GP-GPU and High Performances Computing

Lecture 06 - Patterns

January 2, 2024

Last time

> Patterns

- Avoiding memory conflicts

Objectives

> to learn parallel scan (prefix sum) algorithms based on reductions and reverse reductions
> to learn the concept of double buffering
> to understand tradeoffs between work efficiency and latency
> to learn how to develop hierarchical algorithms (across multiple kernels)

Inclusive scan

Prefix Sum-Scan

> Frequently use for parallel work assignment and ressource allocation.

- A key primitive in numerous parallel algorithms to convert serial computation into parallel computation.
> Fundamental parallel computation pattern.
> Efficient design for data intensive computations.

Prefix scan

Definition 1

The all prefix-sums operation takes a binary associative operator \oplus and an array of n elements

$$
\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]
$$

and returns the array

$$
\left[x_{0},\left(x_{0} \oplus x_{1}\right), \ldots,\left(x_{0} \oplus x_{1} \oplus \ldots \oplus x_{n-1}\right)\right]
$$

Example

For \oplus the classical addition between integer, the prefix sum operation on

$$
[3,1,7,0,4,1,6,3]
$$

returns

$$
[3,4,11,11,15,16,22,25]
$$

Example

Assume that we have a 100-inch bread to feed 10
> We know how much each person wants in inches

$$
[3,5,2,7,28,4,3,0,8,1]
$$

- How do we cut the bread quickly?
> How much will be left

1. Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.
2. Method 2: calculate prefix-sum array

$$
[3,8,10,17,45,49,52,52,60,61]
$$

(39 inches left)

Typical Applications of Scan

- Scan is a simple and useful parallel building block
> Convert recurrences:

from sequential

1
1 for $(j=1 ; j<n ; j++)$
2 out[j] = out[j-1] +f(j);
> Useful for many parallel algorithms:
into parallel:

```
forall(j) { temp[j] = f(j) };
scan(out, temp);
```

> Histograms
> Reduction and broadcast in O(log n) time

- Sparse-Matrix-Vector-Multiply (SpMV) using Parallel prefix (scan) in $O(\log n)$ time
> Adding two n -bit integers in $\mathrm{O}(\log$ n) time
> Multiplying n-by-n matrices in O(log n) time
> Inverting n-by-n triangular matrices in O(log2 n) time
> Inverting n-by-n dense matrices in O(log2 n) time Segmented Scan
> Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)
> Solving n-by-n tridiagonal matrices in O(log n) time
> Traversing linked lists
> Computing minimal spanning trees
> Evaluating arbitrary expressions in O(log n) time
> Computing convex hulls of point sets
> Evaluating recurrences in $\mathrm{O}(\log n)$ time
> 2D parallel prefix, for image segmentation (Catanzaro, Keutzer)

An Inclusive Sequential Addition Scan

Algorithm 1: Inclusive scan
Data: A sequence $\left[x_{0}, x_{1}, x_{2}, \ldots\right]$
Result: $\left[y_{0}, y_{1}, y_{2}, \ldots\right]$
$1 y_{0}=x_{0}$
$2 y_{1}=x_{0}+x_{1}$
${ }^{3} y_{2}=x_{0}+x_{1}+x_{2}$
4 ...
Which translates into the recursive definition

$$
y_{i}=y_{i-1}+x_{i}
$$

A Work Efficient C Implementation

1

$$
\begin{aligned}
& y[0]=x[0] ; \\
& \text { for }(i=1 ; i<\operatorname{Max} i ; i++) \\
& y[i]=y[i-1]+x[i] ;
\end{aligned}
$$

Computationally efficient:
N additions needed for N elements - $O(N)$!
Only slightly more expensive than sequential reduction.

A Naïve Inclusive Parallel Scan

Assign one thread to calculate each y element
Have every thread to add up all x elements needed for the y element

$$
\begin{aligned}
& y_{0}=x_{0} \\
& y_{1}=x_{0}+x_{1} \\
& y_{2}=x_{0}+x_{1}+x_{2}
\end{aligned}
$$

Remarque

Parallel programming is easy as long as you do not care about performance.

A Better Parallel Scan Algorithm

1. Read input from device global memory to shared memory.
2. Iterate $\log (n)$ times; stride from 1 to $n-1$: double stride each iteration.

> Active threads stride to $\mathrm{n}-1$ (n -stride threads).

- Thread j adds elements j and j -stride from shared memory and writes result into element j in shared memory.
- Requires barrier synchronization, once before read and once before write.

