execution: threads execute roughly in unison
ä Do some work
ä Wait for others to catch up
ä Repeat

ä Much easier programming model
ä Threads only parallel within a section
ä Debug lots of little programs
ä Instead of one large one.

ä Dominates high-performance applications

28



Bulk synchronization barrier

ä How does it work?
ä Use a barrier to wait for thread to ‘catch up.’
ä A barrier is a synchronization point:

ä each thread calls a function to enter barrier
ä threads block (sleep) in barrier function until all threads have called
ä after last thread calls function, all threads continue past the barrier.
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In CUDA

ä Use __syncthreads for CUDA Blocks
ä How does it work in CUDA?
ä Only within thread blocks!
ä The function: void __syncthreads(void);
ä All threads in block must enter (no subsets).
ä All threads must enter the SAME static call (not the same as all threads
calling function!).

30



Barrier trauma: what is actually done

ä What exactly is guaranteed to have finished?
ä Are shared memory operations before a barrier (e.g., stores) guaranteed to
have completed?

• What about global memory ops?
• What about atomic ops with no return values?
• What about I/O operations?

ä CUDA manual: all global and shared memory ops (which presumably
includes atomic variants) have completed.

ä Avoid assumptions about I/O (such as printf).
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Tiled matrix multiplication

1 __global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
2 {
3 __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
4 __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
5 int bx = blockIdx.x; int by = blockIdx.y;
6 int tx = threadIdx.x; int ty = threadIdx.y;
7 // Identify the row and column of the P element to work on
8 int Row = by * TILE_WIDTH + ty; // note: blockDim.x == TILE_WIDTH
9 int Col = bx * TILE_WIDTH + tx; // blockDim.y == TILE_WIDTH

10 float Pvalue = 0;
11 // Loop over the M and N tiles required to compute the P element
12 // The code assumes that the Width is a multiple of TILE_WIDTH!
13 for (int m = 0; m < Width/TILE_WIDTH; ++m) {
14 // Collaborative loading of M and N tiles into shared memory
15 subTileM[ty][tx] = M[Row*Width + m*TILE_WIDTH+tx];
16 subTileN[ty][tx] = N[(m*TILE_WIDTH+ty)*Width+Col];
17 __syncthreads();
18 for (int k = 0; k < TILE_WIDTH; ++k)
19 Pvalue += subTileM[ty][k] * subTileN[k][tx];
20 __syncthreads();
21 }
22 P[Row*Width+Col] = Pvalue;
23 }
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Classical matrix multiply

1 {
2 // Calculate the row index of the P element and M
3 int Row = blockIdx.y * blockDim.y + threadIdx.y;
4 // Calculate the column index of P and N
5 int Col = blockIdx.x * blockDim.x + threadIdx.x;
6 if ((Row < Width) && (Col < Width)) {
7 float Pvalue = 0;
8 // each thread computes one element of the block sub-matrix
9 for (int k = 0; k < Width; ++k)

10 Pvalue += M[Row*Width+k] * N[k*Width+Col];
11 P[Row*Width+Col] = Pvalue;
12 }
13 }
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Use of large tiles shift bottlenecks

ä Recall our example GPU: 1,000 GFLOP/s, 150 GB/s
ä 16x16 tiles use each operand for 16 operations

ä reduce global memory accesses by a factor of 16
ä 150GB/s bandwidth supports (150/4)*16 = 600 GFLOPs!

ä 32x32 tiles use each operand for 32 operations
ä reduce global memory accesses by a factor of 32
ä 150 GB/s bandwidth supports (150/4)*32 = 1,200 GFLOPs!
ä Memory bandwidth is no longer the bottleneck!

34



Requires parallel access to memory

ä Shared memory size
ä implementation dependent
ä 164kB per SM in Ampere (163kB max per block)

ä Given TILE_WIDTH of 16 (256 threads / block),
ä each thread block uses 2 × 256 × 4𝐵 = 2𝑘𝐵 of shared memory, which limits
active blocks to 82;

ä maximum of 2048 threads per SM, which limits blocks to 8.
ä Thus up to 8 × 512 = 4, 096 pending loads (2 per thread, 256 threads per
block)
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Choice of tile size

ä Given TILE_WIDTH of 32 (1 024 threads / block),
ä each thread block uses 2 × 1024 × 4𝐵 = 8𝑘𝐵 of shared memory, which limits
active blocks to 20;

