GP-GPU and High Performances Computing

Cours 1 Introduction

TC	P	50

Rank	System	Cores	(PFlop/s)	(PFlop/s)	(kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096

HPCG 500

TOP500

Rank	Rank	System	Cores	(PFlop/s)	(TFlop/s)
1	2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	16004.50
2	1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	14054.00
3	3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	3408.47
4	4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	3113.94
5	5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	2925.75

Rmax

HPCG

Green 500

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
1	255	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo Flatiron Institute United States	8,288	2.88	44	65.396
2	34	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot- 11, HPE D0E/SC/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684
3	12	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot- 11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI- CINES) France	319,072	46.10	921	58.021
4	17	Setonix – GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Pawsey Supercomputing Centre, Kensington, Western Australia Australia	181,248	27.16	477	56.983

General information

General course information

Contact - Christophe Picard

- christophe.picard@univ-grenoble-alpes.fr
- Office 174 IMAG Building 1st floor
- Email headers: [CGPU]
- Course notes available on my website

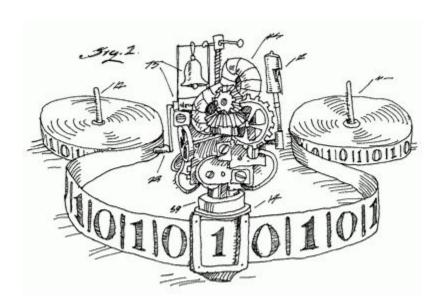
Class organization

- Lectures and labs
- One written exam **and** a project

About the project

- → It is **your** project. You **choose** the subject.
- → It can be a group project (2 or 3).
- → It should be related to your major (MMIS, MSIAM, MoSiG).
- → You may reused project from other courses, but you should propose an improvement.
- → It must involve some programming (Python, C, C++, Julia, Fortran).
- → It must involve some design. You are **not allowed** to just use a library for parallelism.
- → You must submit your proposal for project by October 13th 2023.

Grading the project

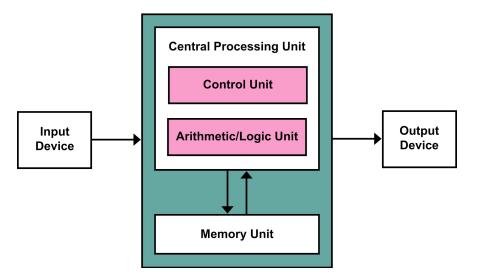

The grade will depend on:

- → the quality of the code.
- → the quality of the report.
- → the design of the parallelism.
- → the performances.
- → the number of students in the project.
- → the difficulty of the subject.

Introduction

What's a computer look like?

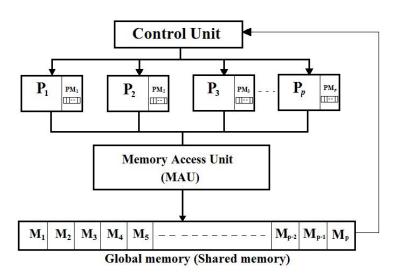
Turing machine

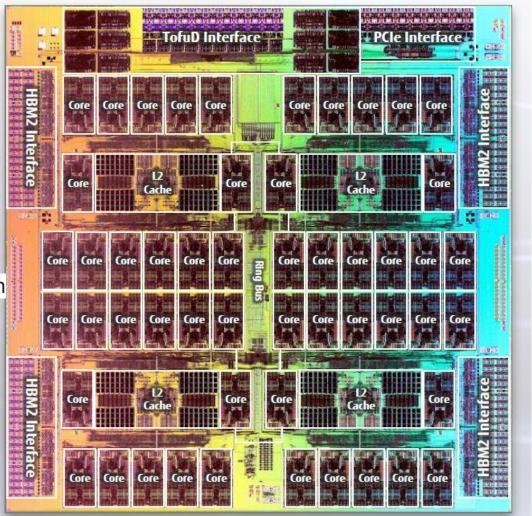


What's a computer look like?

A universal Turing Machine HEAD TAPE Code number of a Turing machine Input to \mathcal{M} Output Scanned Current Current Current symbol state A: state B: state V: Table of **U** Write Move Next Write Move Next Write Move Next symbol tape state symbol tape state symbol tape state Print Sk, Erase Left, Right tape symbol is blank Mtape symbol is 0 tape symbol is 1 Η 0 tape symbol is XP Н tape symbol is YControl unit

What's a computer look like?


