
Lecture 5 - Programming on GP-GPUFall 2023

GP-GPU
and

High Performances Computing

Lecture 5
Parallel Pattern

1

https://christophe.picard.pages.ensimag.fr/courses/course/gp-gpu/Lectures/cgpu-fall23-lecture5.pdf

Lecture 5 - Programming on GP-GPUFall 2023

Course logistic

2

Lecture 5 - Programming on GP-GPUFall 2023

Information

3

➔ Reset password: https://copass-client.grenet.fr/app.php/simsu/secure/modifypwd/modify_password

➔ Using a VPN: https://intranet.ensimag.grenoble-inp.fr/fr/informatique/vpn-ensimag
◆ On Linux: when nothing change on screen, the process is ready

➔ Accessing the GP-GPU: ssh -K login@vmgpu0xx.ensimag.fr

➔ Copying on GP-GPU: scp origin login@vmgpu0xx.ensimag.fr:target

➔ Compiling: you need to modify the PATH variable
◆ export PATH=$PATH:/usr/local/cuda/bin

https://copass-client.grenet.fr/app.php/simsu/secure/modifypwd/modify_password
https://intranet.ensimag.grenoble-inp.fr/fr/informatique/vpn-ensimag
mailto:login@vpngpu0xx.ensimag.fr
mailto:login@vpngpu0xx.ensimag.fr

Lecture 5 - Programming on GP-GPUFall 2023

Review of GP-GPU hierarchy

4

Lecture 5 - Programming on GP-GPUFall 2023

Block grid definition

Masking of GPU memory access times

➔ a GPU switches from one thread warp to another very quickly
➔ a GPU masks the latency of its memory accesses by multi-threading

Do not hesitate to create large numbers of small GPU threads

Ex.: to process an array of N elements, you can define:

➔ Threads dealing with ONE element each
➔ and a Grid of blocks of N threads in total

Or

➔ Threads dealing with n elements each
➔ and a Grid of blocks of N/n threads in total

5

Lecture 5 - Programming on GP-GPUFall 2023

Review processing hierarchy

6

➔ Thread block organization: a grid of blocks of threads

➔ Streaming multiprocessor (SM): set of cores, cache, schedulers
◆ A block is assigned to and executed on a single SM

➔ Warp: A group of up to 32 threads within a block
◆ Threads in a single warp can only run 1 set of instructions at once
◆ Performing different tasks can cause warp divergence and affect performance

➔ Need to overlap warp computation with data loads

Lecture 5 - Programming on GP-GPUFall 2023

Review memory hierarchy

7

➔ Global memory access should be coalesced

➔ Shared memory may lead to bank conflicts

➔ Local memory and registered are faster than all other memories

Lecture 5 - Programming on GP-GPUFall 2023

Core organization

Each thread in a warp share

➔ An instruction stream to decode
➔ An execution context for storage (64kB per thread)
➔ 8 SIMD functional unit
➔ One control unit

➔ Each core can run a group of 32 threads, a warp.
➔ Warps can be interleaved to run simultaneously (up to 320)
➔ Up to 10240 threads context can be stored

8

Lecture 5 - Programming on GP-GPUFall 2023

Divergence

9

Lecture 5 - Programming on GP-GPUFall 2023

Executing « if...then...else »

10

➔ Divergences are sources of slow down on SIMD

if (x < 10) then {....} else {...}

➔ Execution within a warp:
1. All threads test the condition (x < 10)
2. All threads must execute the then statement do it in parallel
3. All threads must execute the else statement do it in parallel

➔ Execution time:
◆ If all threads execute the then statement then: T(condition) + T(then)
◆ If all threads execute the else statement then: T(condition) + T(else)
◆ If at least one thread execute the then statement and one execute the else statement then:

T(condition) + T(then) + T(else)

Lecture 5 - Programming on GP-GPUFall 2023

Dealing with divergences

Expensive divergence

Every warp will execute then followed by else

It will lead to slow execution for the block

11

Reduced cost divergence

In 1D, only a warp will execute then followed by
else.

