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Introduction

Nonsmooth dynamical systems

nonsmooth = lack of continuity/differentiability
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I nonsmooth solutions in time (jumps, kinks, distributions, measures)

I nonsmooth modeling and constitutive laws (set–valued mapping, inequality
constraints, complementarity, impact laws)
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Introduction

Application fields.

I Computational mechanics. Plasticity. Unilateral contact, Coulomb friction and
impacts : multi-body systems, robotic systems, frictional contact oscillators,
granular materials.

I Electronics. Switched electrical circuits (digital/analog converters and power
electronics, diodes, transistors, switchs).

I Computer science. Hybrid and Cyber–physical systems

I Bio-mathematics. Gene regulatory networks

I Transportation science. Fluid transportation networks with queues.

I Economy and Finance. Oligopolistic market equilibrium

Nonsmooth approach is crucial for a correct modeling and a efficient simulation
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Introduction

Sources of nonsmoothness

I Two largely different time-scales of evolution:
1. a slow smooth dynamics (free flight of the bouncing ball)
2. a very fast dynamics (events, transitions, impacts) that can be modeled as a punctual

event.
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Introduction

Nonsmooth dynamical systems

Difficulty
Standard tools of numerical analysis and simulation (in finite dimension) are no longer
suitable due to the lack of regularity.

Specific tools
Differential measure theory. Convex, nonsmooth and variational Analysis (Clarke,
Wets & Rockafellar). Complementarity theory. Maximal monotone operators.

Examples of nonsmooth dynamical systems

I Piecewise smooth systems

I Complementarity systems and differential variational inequality.

I Specific differential inclusions (Filippov, Moreau sweeping process, Normal cone
inclusion).
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Problem Setting

Problem Setting
Contact and interface models
Nonsmooth dynamical equations
The Moreau’s sweeping process
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Problem Setting

Contact and interface models

Unilateral contact and impact

Body A

Body B

CA

N

T1

T2

CB

gN

gN

rN

I gap function gN = (CB − CA)N.

I reaction forces

r = rNN+rT, with rN ∈ IR and rT ∈ IR2.

I Signorini condition at position level

0 ≤ gN ⊥ rN ≥ 0.

I relative velocity

u = uNN+uT, with uN ∈ IR and uT ∈ IR2.

I Signorini condition at velocity level{
0 ≤ uN ⊥ rN ≥ 0 if gN ≤ 0
rN = 0 otherwise.
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Problem Setting

Contact and interface models

Normal cone to a convex set

Definition (Normal cone to a convex set)
C a nonempty convex set in IRn and x ∈ C

NC (x) = {s ∈ IRn | sT (y − x) ≤ 0 for all y ∈ C} (1)

x + NC (x)
Cx y
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Problem Setting

Contact and interface models

Complementarity condition

Signorini’s condition in contact mechanics

y

λ 0 ≤ y ⊥ λ ≥ 0 (2)

m
−y ∈ NIR+

(λ) (3)

m
−λ ∈ NIR+

(y) (4)

m
λT (y ′ − y) ≥ 0, for all y ′ ∈ IR+ (5)

m
yT (λ′ − λ) ≥ 0, for all λ′ ∈ IR+ (6)

A well-known concept in Optimization

I Numerous theoretical tools (variational inequalities, complementarity problems,
proximal point techniques)

I Numerous numerical tools (pivoting techniques, projected over–relaxation
(Gauss–Seidel), semi-smooth Newton methods, interior point methods, ...)
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Problem Setting

Contact and interface models

Coulomb’s friction

Modeling assumption
Let µ be the coefficient of friction. Let us define the Coulomb friction cone K which is
chosen as the isotropic second order cone

K = {r ∈ IR3 | ‖rT‖ ≤ µrn}. (7)

The Coulomb friction states

I for the sticking case that
uT = 0, r ∈ K (8)

I and for the sliding case that

uT 6= 0, r ∈ ∂K , and rT‖uT‖ = −uT‖rT‖ (9)

Maximum dissipation principle in the tangent plane [14].

max
rT∈D(µrN)

−rTT uT ⇐⇒ −uT ∈ ND(µrN)(rT) (10)

where D(µrN) = {rT ∈ IR2, ‖rT‖ ≤ µ|rN| } is the Coulomb friction disk.
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Problem Setting

