
GP-GPU and High Performances Computing
Lecture 06 – Patterns

January 2, 2024

1



Last time

ä Patterns
ä Avoiding memory conflicts

2



Objectives

ä to learn parallel scan (prefix sum) algorithms based on reductions and
reverse reductions

ä to learn the concept of double buffering
ä to understand tradeoffs between work efficiency and latency
ä to learn how to develop hierarchical algorithms (across multiple
kernels)

3



Inclusive scan



Prefix Sum-Scan

ä Frequently use for parallel work assignment and ressource allocation.
ä A key primitive in numerous parallel algorithms to convert serial
computation into parallel computation.

ä Fundamental parallel computation pattern.
ä Efficient design for data intensive computations.

4



Prefix scan

Definition 1

The all prefix-sums operation takes a binary associative operator ⊕ and
an array of 𝑛 elements

[𝑥0, 𝑥1, … , 𝑥𝑛−1]

and returns the array

[𝑥0, (𝑥0 ⊕ 𝑥1), … , (𝑥0 ⊕ 𝑥1 ⊕ … ⊕ 𝑥𝑛−1)]

Example
For ⊕ the classical addition between integer, the prefix sum operation on

[3, 1, 7, 0, 4, 1, 6, 3]

returns
[3, 4, 11, 11, 15, 16, 22, 25]

.

5



Example

Assume that we have a 100-inch bread to feed 10

ä We know how much each person wants in inches

[3, 5, 2, 7, 28, 4, 3, 0, 8, 1]

ä How do we cut the bread quickly?
ä How much will be left

1. Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2
inches third, etc.

2. Method 2: calculate prefix-sum array

[3, 8, 10, 17, 45, 49, 52, 52, 60, 61]

(39 inches left)

6



Typical Applications of Scan

ä Scan is a simple and useful parallel building block
ä Convert recurrences :
from sequential

1 for(j=1;j<n;j++)
2 out[j] = out[j-1] + f(j);

into parallel:
1 forall(j) { temp[j] = f(j) };
2 scan(out, temp);

ä Useful for many parallel algorithms:

ä Histograms
ä Reduction and broadcast in O(log
n) time

ä Sparse-Matrix-Vector-Multiply
(SpMV) using Parallel prefix (scan)
in O(log n) time

ä Adding two n-bit integers in O(log
n) time

ä Multiplying n-by-n matrices in
O(log n) time

ä Inverting n-by-n triangular
matrices in O(log2 n) time

ä Inverting n-by-n dense matrices
in O(log2 n) time Segmented Scan

ä Parallel page layout in a browser
(Leo Meyerovich, Ras Bodik)

ä Solving n-by-n tridiagonal
matrices in O(log n) time

ä Traversing linked lists
ä Computing minimal spanning
trees

ä Evaluating arbitrary expressions
in O(log n) time

ä Computing convex hulls of point
sets

ä Evaluating recurrences in O(log n)
time

ä 2D parallel prefix, for image
segmentation (Catanzaro, Keutzer)

7



An Inclusive Sequential Addition Scan

Algorithm 1: Inclusive scan
Data: A sequence [𝑥0, 𝑥1, 𝑥2, . . .]
Result: [𝑦0, 𝑦1, 𝑦2, . . .]

1 𝑦0 = 𝑥0
2 𝑦1 = 𝑥0 + 𝑥1
3 𝑦2 = 𝑥0 + 𝑥1 + 𝑥2
4 . . .

Which translates into the recursive definition

𝑦𝑖 = 𝑦𝑖−1 + 𝑥𝑖

8



A Work Efficient C Implementation

1 y[0] = x[0];
2 for (i = 1; i < Max_i; i++)
3 y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)!

Only slightly more expensive than sequential reduction.

9



A Naïve Inclusive Parallel Scan

Assign one thread to calculate each y element

Have every thread to add up all x elements needed for the y element

𝑦0 = 𝑥0

𝑦1 = 𝑥0 + 𝑥1

𝑦2 = 𝑥0 + 𝑥1 + 𝑥2

Remarque

Parallel programming is easy as long as you do not care about perfor-
mance.

10



A Better Parallel Scan Algorithm

1. Read input from device global memory to shared memory.
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration.

XY 3 1 7 0 4 1 6 3

ä Active threads stride to n-1 (n-stride threads).
ä Thread j adds elements j and j-stride from shared memory and writes result
into element j in shared memory.

ä Requires barrier synchronization, once before read and once before write.

3. Write output from shared memory to device memory.

11



Scan example

XY 3 1 7 0 4 1 6 3

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

XY 3 4 8 7 4 5 7 9

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

XY 3 4 11 11 12 12 11 14

⊕ ⊕ ⊕ ⊕ ⊕

XY 3 4 11 11 15 16 12 25

12



Handling Dependencies

ä During every iteration, each thread can overwrite the input of another
thread

ä Barrier synchronization to ensure all inputs have been properly
generated

ä All threads secure input operand that can be overwritten by another
thread

ä Barrier synchronization to ensure that all threads have secured their
inputs

ä All threads perform Addition and write output

13



Scan kernel

1 __global__ void scan_kernel_v1(float *X, float *Y, int InputSize)
2 {
3 __shared__ float XY[SECTION_SIZE];
4 int i = blockIdx.x*blockDim.x + threadIdx.x;
5 if (i < InputSize) {
6 XY[threadIdx.x] = X[i];
7 }
8 // the code below performs iterative scan on XY
9 for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2)