3. Write output from shared memory to device memory.

Scan example

Handling Dependencies

> During every iteration, each thread can overwrite the input of another thread
> Barrier synchronization to ensure all inputs have been properly generated
> All threads secure input operand that can be overwritten by another thread
> Barrier synchronization to ensure that all threads have secured their inputs
> All threads perform Addition and write output

Scan kernel

```
__global__ void scan_kernel_v1(float *X, float *Y, int InputSize)
{
        _shared__ float XY[SECTION_SIZE];
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < InputSize) {
    XY[threadIdx.x] = X[i];
}
// the code below performs iterative scan on XY
for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2)
{
        syncthreads();
    float in1 = XY[threadIdx.xstride];
        syncthreads();
    XY[threadIdx.x] += in1;
}
}
```


Work efficiencies considerations

> This scan executes $\log (n)$ parallel iterations
> The steps do $(n-1),(n-2),(n-4), \ldots(n-n / 2)$ adds each
> Total adds: $n \log (n)-(n-1) \rightarrow O(n \log (n))$ work
> This scan algorithm is not work efficient
> Sequential scan algorithm does n adds

- A factor of $\log (n)$ can hurt: $10 \times$ for 1024 elements!
- A parallel algorithm can be slower than a sequential one when execution resources are saturated from low work efficiency

Improving efficiency

Improving Efficiency

> Balanced Trees
> Form a balanced binary tree on the input data and sweep it to and from the root
> Tree is not an actual data structure, but a concept to determine what each thread does at each step

- For scan:
> Traverse down from leaves to root building partial sums at internal nodes in the tree
> Root holds sum of all leaves
> Traverse back up the tree building the output from the partial sums

Reduction Phase Kernel Code

1
2
3
4
5
6
7
8

```
// XY[2*BLOCK_SIZE] is in shared memory
for (int stride = 1;stride <= BLOCK_SIZE; stride *= 2) {
    int index = (threadIdx.x+1)*stride*2 - 1;
    if(index < 2*BLOCK_SIZE)
    XY[index] += XY[index-stride];
        syncthreads();
}
```


Post Reduction Reverse Phase Kernel

```
for (int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {
        syncthreads();
    int index = (threadIdx.x+1)*stride*2 - 1;
    if(index+stride < 2*BLOCK_SIZE) {
        XY[index + stride] += XY[index];
    }
}
    syncthreads();
if (i < InputSize) Y[i] = XY[threadIdx.x];
```


Work Analysis of the Work Efficient Kernel

> The work efficient kernel executes $\log (n)$ parallel iterations in the reduction step
> The iterations do $n / 2, n / 4, \ldots 1$ adds
> Total adds: $(n-1) \rightarrow O(n)$ work
> It executes $\log (n)-1$ parallel iterations in the post reduction reverse step
> The iterations do $2-1,4-1, \ldots n / 2-1$ adds
> Total adds: $(n-2)-(\log (n)-1) \rightarrow O(n)$ work
> Both phases perform up to no more than 2*(n1) adds
> The total number of adds is no more than twice of that done in the efficient sequential algorithm
> The benefit of parallelism can easily overcome the 2X work when there is sufficient hardware

Tradeoffs

> The work efficient scan kernel is normally more desirable
> Better Energy efficiency
> Less execution resource requirement
> However, the work inefficient kernel could be better for absolute performance due to its single-step nature if
> There is sufficient execution resource

Exclusive scan

Exclusive scan

Definition 2

The all exclusive scan operation takes a binary associative operator \oplus and an array of n elements

$$
\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]
$$

and returns the array

$$
\left[0, x_{0},\left(x_{0} \oplus x_{1}\right), \ldots,\left(x_{0} \oplus x_{1} \oplus \ldots \oplus x_{n-2}\right)\right]
$$

Example

For \oplus the classical addition between integer, the exclusive scan operation on

$$
[3,1,7,0,4,1,6,3]
$$

returns

$$
[0,3,4,11,11,15,16,22]
$$

Why?

> To find the beginning address of allocated buffers
> Inclusive and exclusive scans can be easily derived from each other; it is a matter of convenience

$$
[3,1,7,0,4,1,6,3]
$$

> Exclusive $[0,3,4,11,11,15,16,22]$
> Inclusive $[3,4,11,11,15,16,22,25]$

A simple exclusive scan kernel

> Adapt an inclusive, work in-efficient scan kernel
> Block 0:
> Thread 0 loads 0 into XY[0]
> Other threads load X[threadIdx.x-1] into XY[threadIdx.x]
> All other blocks:
> All thread load X[blockIdx.x*blockDim.x+threadIdx.x-1] into XY[threadIdex.x]
> Similar adaption for work efficient scan kernel but pay attention that each thread loads two elements
> Only one zero should be loaded
> All elements should be shifted by only one position

Dealing with large vectors

> Build on the work efficient scan kernel
> Have each section of 2 *blockDim. x elements assigned to a block
> Have each block write the sum of its section into a Sum[] array indexed by blockIdx.x
> Run the scan kernel on the Sum[] array

- Add the scanned Sum[] array values to the elements of corresponding sections
> Adaptation of work inefficient kernel is similar.

Conclusion

Conclusions

> Themes of this class
> Scan memory pattern
> Introduction to efficiency