Contact and interface models

Coulomb’s friction

K

N

T

S

r
rN

rT

u = 0, uT = 0

K

N

T

S

r
rN

rT

−u,−uT 6= 0

Sticking case Sliding case
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Problem Setting

Contact and interface models

Disjunctive formulation of the frictional contact behavior
r = 0 if gN > 0 (no contact)
r = 0, uN ≥ 0 if gN ≤ 0 (take–off)
r ∈ K , u = 0 if gN ≤ 0 (sticking)
r ∈ ∂K , uN = 0, rT‖uT‖ = −uT‖rT‖ if gN ≤ 0 (sliding)

(11)
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Problem Setting

Contact and interface models

Signorini’s condition and Coulomb’s friction

Second Order Cone Complementarity (SOCCP) formulation [9]

I Modified relative velocity û ∈ IR3 defined by

û = u + µ‖uT‖N. (12)

I Second-Order Cone Complementarity condition

K? 3 û ⊥ r ∈ K (13)

if gN ≤ 0 and r = 0 otherwise. The set K? is the dual convex cone to K defined
by

K? = {u ∈ IR3 | r>u ≥ 0, for all r ∈ K}. (14)

I Normal cone inclusion
− û ∈ NK (r) (15)

I Nonassociated character of the friction (loss of monotony)

− (u + µ‖uT‖N) ∈ NK(r) (16)
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Problem Setting

Contact and interface models

Signorini’s condition and Coulomb’s friction

K

K0 = −K?

N

T

S

rrN

rN

−uT

−û−ûN = −µ‖uT‖

−û

Figure: Coulomb’s friction and the modified velocity û. The sliding case.
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Problem Setting

Contact and interface models

Nonsmooth cohesive zone model

160 3 Mechanical Systems with Unilateral Constraints and Friction
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Fig. 3.8. Uniaxial traction/compression test in the normal direction
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Problem Setting

Nonsmooth dynamical equations

Multiple constraints

I q ∈ IRn coordinates that describes the state of the system in finite-dimension

I Notion of admissible set C(t)

C(t) = {q ∈ IRn, gα(q, t) ≥ 0, α ∈ {1 . . . ν}}

I Normal cone to C(t)

NC(t)(q) = {y | y = −∇qg(q, t)λ, 0 ≤ gα(q, t) ≥ 0 ⊥ λα ≥ 0}

I Normal cone inclusion
−r ∈ NC(t)(q)
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Problem Setting

Nonsmooth dynamical equations

Unilateral constraints as an inclusion

Definition (Perfect unilateral constraints on the smooth dynamics)

q̇ = v

M(q)
dv

dt
+ F (t, q, v) = r

−r ∈ NC(t)(q(t))

(17)

where r it the generalized force or generalized reaction due to the constraints.

Remark
I Second order differential inclusion.

I The unilateral constraints are said to be perfect due to the normality condition.

I Notion of normal cones can be extended to more general sets. see [7, 8, 11]
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Problem Setting

Nonsmooth dynamical equations

Nonsmooth Lagrangian Dynamics

Fundamental assumptions.

I The velocity v = q̇ is of Bounded Variations (B.V)
Ü The equation are written in terms of a right continuous B.V. (R.C.B.V.)
function, v+ such that

v+ = q̇+ (18)

I q is related to this velocity by

q(t) = q(t0) +

∫ t

t0

v+(t) dt (19)

I The acceleration, ( q̈ in the usual sense) is hence a differential measure dv
associated with v such that

dv(]a, b]) =

∫
]a,b]

dv = v+(b)− v+(a) (20)
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Problem Setting

Nonsmooth dynamical equations

Nonsmooth Lagrangian Dynamics

Definition (Nonsmooth Lagrangian Dynamics)
M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

(21)

where di is the reaction measure and dt is the Lebesgue measure.

Remarks
I The nonsmooth Dynamics contains the impact equations and the smooth

evolution in a single equation.

I The formulation allows one to take into account very complex behaviors,
especially, finite accumulation (Zeno-state).

I This formulation is sound from a mathematical Analysis point of view.

References
[16, 17, 12, 13]
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Problem Setting

Nonsmooth dynamical equations

Nonsmooth Lagrangian Dynamics

Measures Decomposition (for dummies){
dv = γ dt+ (v+ − v−) dν+ dvs
di = f dt+ p dν+ dis

(22)

where

I γ = q̈ is the acceleration defined in the usual sense.