10 {
11 __syncthreads();
12 float in1 = XY[threadIdx.xstride];
13 __syncthreads();
14 XY[threadIdx.x] += in1;
15 }
16 }

14



Work efficiencies considerations

ä This scan executes log(𝑛) parallel iterations
ä The steps do (𝑛 − 1), (𝑛 − 2), (𝑛 − 4),. . .(𝑛 − 𝑛/2) adds each
ä Total adds: 𝑛 log(𝑛) − (𝑛 − 1) → 𝑂(𝑛 log(𝑛)) work

ä This scan algorithm is not work efficient
ä Sequential scan algorithm does 𝑛 adds
ä A factor of log(𝑛) can hurt: 10× for 1024 elements!

ä A parallel algorithm can be slower than a sequential one when
execution resources are saturated from low work efficiency

15



Improving efficiency



Improving Efficiency

ä Balanced Trees
ä Form a balanced binary tree on the input data and sweep it to and from the
root

ä Tree is not an actual data structure, but a concept to determine what each
thread does at each step

ä For scan:
ä Traverse down from leaves to root building partial sums at internal nodes in
the tree

ä Root holds sum of all leaves
ä Traverse back up the tree building the output from the partial sums

16



Reduction Phase Kernel Code

1

2 // XY[2*BLOCK_SIZE] is in shared memory
3 for (int stride = 1;stride <= BLOCK_SIZE; stride *= 2) {
4 int index = (threadIdx.x+1)*stride*2 - 1;
5 if(index < 2*BLOCK_SIZE)
6 XY[index] += XY[index-stride];
7 __syncthreads();
8 }

17



Post Reduction Reverse Phase Kernel

1 for (int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {
2 __syncthreads();
3 int index = (threadIdx.x+1)*stride*2 - 1;
4 if(index+stride < 2*BLOCK_SIZE) {
5 XY[index + stride] += XY[index];
6 }
7 }
8 __syncthreads();
9 if (i < InputSize) Y[i] = XY[threadIdx.x];

18



Work Analysis of the Work Efficient Kernel

ä The work efficient kernel executes log(n) parallel iterations in the
reduction step

ä The iterations do 𝑛/2, 𝑛/4, … 1 adds
ä Total adds: (𝑛 − 1) → 𝑂(𝑛) work

ä It executes 𝑙𝑜𝑔(𝑛) − 1 parallel iterations in the post reduction reverse
step

ä The iterations do 2 − 1, 4 − 1,. . .𝑛/2 − 1 adds
ä Total adds: (𝑛 − 2)–(𝑙𝑜𝑔(𝑛) − 1) → 𝑂(𝑛) work

ä Both phases perform up to no more than 2*(n1) adds
ä The total number of adds is no more than twice of that done in the
efficient sequential algorithm

ä The benefit of parallelism can easily overcome the 2X work when there
is sufficient hardware

19



Tradeoffs

ä The work efficient scan kernel is normally more desirable
ä Better Energy efficiency
ä Less execution resource requirement

ä However, the work inefficient kernel could be better for absolute
performance due to its single-step nature if

ä There is sufficient execution resource

20



Exclusive scan



Exclusive scan

Definition 2

The all exclusive scan operation takes a binary associative operator ⊕ and
an array of 𝑛 elements

[𝑥0, 𝑥1, … , 𝑥𝑛−1]

and returns the array

[0, 𝑥0, (𝑥0 ⊕ 𝑥1), … , (𝑥0 ⊕ 𝑥1 ⊕ … ⊕ 𝑥𝑛−2)]

Example
For ⊕ the classical addition between integer, the exclusive scan operation on

[3, 1, 7, 0, 4, 1, 6, 3]

returns
[0, 3, 4, 11, 11, 15, 16, 22]

.

21



Why?

ä To find the beginning address of allocated buffers
ä Inclusive and exclusive scans can be easily derived from each other; it is
a matter of convenience

[3, 1, 7, 0, 4, 1, 6, 3]

ä Exclusive [0, 3, 4, 11, 11, 15, 16, 22]
ä Inclusive [3, 4, 11, 11, 15, 16, 22, 25]

22



A simple exclusive scan kernel

ä Adapt an inclusive, work in-efficient scan kernel
ä Block 0:

ä Thread 0 loads 0 into XY[0]
ä Other threads load X[threadIdx.x-1] into XY[threadIdx.x]

ä All other blocks:
ä All thread load X[blockIdx.x*blockDim.x+threadIdx.x-1] into
XY[threadIdex.x]

ä Similar adaption for work efficient scan kernel but pay attention that
each thread loads two elements

ä Only one zero should be loaded
ä All elements should be shifted by only one position

23



Dealing with large vectors

ä Build on the work efficient scan kernel
ä Have each section of 2*blockDim.x elements assigned to a block
ä Have each block write the sum of its section into a Sum[] array indexed
by blockIdx.x

ä Run the scan kernel on the Sum[] array
ä Add the scanned Sum[] array values to the elements of corresponding
sections

ä Adaptation of work inefficient kernel is similar.

24



Conclusion



Conclusions

ä Themes of this class
ä Scan memory pattern
ä Introduction to efficiency

25


	Inclusive scan
	Improving efficiency
	Exclusive scan
	Conclusion

