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https://christophe.picard.pages.ensimag.fr/courses/course/gp-gpu/Lectures/cgpu-fall23-lecture5.pdf
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Course logistic
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Information
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➔ Reset password: https://copass-client.grenet.fr/app.php/simsu/secure/modifypwd/modify_password

➔ Using a VPN: https://intranet.ensimag.grenoble-inp.fr/fr/informatique/vpn-ensimag
◆ On Linux: when nothing change on screen, the process is ready

➔ Accessing the GP-GPU: ssh -K login@vmgpu0xx.ensimag.fr

➔ Copying on GP-GPU: scp origin login@vmgpu0xx.ensimag.fr:target

➔ Compiling: you need to modify the PATH variable
◆ export PATH=$PATH:/usr/local/cuda/bin

https://copass-client.grenet.fr/app.php/simsu/secure/modifypwd/modify_password
https://intranet.ensimag.grenoble-inp.fr/fr/informatique/vpn-ensimag
mailto:login@vpngpu0xx.ensimag.fr
mailto:login@vpngpu0xx.ensimag.fr
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Review of GP-GPU hierarchy
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Block grid definition

Masking of GPU memory access times

➔ a GPU switches from one thread warp to another very quickly
➔ a GPU masks the latency of its memory accesses by multi-threading 

Do not hesitate to create large numbers of small GPU threads

Ex.: to process an array of N elements, you can define:

➔ Threads dealing with ONE element each 
➔ and a Grid of blocks of N threads in total

Or

➔ Threads dealing with n elements each
➔ and a Grid of blocks of N/n threads in total
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Review processing hierarchy
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➔ Thread block organization: a grid of blocks of threads

➔ Streaming multiprocessor (SM): set of cores, cache, schedulers
◆ A block is assigned to and executed on a single SM

➔ Warp: A group of up to 32 threads within a block
◆ Threads in a single warp can only run 1 set of instructions at once
◆ Performing different tasks can cause warp divergence and affect performance

➔ Need to overlap warp computation with data loads
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Review memory hierarchy
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➔ Global memory access should be coalesced

➔ Shared memory may lead to bank conflicts

➔ Local memory and registered are faster than all other memories 
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Core organization

Each thread in a warp share

➔ An instruction stream to decode
➔ An execution context for storage (64kB per thread)
➔ 8 SIMD functional unit 
➔ One control unit

➔ Each core can run a group of 32 threads, a warp.
➔ Warps can be interleaved to run simultaneously (up to 320) 
➔ Up to 10240 threads context can be stored
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Divergence
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Executing « if...then...else »
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➔ Divergences are sources of slow down on SIMD

if (x < 10) then {....} else {...}

➔ Execution within a warp:
1. All threads test the condition (x < 10)
2. All threads must execute the then statement do it in parallel
3. All threads must execute the else statement do it in parallel

➔ Execution time: 
◆ If  all threads execute the then statement then: T(condition) + T(then)
◆ If  all threads execute the else statement then: T(condition) + T(else)
◆ If at least one thread execute the then statement and one execute the else statement then: 

T(condition) + T(then) + T(else)
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Dealing with divergences

Expensive divergence

Every warp will execute then followed by else

It will lead to slow execution for the block
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Reduced cost divergence

In 1D, only a warp will execute then followed by 
else.

It will lead to slow execution for the warp only

if (threadIdx.x % 2 == 0)

{...}

else 

{...}

if (threadIdx.x < s)

{...}

else

{...}
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Introduction to pattern
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Patterns
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➔ Think at a higher level than individual CUDA kernels

➔ Specify what to compute, not how to compute it

➔ Let programmer worry about algorithm

➔ Defer pattern implementation to someone else
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Common Parallel Computing Scenarios

➔ Many parallel threads need to generate a single result
◆ Reduce

➔ Many parallel threads need to partition data
◆ Split

➔ Many parallel threads produce variable output / thread
◆ Compact / Expand
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Pattern 0: embarrassing parallelism
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Simple operation
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// assign device and host memory pointers, and allocate memory in host
int thread_index = threadIdx.x + blockIdx.x * blockDim.x;
while (thread_index < N) {
  A[thread_index] = sqrt(A[thread_index]);
}

➔ Simple copy (with arithmetic) operation

➔ 2 access to global memory (1 read and 1 write).

➔ 1 floating point operation.

The computational intensity is 0.5
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C[i] = A[i] + B[i]

➔ CPU code:
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float *C = malloc(N * sizeof(float));
for (int i = 0; i < N; i++)
  C[i] = A[i] + B[i];

// assign device and host memory pointers, and allocate memory in host
int thread_index = threadIdx.x + blockIdx.x * blockDim.x;
if (thread_index < N) {
  C[thread_index] = A[thread_index] + B[thread_index];

➔ GPU code:

➔ 3 access to global memory (2 read and 1 write).
➔ 1 floating point operation.

The computational intensity is 1/3 
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Pattern 1 : Blocking
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Blocking

➔ Partition data to operate in well-sized blocks 
◆ Small enough to be staged in shared memory 
◆ Assign each data partition to a thread block
◆ No different from cache blocking!