I f is the Lebesgue measurable force,

I v+ − v− is the difference between the right continuous and the left continuous
functions associated with the B.V. function v = q̇,

I dν is a purely atomic measure concentrated at the time ti of discontinuities of v ,
i.e. where (v+ − v−) 6= 0,i.e. dν =

∑
i δti

I p is the purely atomic impact percussions such that pdν =
∑

i piδti
I dvS and diS are singular measures with the respect to dt + dη.

Time-Integration methods for nonsmooth contact dynamics with friction and impact. Vincent Acary – 20/50



Time-Integration methods for nonsmooth contact dynamics with friction and impacts

Problem Setting

Nonsmooth dynamical equations

Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the nonsmooth Lagrangian
Dynamics, one obtains

Definition (Impact equations)

M(q)(v+ − v−)dν = pdν, (23)

or
M(q(ti ))(v+(ti )− v−(ti )) = pi , (24)

Definition (Smooth Dynamics between impacts)

M(q)γdt + F (t, q, v)dt = fdt (25)

or

M(q)γ+ + F (t, q, v+) = f + [dt − a.e.] (26)
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Problem Setting

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Definition ([12, 13])
A key stone of this formulation is the inclusion in terms of velocity. Indeed, the
inclusion (17) is “replaced” by the following inclusion

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

−di ∈ NTC (q)(v+)

(27)

Comments
This formulation provides a common framework for the nonsmooth dynamics
containing inelastic impacts without decomposition.
Ü Foundation for the Moreau–Jean time–stepping approach.
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Problem Setting

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Definition (Tangent cone to a convex set)
C a nonempty convex set in IRn and x ∈ C

TC (x) = {t ∈ IRn | tT s ≤ 0 for all s ∈ NC (x)} (28)

Interpretation

I Inclusion in terms of the velocity. Viability Lemma
If q(t0) ∈ C(t0), then

v+ ∈ TC (q), t ≥ t0 ⇒ q(t) ∈ C(t), t ≥ t0

Ü The unilateral constraints on q are satisfied. The equivalence needs at least an
impact inelastic rule.
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Problem Setting

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Velocity level formulation. Index reduction

0 ≤ y ⊥ λ ≥ 0
m

−λ ∈ NIR+ (y)
⇑

−λ ∈ NTIR+ (y)(ẏ)

m
if y ≤ 0 then 0 ≤ ẏ ⊥ λ ≥ 0

(29)
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Problem Setting

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

The Newton impact rule

v+(t) = −ev−(t) (30)

where e is a coefficient of restitution.

The Newton-Moreau impact rule

− di ∈ NTC (q(t))(v+(t) + ev−(t)) (31)

where e is a coefficient of restitution.

The Newton-Moreau impact rule in terms of complementarity for C
finitely represented

di = ∇qg(q, t)dI

u(t) = ∇>q g(q, t)v(t) +
∂g(q, t)

∂t
if g(q(t)) = 0, then ≤ dIα ⊥ u+

α(t) + eu−α (t) ≥ 0

(32)

where e is a coefficient of restitution.
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Problem Setting

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Comments
I The inclusion concerns measures. Therefore, it is necessary to define what is the

inclusion of a measure into a cone.

I The inclusion in terms of velocity v+ rather than of the coordinates q.

Interpretation
I Inclusion of measure, −di ∈ K

I Case di = r ′dt = fdt.
−f ∈ K (33)

I Case di = piδi .
−pi ∈ K (34)
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Problem Setting

The Moreau’s sweeping process

Mathematical results

Finite dimension
I Counter example to uniqueness with C∞ data (Schatzman, Percivale)

I Existence and uniqueness in the frictionless case with analytic data (Ballard[3])
I Frictional case.

I No result in the general case
I Existence and uniqueness with lumped mass system

Elastodynamics. Infinite dimension

I One dimensional system (wave equation) (Schatzman et al.)
Question of the impact law and law for the conservation of energy

I Elastic half-space without friction. Existence and uniqueness obtained by Lebeau
and schatzman.
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Time Integration Schemes

Time Integration Schemes
Principle of nonsmooth event capturing methods (Time–stepping schemes
State–of–the–art
Moreau–Jean’s scheme and Schatzman–Paoli’s scheme
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Time Integration Schemes

Principle of nonsmooth event capturing methods (Time–stepping schemes

Principle of nonsmooth event capturing methods (Time–stepping schemes)