It will lead to slow execution for the warp only

if (threadIdx.x % 2 == 0)

{...}

else

{...}

if (threadIdx.x < s)

{...}

else

{...}

Lecture 5 - Programming on GP-GPUFall 2023

Introduction to pattern

12

Lecture 5 - Programming on GP-GPUFall 2023

Patterns

13

➔ Think at a higher level than individual CUDA kernels

➔ Specify what to compute, not how to compute it

➔ Let programmer worry about algorithm

➔ Defer pattern implementation to someone else

Lecture 5 - Programming on GP-GPUFall 2023

Common Parallel Computing Scenarios

➔ Many parallel threads need to generate a single result
◆ Reduce

➔ Many parallel threads need to partition data
◆ Split

➔ Many parallel threads produce variable output / thread
◆ Compact / Expand

14

Lecture 5 - Programming on GP-GPUFall 2023

Pattern 0: embarrassing parallelism

15

Lecture 5 - Programming on GP-GPUFall 2023

Simple operation

16

// assign device and host memory pointers, and allocate memory in host
int thread_index = threadIdx.x + blockIdx.x * blockDim.x;
while (thread_index < N) {
 A[thread_index] = sqrt(A[thread_index]);
}

➔ Simple copy (with arithmetic) operation

➔ 2 access to global memory (1 read and 1 write).

➔ 1 floating point operation.

The computational intensity is 0.5

Lecture 5 - Programming on GP-GPUFall 2023

C[i] = A[i] + B[i]

➔ CPU code:

17

float *C = malloc(N * sizeof(float));
for (int i = 0; i < N; i++)
 C[i] = A[i] + B[i];

// assign device and host memory pointers, and allocate memory in host
int thread_index = threadIdx.x + blockIdx.x * blockDim.x;
if (thread_index < N) {
 C[thread_index] = A[thread_index] + B[thread_index];

➔ GPU code:

➔ 3 access to global memory (2 read and 1 write).
➔ 1 floating point operation.

The computational intensity is 1/3

Lecture 5 - Programming on GP-GPUFall 2023

Pattern 1 : Blocking

18

Lecture 5 - Programming on GP-GPUFall 2023

Blocking

➔ Partition data to operate in well-sized blocks
◆ Small enough to be staged in shared memory
◆ Assign each data partition to a thread block
◆ No different from cache blocking!

➔ Provides several performance benefits
◆ Have enough blocks to keep processors busy
◆ Working in shared memory cuts memory latency dramatically
◆ Likely to have coherent access patterns on load/store to shared memory

19

Lecture 5 - Programming on GP-GPUFall 2023

Blocking scheme: splitting

➔ Each thread block handle some different data

20

Lecture 5 - Programming on GP-GPUFall 2023

Blocking scheme: loading

➔ Load the subset from global memory to shared memory, using multiple threads to exploit memory-
level parallelism

21

Lecture 5 - Programming on GP-GPUFall 2023

Blocking scheme: executing

➔ Perform the computation on the subset from shared memory

22

Lecture 5 - Programming on GP-GPUFall 2023

Blocking scheme: writing

➔ Copy the result from shared memory back to global memory

23

Lecture 5 - Programming on GP-GPUFall 2023

Blocking (2)

➔ All CUDA kernels are built this way
◆ Blocking may not matter for a particular problem, but you’re still forced to think about it
◆ Not all kernels require __shared__ memory
◆ All kernels do require registers

All the parallel patterns in this class will make use of blocking

24

Lecture 5 - Programming on GP-GPUFall 2023

Pattern 2 : Reduction

25

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in sequential

➔ Reduce vector to a single value via an
associative operator (+, *, min/max,
AND/OR, ...)