Von Neumann Architecture



Properties of "computers"

- → Sequential processing
 - Control or logical flow
- → Algorithm costs measured in this model
 - Big-O notation counts number of sequential steps/bits for storage
- → This is the basis for the CS curriculum
 - And it's just wrong
 - Computers are not sequential and performance is more nuanced than counting the number of steps
- → We look at computers as parallel entities
 - Do many tasks concurrently
 - ◆ Tasks interfere with each other
 - More accurately reflects hardware and bottlenecks
- → What about parallel computation models?
 - ◆ Exist but not useful, because reality collides with the abstraction

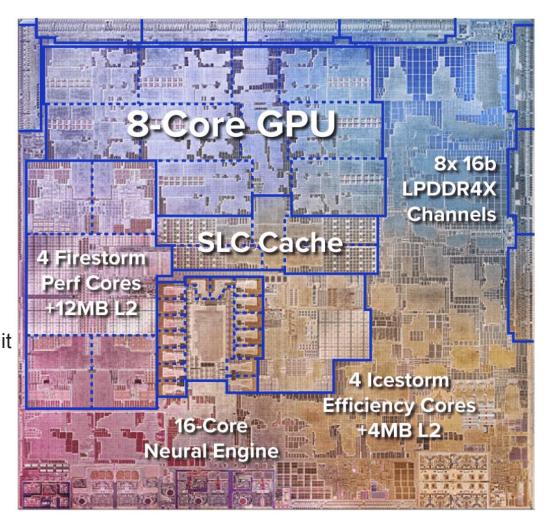
PRAM Model

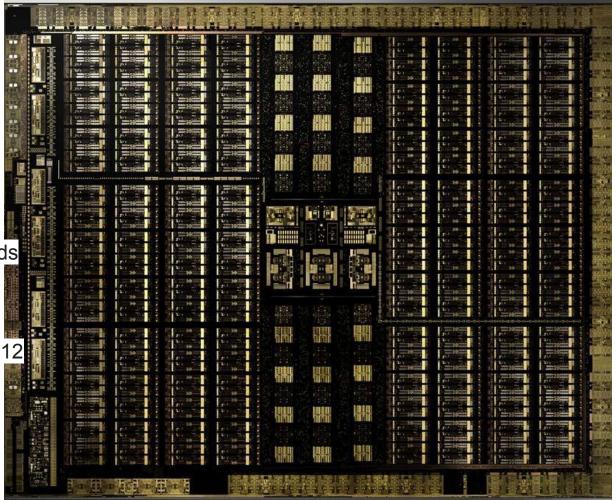
A64FX

CPU

4 NUMA nodes

12 compute cores each


Memory: 32 GB


FLOPS: 13.5 10^12

Apple M1 CPU 8 compute cores

GPU
Up to 128 execute unit
Up to 8 threads

FLOPS: 2.6 10^12

GPU
Up to 4 60

NVIDIA RTX

Up to 4,608 threads

Memory: 24Gb

FLOPS: 16.3 10^12

Serial computing should be re-invented

- → Realities of computing
 - ◆ There are tons of wasted cycles
 - ◆ CPU utilization typically <10% (of useful work)
- → Many other things limit performance
 - Pipeline stalls
 - Lock interference
 - Waiting for I/O and network
 - Data dependencies
- → Writing serial programs is broken
 - Parallelism is everywhere
 - Must exploit it to realize time efficiency, power savings

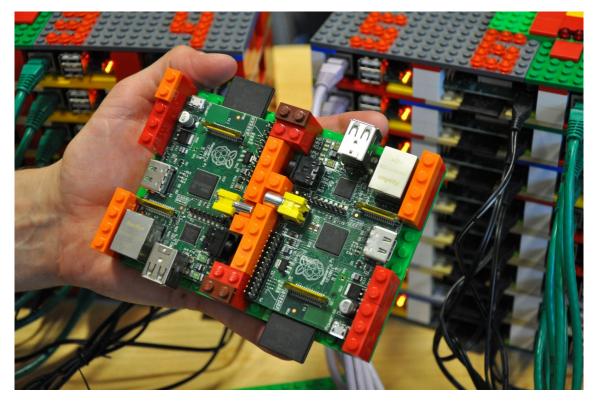
About parallelism

- → Why do I want to write parallel programs?
 - to solve problems faster (strong scaling)
 - to solve bigger problems (weak scaling and memory)

- → Why I do not want to write parallel programs?
 - ◆ tools are more difficult to use: expect 10x programming effort
 - for many problem performance does not improve

This course will help to decide when to develop a parallel approach and how to write it.

Context


- → Decrease time to solution.
- → Solve larger problem.
- → Combine resources of several processing units: gain access to more memory and more processing power.
- → Harness the processing power of modern architectures.
- → Use idle computer to perform embarrassing parallelism computation (SETI@home).
- → Improve the precision of computations in a limited time (weather forecast).

How to achieve efficient parallelism?

- → Processors: multicore, memory, network, accelerators, instructions.
- → Compilers: dedicated library, automatic parallelism.
- → Algorithms: tailored algorithms.
- → Mathematics: adapted numerical methods, evolutionary methods.

Few words on hardware

A student HPC system

A "real" HPC system

What you will be working with!

- → 33 RTX 6000 are available.
- → Ressources are on virtual machine (up to 3 students on each card)
- → Technical details :
 - ◆ CUDA Threads 4,608
 - ◆ NVIDIA Tensor threads 576
 - ◆ NVIDIA RT 72
 - ◆ GPU 24 GB GDDR6
 - Performances FP32 16,3 TFLOPS

Conclusions

Every computer is a parallel computer

→ Parallel computers need independent work to run their many cores (or other resources) efficiently

Themes of this class

- → Identify available parallelism in application
- → Design parallel approaches
- → Understand parallel hardware and how to optimize parallel performance