1. A unique formulation of the dynamics is considered. For instance, a dynamics in
terms of measures. 

−mdv + fdt = di

q̇ = v+

0 ≤ di ⊥ v+ ≥ 0 if q ≤ 0

(35)

2. The time-integration is based on a consistent approximation of the equations in
terms of measures. For instance,∫

]tk ,tk+1]
dv =

∫
]tk ,tk+1]

dv = (v+(tk+1)− v+(tk )) ≈ (vk+1 − vk ) (36)

3. Consistent approximation of measure inclusion.

0 ≤ di ⊥ v+ ≥ 0 if q ≤ 0
Ü


pk+1 ≈

∫
]tk ,tk+1]

di

0 ≤ pk+1 ⊥ vk+1 ≥ 0 if q̃k ≤ 0

(37)
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Time Integration Schemes

State–of–the–art

State–of–the–art
Numerical time–integration methods for Nonsmooth Multibody systems (NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

Nonsmooth event tracking methods (Event–driven methods)

� high level integration of free flight motions

� no proof of convergence

� sensibility to numerical thresholds

� reformulation of constraints at higher kinematic levels.

� unable to deal with finite accumulation

Two main implementations

I Moreau–Jean time–stepping scheme

I Schatzman–Paoli time–stepping scheme
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Time Integration Schemes

Moreau–Jean’s scheme and Schatzman–Paoli’s scheme

Moreau–Jean’s Time stepping scheme [13, 10]

Principle



M(qk+θ)(vk+1 − vk )− hFk+θ = pk+1 = G(qk+θ)Pk+1, (38a)

qk+1 = qk + hvk+θ, (38b)

uk+1 = GT (qk+θ) vk+1 (38c)

0 ≤ uαk+1 + eUαk ⊥ Pαk+1 ≥ 0 if ḡαk,γ ≤ 0

Pαk+1 = 0 otherwise
. (38d)

with

I G(q) = ∇qg(q)

I θ ∈ [0, 1]

I xk+θ = (1− θ)xk+1 + θxk
I Fk+θ = F (tk+θ, qk+θ, vk+θ)

I ḡk,γ = gk + γhUk , , γ ≥ 0 is a prediction of the constraints.
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Time Integration Schemes

Moreau–Jean’s scheme and Schatzman–Paoli’s scheme

Schatzman–Paoli’s Time stepping scheme [15]

Principle



M(qk+1)(qk+1 − 2qk + qk−1)− h2Fk+θ = pk+1, (39a)

vk+1 =
qk+1 − qk−1

2h
, (39b)

−pk+1 ∈ NK

(
qk+1 + eqk−1

1 + e

)
, (39c)

where NK defined the normal cone to K .
For K = {q ∈ IRn, y = g(q) ≥ 0}

0 ≤ g

(
qk+1 + eqk−1

1 + e

)
⊥ ∇g

(
qk+1 + eqk−1

1 + e

)
Pk+1 ≥ 0 (40)
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Time Integration Schemes

Moreau–Jean’s scheme and Schatzman–Paoli’s scheme

Comparison

Shared mathematical properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order

Mechanical properties

I Position vs. velocity constraints

I Respect of the impact law in one step (Moreau) vs. Two-steps(Schatzman)

I Linearized constraints rather than nonlinear.
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Time Integration Schemes

Moreau–Jean’s scheme and Schatzman–Paoli’s scheme

But ...

But
Both schemes are quite inaccurate and “dissipate” a lot of energy of vibrations. This
is a consequence of the first order approximation of the smooth forces term F

Recent improvements

I Nonsmooth generalized α schemes [6, 4]

I Time discontinuous Galerkin methods [18, 19]

I Stabilized index-2 formulation [2, 1]

I Stabilized index-1 formulation [5]
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Nonsmooth generalized-α schemes

Nonsmooth generalized-α schemes
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Nonsmooth generalized-α schemes

The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

dw = dv − ˙̃v dt (41)

Smooth (non-impulsive) part
Solutions of the following DAE

˙̃q = ṽ (42a)

M(q) ˙̃v − gT
q (q) λ̃ = f(q, v, t) (42b)

gUq (q) ṽ = 0 (42c)

λ̃
U

= 0 (42d)

with the initial value ṽ(tn) = v(tn), q̃(tn) = q(tn).
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Nonsmooth generalized-α schemes

The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

q̇ = v (43a)

dv = dw + ˙̃v dt (43b)