➔ Provides several performance benefits
◆ Have enough blocks to keep processors busy
◆ Working in shared memory cuts memory latency dramatically
◆ Likely to have coherent access patterns on load/store to shared memory
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Blocking scheme: splitting

➔ Each thread block handle some different data
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Blocking scheme: loading

➔ Load the subset from global memory to shared memory, using multiple threads to exploit memory- 
level parallelism
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Blocking scheme: executing

➔ Perform the computation on the subset from shared memory
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Blocking scheme: writing

➔ Copy the result from shared memory back to global memory
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Blocking (2)

➔ All CUDA kernels are built this way
◆ Blocking may not matter for a particular problem, but you’re still forced to think about it
◆ Not all kernels require __shared__ memory 
◆ All kernels do require registers

All the parallel patterns in this class will make use of blocking
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Pattern 2 : Reduction
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Reduction in sequential

➔ Reduce vector to a single value via an 
associative operator (+, *, min/max, 
AND/OR, ...)
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// reduction via serial iteration

float sum(float *data, int n) {

float result = 0;

for(int i = 0; i < n; ++i) {

    result += data[i];

}

return result;

}
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Reduction in parallel: strategy 0
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reduce0(int *g_idata, int *g_odata, int n)
{
  unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
  unsigned int i0 = tidx * n;
  int sdata = 0;
  g_odata[blockIdx.x] = 0;

  // do reduction
  for (unsigned int s = i0; s < i0+n; s++) {
      sdata += g_idata[s];
  }
  g_odata[blockIdx.x] += sdata;
}
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Reduction in parallel: strategy 0 bis
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reduce0(int *g_idata, int *g_odata, int n)
{
  unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
  unsigned int i0 = tidx * n;
  int sdata = 0;

  // do reduction
  for (unsigned int s = i0; s < i0+n; s++) {
      sdata += g_idata[s];
  }
  atomicAdd(g_odata[blockIdx.x], sdata);
}
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Reduction in parallel: strategy 1
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2
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Reduction in parallel: strategy 1

➔ Strong divergence

➔ Reduction of more dispersed data in memory
➔ Memory accessed are not coalesced
➔ Active threads are more dispersed
➔ Activated warps with low number of active threads
➔ Bank conflicts

30
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Reduction in parallel: strategy 1
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reduce1(int *g_idata, int *g_odata)
{
  extern __shared__ int sdata[];
  // load shared mem
  unsigned int tid = threadIdx.x;
  unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; 
  sdata[tid] = g_idata[i];
  // do reduction in shared mem
  for (unsigned int s = 1; s < blockDim.x / 2; s *= 2) {
    __syncthreads();
    int index = 2 * s * tid;
    if (index < blockDim.x) {

 sdata[tid] += sdata[tid + s];
  }
  // Thread 0 writes result for this block to global mem
  if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
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Reduction in parallel: strategy 2
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2
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Reduction in parallel: strategy 2

➔ Limited divergence

➔ Reduction of more dispersed data in memory
➔ Memory accessed are not coalesced
➔ Subset of active threads coalesced from thread 0
➔ Activated warps with low number of active threads

33
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Reduction in parallel: strategy 2

34

reduce2(int *g_idata, int *g_odata)
{
  extern __shared__ int sdata[];
  // load shared mem
  unsigned int tid = threadIdx.x;
  unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
  sdata[tid] = g_idata[i];
  __syncthreads();
  // do reduction in shared mem
  for (int s = 1; s < blockDim.x; s *= 2) {
    __syncthreads();
    if (threadIdx.x % (2 * s) == 0)

sdata[tid] += sdata[threadIdx.x + s];
  }
  __syncthreads();
  // write result for this block to global mem
  if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
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Reduction in parallel: strategy 3
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2
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Reduction in parallel: strategy 3

➔ Limited divergence

➔ Memory accessed are coalesced
➔ Subset of active threads coalesced from thread 0
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Reduction in parallel: strategy 3
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reduce3(int *g_idata, int *g_odata)
{
  extern __shared__ int sdata[];
  // load shared mem
  unsigned int tid = threadIdx.x;
  unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
  sdata[tid] = g_idata[i];
  __syncthreads();
  // do reduction in shared mem
  for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) { 

if (tid < s) {
       sdata[tid] += sdata[tid + s];

}
  }
  __syncthreads();
  // write result for this block to global mem
  if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
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Complexity

➔ Takes log(N) parallel steps (step complexity) and each step S performs         independent 
operations

➔ For                performs                                       operations

➔ It is work-efficient (i.e. does not perform more operations than a sequential reduction)

➔ With P threads physically in parallel (P processors), time complexity is O(N/P + log N)

➔ Compare to O(N) for sequential reduction
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Conclusion
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Conclusions

Memory patterns

➔ Parallel programming make use of patterns to access memory efficiently.
➔ Patterns should be tuned to specific architectures.

Themes of this class

➔ Patterns
➔ Avoiding memory conflicts
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