26

// reduction via serial iteration

float sum(float *data, int n) {

float result = 0;

for(int i = 0; i < n; ++i) {

 result += data[i];

}

return result;

}

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 0

27

reduce0(int *g_idata, int *g_odata, int n)
{
 unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int i0 = tidx * n;
 int sdata = 0;
 g_odata[blockIdx.x] = 0;

 // do reduction
 for (unsigned int s = i0; s < i0+n; s++) {
 sdata += g_idata[s];
 }
 g_odata[blockIdx.x] += sdata;
}

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 0 bis

28

reduce0(int *g_idata, int *g_odata, int n)
{
 unsigned int tidx = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int i0 = tidx * n;
 int sdata = 0;

 // do reduction
 for (unsigned int s = i0; s < i0+n; s++) {
 sdata += g_idata[s];
 }
 atomicAdd(g_odata[blockIdx.x], sdata);
}

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 1

29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 1

➔ Strong divergence

➔ Reduction of more dispersed data in memory
➔ Memory accessed are not coalesced
➔ Active threads are more dispersed
➔ Activated warps with low number of active threads
➔ Bank conflicts

30

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 1

31

reduce1(int *g_idata, int *g_odata)
{
 extern __shared__ int sdata[];
 // load shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
 sdata[tid] = g_idata[i];
 // do reduction in shared mem
 for (unsigned int s = 1; s < blockDim.x / 2; s *= 2) {
 __syncthreads();
 int index = 2 * s * tid;
 if (index < blockDim.x) {

 sdata[tid] += sdata[tid + s];
 }
 // Thread 0 writes result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 2

32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

11 1 7 -1 -2 -2 8 5 -5 -3 9 7 11 11 2 2

24 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

18 1 7 -1 6 -2 8 5 4 -3 9 7 13 11 2 2

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 2

➔ Limited divergence

➔ Reduction of more dispersed data in memory
➔ Memory accessed are not coalesced
➔ Subset of active threads coalesced from thread 0
➔ Activated warps with low number of active threads

33

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 2

34

reduce2(int *g_idata, int *g_odata)
{
 extern __shared__ int sdata[];
 // load shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = g_idata[i];
 __syncthreads();
 // do reduction in shared mem
 for (int s = 1; s < blockDim.x; s *= 2) {
 __syncthreads();
 if (threadIdx.x % (2 * s) == 0)

sdata[tid] += sdata[threadIdx.x + s];
 }
 __syncthreads();
 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 3

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

41 1 7 -1 6 -2 8 5 17 -3 9 7 13 11 2 2

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 3

➔ Limited divergence

➔ Memory accessed are coalesced
➔ Subset of active threads coalesced from thread 0

36

Lecture 5 - Programming on GP-GPUFall 2023

Reduction in parallel: strategy 3

37

reduce3(int *g_idata, int *g_odata)
{
 extern __shared__ int sdata[];
 // load shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = g_idata[i];
 __syncthreads();
 // do reduction in shared mem
 for (unsigned int s = blockDim.x/2; s > 0; s >>= 1) {

if (tid < s) {
 sdata[tid] += sdata[tid + s];

}
 }
 __syncthreads();
 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}

Lecture 5 - Programming on GP-GPUFall 2023

Complexity

➔ Takes log(N) parallel steps (step complexity) and each step S performs independent
operations

➔ For performs operations

➔ It is work-efficient (i.e. does not perform more operations than a sequential reduction)

➔ With P threads physically in parallel (P processors), time complexity is O(N/P + log N)

➔ Compare to O(N) for sequential reduction

38

Lecture 5 - Programming on GP-GPUFall 2023

Conclusion

39

Lecture 5 - Programming on GP-GPUFall 2023

Conclusions

Memory patterns

➔ Parallel programming make use of patterns to access memory efficiently.
➔ Patterns should be tuned to specific architectures.

Themes of this class

➔ Patterns
➔ Avoiding memory conflicts

40