M(q) ˙̃v − gU,Tq λ̃
U

= f(q, v, t) (43c)

gUq ṽ = 0 (43d)

λ̃
U

= 0 (43e)

M(q) dw − gT
q (di− λ̃ dt) = 0 (43f)

gUq v = 0 (43g)

if g j (q) ≤ 0 then 0 ≤ g j
q v + e g j

q v− ⊥ di j ≥ 0, ∀j ∈ U (43h)
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Nonsmooth generalized-α schemes

The nonsmooth generalized α scheme

GGL approach to stabilize the constraints at the position level
The equations of motion become

M(q) q̇− gT
q µ = M(q) v (44a)

���XXXq̇ = v→ gU (q) = 0 (44b)

0 ≤ gU (q) ⊥ µU ≥ 0 (44c)

dv = dw + ˙̃v dt (44d)

M(q) ˙̃v − gU,Tq λ̃
U

= f(q, v, t) (44e)

gUq ṽ = 0 (44f)

λ̃
U

= 0 (44g)

M(q) dw − gT
q (di− λ̃ dt) = 0 (44h)

gUq v = 0 (44i)

if g j (q) ≤ 0 then 0 ≤ g j
q v + e g j

q v− ⊥ di j ≥ 0, ∀j ∈ U (44j)
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Nonsmooth generalized-α schemes

The nonsmooth generalized α scheme

Velocity jumps and position correction
The multipliers Λ(tn; t) and ν(tn; t) are defined as

Λ(tn; t) =

∫
(tn,t]

(di− λ̃(τ)dτ) (45a)

ν(tn; t) =

∫ t

tn

(µ(τ) + Λ(tn; τ)) dτ (45b)

with Λ(tn; tn) = ν(tn; tn) = 0.
The velocity jump and position correction variables

W(tn; t) =

∫
(tn,t]

dw = v(t)− ṽ(t) (46a)

U(tn; t) =

∫ t

tn

(q̇− ṽ)dt = q(t)− q̃(t) (46b)

Ü Low-order approximation of impulsive terms.
Ü Higher–order approximation of non impulsive terms.
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Nonsmooth generalized-α schemes

The nonsmooth generalized α scheme

M(qn+1)Un+1 − gT
q,n+1 νn+1 = 0 (47a)

gU (qn+1) = 0 (47b)

0 ≤ gU (qn+1) ⊥ νUn+1 ≥ 0 (47c)

M(qn+1) ˙̃vn+1 − f(qn+1, vn+1, tn+1)− gU,Tq,n+1 λ̃
U
n+1 = 0 (47d)

gUq,n+1 ṽn+1 = 0 (47e)

M(qn+1)Wn+1 − gT
q,n+1Λn+1 = 0 (47f)

gUq,n+1vn+1 = 0 (47g)

if g j (q∗n+1) ≤ 0 then 0 ≤ g j
q,n+1 vn+1 + e g j

q,n vn ⊥ Λj
n+1 ≥ 0, ∀j ∈ U
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Nonsmooth generalized-α schemes

The nonsmooth generalized α scheme

Nonsmooth generalized α-scheme

q̃n+1 = qn + hvn + h2(0.5− β)an + h2βan+1 (48a)

qn+1 = q̃n+1 + Un+1 (48b)

ṽn+1 = vn + h(1− γ)an + hγan+1 (48c)

vn+1 = ṽn+1 + Wn+1 (48d)

(1− αm)an+1 + αman = (1− αf ) ˙̃vn+1 + αf
˙̃vn (48e)

Special cases

I αm = αf = 0 Ü Nonsmooth Newmark

I αm = 0, αf ∈ [0, 1/3] Ü Nonsmooth Hilber-Hughes–Taylor (HHT)

Spectral radius at infinity ρ∞ ∈ [0, 1]

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞

ρ∞ + 1
, β =

1

4
(γ +

1

2
)2. (49)
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Nonsmooth generalized-α schemes

Numerical Illustrations

Two ball oscillator with impact.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

time(s)

HHT
Newmark

Moreau--Jean

Position of the first ball

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

time(s)

HHT
Newmark

Moreau--Jean

Velocity of the first ball

Time–step : h = 2e − 3.
Moreau (θ = 1.0).
Newmark (γ = 1.0, β = 0.5,
αm = αf = 0).
HHT (γ = 1.0, β = 0.5,
αf = 0.1, αm = 0)

m = 1kg

k = 103N/m

q2

q1

m = 1kg

Time-Integration methods for nonsmooth contact dynamics with friction and impact. Vincent Acary – 42/50



Time-Integration methods for nonsmooth contact dynamics with friction and impacts

Nonsmooth generalized-α schemes

Numerical Illustrations12 Q.Z. CHEN ET AL.
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Figure 7. Numerical results for the total energy of the bouncing oscillator.