ä maximum of 2,048 threads per SM, which limits blocks to 2.
ä Thus up to 2 × 2, 048 = 4, 096 pending loads (2 per thread, 1,024 threads per
block) (same memory parallelism exposed)
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Get up to date with current GPU

ä Number of devices in the system
1 int dev_count;
2 cudaGetDeviceCount( &dev_count);

ä Capability of devices
1 cudaDeviceProp dev_prop;
2 for (i = 0; i < dev_count; i++) {
3 cudaGetDeviceProperties( &dev_prop, i);
4 // decide if device has sufficient resources and capabilities
5 }

ä cudaDeviceProp is a built-in C structure type
ä dev_prop.dev_prop.maxThreadsPerBlock
ä dev_prop.sharedMemoryPerBlock
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Handle non square matrices

ä How to Handle Matrices of Other Sizes? Use tiles :
assumed integral number of tiles (thread blocks) in all matrix
dimensions.

ä How can we avoid this assumption?
One answer: add padding, but not easy to reformat data, and adds
transfer time. Other ideas?
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Major case in toy example

ä Threads that calculate valid P elements but can step outside valid input
: Second tile of Block(0,0), all threads when k is 1

ä Threads that do not calculate valid P elements
ä Block(1,1), Thread(1,0), non-existent row
ä Block(1,1), Thread(0,1), non-existing column
ä Block(1,1), Thread(1,1), non-existing row/column
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Write 0s

ä Test during tile load: is target within input matrix?
ä If yes, proceed to load;
ä otherwise, just write 0 to shared memory.

ä The benefit?
ä No specialization during tile use!
ä Multiplying by 0 guarantees that unwanted terms do not contribute to the
inner product.
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What about threads outside of P

If a thread is not within P,

ä All terms in sum are 0.
ä No harm in performing FLOPs.
ä No harm in writing to registers.
ä Must not be allowed to write to global memory!

So: Threads outside of P calculate 0, but store nothing.
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Modify tile count

ä for (int m = 0; m < Width/TILE_WIDTH; ++m)
The bound for m implicitly assumes that Width is a multiple of
TILE_WIDTH. We need to round up.

ä

for (int m = 0; m < (Width \item 1)/TILE_WIDTH + 1; ++m)

ä For non-multiples of TILE_WIDTH:
• quotient is unchanged;
• add one to round up.

ä For multiples of TILE_WIDTH:
• quotient is now one smaller,
• but we add 1.
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Modifying the Tile Loading Code

We had . . .

1 // Collaborative loading of M and N tiles into shared memory
2 subTileM[ty][tx] = M[Row*Width + m*TILE_WIDTH+tx];
3 subTileN[ty][tx] = N[(m*TILE_WIDTH+ty)*Width+Col];

Note: the tests for M and N tiles are NOT the same.

1 if (Row < Width && m*TILE_WIDTH+tx < Width) {
2 // as before
3 subTileM[ty][tx] = M[Row*Width + m*TILE_WIDTH+tx];
4 } else {
5 subTileM[ty][tx] = 0;
6 }
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Modifying the Tile Use Code

We had . . .

1 for (int k = 0; k < TILE_WIDTH; ++k)
2 Pvalue += subTileM[ty][k] * subTileN[k][tx];

Note: no changes are needed, but we might save a little energy (fewer
floating-point ops)?

1 if (Row < Width && Col < Width) {
2 // as before
3 for (int k = 0; k < TILE_WIDTH; ++k)
4 Pvalue += subTileM[ty][k] * subTileN[k][tx];
5 }
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Modifying the Write to P

We had

1 P[Row*Width+Col] = Pvalue;

We must test for threads outside of P:

1 if (Row < Width && Col < Width) {
2 // as before
3 P[Row*Width+Col] = Pvalue;
4 }
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Important notes

ä For each thread, conditions are different for
ä Loading M element
ä Loading N element
ä Calculation/storing output elements

ä Branch divergence
ä affects only blocks on boundaries,
ä should be small for large matrices.

ä What about rectangular matrices?
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Conclusion



Conclusion

ä Themes of this class
ä Organization of a computation with respect to data and architecture
ä Usage of shared memory

ä Computations should carefully adapt to the architecture and maximize
the usage of the ressources
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	Conclusion

