
ENSIMAG 3A - MSIAM - MOSIG GPU and HPC computing Grenoble INP

Matrix product in CUDA
Let � ∈ R=×< and � ∈ R<×? . The product � = � × �, � ∈ R<×? is defined by

∀1 ≤ 8 ≤ =, 1 ≤ 9 ≤ ?, 28 9 =

<∑
:=1

08:1: 9

1 Standard tools

1.1 Compilation with cmake

In this tutorial, you will be using CMake tool to create Makefile and compile automatically.
To use the proposed CMake , you must
I Create a directory call build in the lab directory : mkdir build .
I Go to the created directory : cd build .
I Generate the different Makfile : cmake .. .
I Compile the code : make .

1.2 Plotting with gnuplot

To plot the timing results, you may use gnuplot . gnuplot is an opensource application that
plot data from a text file :
I First, create a file timing.txt .
I Open the file.
I On each line, write 2 data. In this lab, it should be the dimension of the problem and the

execution time.
I Launch gnuplot : gnuplot .
I Plot the file : plot ”timing.txt” .

2 Matrix multiply on CPU
To get started, we will use the main_cpu.cxx that implements a naive matrix multiplication

on CPU. All it does is to perform for every element of the output array a scalar product between a
row of � and a column of �.
I For different size of matrices, measure the performances of the matrix product. We will focus

on square matrix in power of 2. You should plot a graph of the result.

3 Naive multiply on GPU
The second step is to look at main_gpu.cu that is a driver for matrix multiplication on GPU.

The file gemm_kernel.cuh contains the function gemm_naive that performs naive multiplication
on GPU.
I For different size of matrices, measure the performances of the matrix product. We will focus

on square matrix in power of 2. You should plot a graph of the results.
I Try to adapt the block size to identify, for each matrix size, which one is best.
I How many global memory loads are performed ?
I How many arithmetic operations are performed ?

1 / 2



ENSIMAG 3A - MSIAM - MOSIG GPU and HPC computing Grenoble INP

4 Shared memory computation
The next stage is to improve "computation-to-memory ratio". For this purpose, one may apply

tiled matrix multiplication . One thread block computes one tile of matrix �. One thread in the
thread block computes one element of the tile.

I Create a function that will use shared memory.
I Analyze the performances of the kernel the same way as in the previous section.
I For which tile size the performances are the best ?
I How many global memory loads are performed ?

5 Coalesced memory access
Two dimensional arrays in C/C++ are row-major. In the tiled implementation above, neighboring

threads have coalesced access to matrix A, but do not have coalesced access to matrix B. In column-
major languages, such as Fortran, the problem is the other way around.

I Implement CPU transposition of matrix � before offloading it to GPU memory.
I Analyze the performances of the kernel the same way as in the previous section.

6 Bank conflict
When loading the tiles of � in memory, memory operations are subject to bank conflicts. To

avoid bank conflicts, one should load transposed tile of �.
I Implement bank conflict free operation when loading � in shared memory.
I Analyze the performances.

2 / 2


	Standard tools
	Compilation with shcmake
	Plotting with shgnuplot

	Matrix multiply on CPU
	Naive multiply on GPU
	Shared memory computation
	Coalesced memory access
	Bank conflict