An analytically-exact solution for this benchmark is detailed in [20]. For comparison, the same
parameters are applied in this test example: Young’s Modulus E =900 Pa, density of the bar
ρ =1 kg/m3, undeformed initial length L =10 m, initial height to the bottom h0 =5 m, and initial
velocity v0 =10 m/s. The restitution coefficient for the impact is set as 0. The gravity acceleration
g is set to 0 so that only one close impact will occur.

The bar is discretized in space by 200 finite elements. Time step size can be chosen based on
the evaluation of the Courant number – a relevant ratio which links the mesh size and the step size
[20]. The step size with this mesh discretization is then chosen as h =2 · 10−3 s. Other algorithmic
parameters are as: ρ∞ = 0.6 for the nonsmooth generalized-α method; θ = 1 for the Moreau–Jean
method; γ = 1 and β = 0.5625 for the fully implicit Newmark method.
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(b)

Figure 8. Comparison the numerical results for the bouncing elastic bar: (a) position, (b) pressure.

Figure 8 shows the position and the pressure on the bottom of the bar. Also, the total energy of the
bouncing elastic bar is analyzed, as shown in Figure 9. The numerical results of the position response
and the pressure are compared to the exact solution. As one can tell from the figures, close contact
analysis is stable for all the three methods. Compared to Moreau-Jean and fully implicit Newmark
methods, the nonsmooth generalized-α method has better accuracy for the position response and
the pressure, in particular for the period near/after the take-off. As for the energy performance

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Nonsmooth generalized-α schemes

Numerical Illustrations

Bouncing Pendulum

q = [x , y , θ]T

g1(q) = x − l cos θ = 0
g2(q) = y − l sin θ = 0

g3(q) = x −
√

2/2 ≥ 0

Time–step : h = 2e − 3.
Moreau (θ = 1/1.8).
α-schemes (ρ∞ = 0.8)

e = 0.8
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Nonsmooth generalized-α schemes

Numerical Illustrations

Bouncing Pendulum
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Nonsmooth generalized-α schemes

Numerical Illustrations

Impacting elastic bar

v0
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g3(q) = x1 ≥ 0
e = 0.0
200 finite elements
Time–step : h = 2e − 3.
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Nonsmooth generalized-α schemes

Numerical Illustrations

Impacting elastic bar
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Nonsmooth generalized-α schemes

Numerical Illustrations

Impacting elastic bar
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Perspectives

Perspectives

1. Rolling friction and fracture for rock-fall trajectory
I Numerical algorithms for second order cones.
I Cohesive zone modeling of interfaces with damage, contact and friction (Frémond-like).

2. Rock interaction with elasto-plastic obstacles
I Plasticity and damage as nonsmooth behavior law (complementarity and differential

inclusions)
I Numerical methods based on modern optimization techniques

3. Debris flows with rigid bodies and obstacles
I Debris Flows with large objects and accumulation and contact.
I Non Newtonian fluids with non-associated plasticity (Bingham, Drucker-Prager,

Mohr-Coulomb)
I Material Point Method with behavior laws based in second order cones for elastic

domains.

4. High performance computing

Time-Integration methods for nonsmooth contact dynamics with friction and impact. Vincent Acary – 49/50



Thank you for your attention.



Time-Integration methods for nonsmooth contact dynamics with friction and impacts

References

V. Acary. Projected event-capturing time-stepping schemes for nonsmooth mechanical
systems with unilateral contact and Coulomb’s friction. Computer Methods in
Applied Mechanics and Engineering, 256:224 – 250, 2013. ISSN 0045-7825. doi:
10.1016/j.cma.2012.12.012. URL
http://www.sciencedirect.com/science/article/pii/S0045782512003829.

V. Acary. Energy conservation and dissipation properties of time-integration methods
for the nonsmooth elastodynamics with contact. Zeitschrift für Angewandte
Mathematik und Mechanik, submitted, 2014.

P. Ballard. The dynamics of discrete mechanical systems with perfect unilateral
constraints. arma, 154:199–274, 2000.
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