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Abstract. This article revolves around shape and topology optimization, in the applicative context where
the objective and constraint functionals depend on the solution to a physical boundary value problem posed

on the optimized domain. We introduce a novel numerical framework based on modern concepts from

computational geometry, optimal transport and numerical analysis. Its pivotal feature is a representation
of the optimized shape by the cells of an adapted version of a Laguerre diagram. Although such objects

are originally described by a collection of seed points and weights, recent results from optimal transport

theory suggest a more intuitive parametrization in terms of the seed points and measures of the associated
cells. The discrete polygonal mesh of the shape induced by this diagram is a convenient support for the

deployment of the Virtual Element Method for the numerical solution of the boundary value problem
characterizing the physics at play and for the evaluation of the functionals of the domain involved in the

optimization problem. The sensitivities of the latter are derived next; at first, we calculate their derivatives

with respect to the positions of the vertices of the Laguerre diagram by shape calculus techniques; a suitable
adjoint methodology is then developed to express them in terms of the seed points and cell measures of the

diagram. The evolution of the shape through the optimization process is realized by first updating the design

variables according to these sensitivities and then reconstructing the diagram thanks to efficient algorithms
from computational geometry. Our shape and topology optimization strategy is versatile: it can be applied

to a whole gammut of physical situations (such as thermal and structural mechanics) and optimal design

settings (including single- and multi-phase problems). It is Lagrangian and body-fitted by essence, and it
thereby benefits from all the assets of an explicit, meshed representation of the shape at each stage of the

process. Yet, it naturally handles dramatic motions of the optimized shape, including topological changes,

in a very robust fashion. These features, among others, are illustrated by a series of 2d numerical examples.
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1. Introduction and related works

Since the early implementations of optimal design, the identification of a means to represent the shape
Ω ⊂ Rd (d = 2 or 3 in practice) which is amenable to all the operations of the numerical resolution has been
a recurring issue – especially when physical applications are addressed, where the behavior of the optimized
shape is modeled by boundary value problems, such as the conductivity or the linear elasticity equations.
It is indeed notoriously difficult to reconcile accurate simulations of these boundary value problems with
a robust description of the evolution of Ω through the optimization process. The historical “Lagrangian”
approaches for shape optimization hinge on a (simplicial) mesh of Ω which is updated between the iterations
of the workflow; while this representation naturally offers a convenient support for mechanical computations
via the Finite Element Method, it makes it difficult to track the deformations of Ω in a robust way, especially
when they include topological changes [85, 100]. More recent solutions to carry out this thorny evolution
operation resort to implicit, Eulerian representations of the shape Ω. The most popular practice in this
category is certainly to use the level set method [8, 96, 111, 125]. The latter brings into play a fixed mesh T
of a large “hold-all” domain D: the optimized design Ω ⊂ D is encoded into a so-called “level set function”
φ : D → R, discretized on T in practice, which is negative (resp. positive) inside Ω (resp. inside D \ Ω).
Arbitrary updates of Ω are accounted for via “simple” updates of φ – for instance, small deformations of the
boundary ∂Ω translate into an advection or a Hamilton-Jacobi equation for φ. Unfortunately, this flexibility
has a price: since no mesh of the shape Ω is available, physical boundary value problems posed on Ω have to
be replaced by approximate counterparts, posed on the total domain D, which are solved on the fixed mesh
T . This practice often leverages a fictitious domain method, such as the ersatz material approximation in
structural mechanics, see e.g. [3]; in any event, it results in an inaccurate numerical solution. The main
competing Eulerian strategy for optimal design, the so-called phase-field method, shares fairly similar spirit,
assets and drawbacks [22, 26, 121]. On the extreme side of this line of thinking, density-based topology
optimization methods [17], such as the popular Solid Isotropic Material with Penalization (SIMP) method
in structural mechanics (see also [25] about artificial porosity methods in the context of fluid mechanics),
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downright relax the optimal design problem in terms of a “blurred” version ρ of the characteristic function
of the optimized design, defined on (the mesh T of) D and taking values in the interval [0, 1]. Intuitively, ρ
encodes the “local density” of material: regions where ρ(x) ≡ 1 (resp. ρ(x) ≡ 0) are full (resp. devoid) of
material and the intermediate values ρ(x) ∈ (0, 1) represent regions filled by a microscopic arrangement of
material and void in proportions ρ(x) and (1− ρ(x)). The physical problem under scrutiny is approximated
and reformulated to accommodate such a description of the design, notably by endowing regions where ρ
takes intermediate values with fictitious material properties. Last but not least, and without entering into
details, let us eventually mention that several of the aforementioned approaches have been combined, see
e.g. [4, 5, 6] for a concurrent use of the level set method with simplicial remeshing algorithms, or [35] for a
quite sophisticated Lagrangian method using remeshing.

The present article introduces a novel framework for shape and topology optimization which is based on
concepts and techniques from computational geometry and optimal transport. This construction elaborates
on the previous work [80] of one of the authors, taking place in the context of computational fluid dynamics,
and on its recent applications [74, 91, 92] in the field of cosmology, see also [43] about related ideas. The
cornerstone of our strategy is a representation of the optimized shape Ω by the cells of a (modified version of a)
Laguerre diagram, a generalization of the well-known notion of Voronoi diagram in computational geometry
[14, 24]. Although the natural definition of such objects involves a collection s = {s1, . . . , sN} ∈ RdN of seed
points and associated weights ψ = {ψ1, . . . , ψN} ∈ RN , we leverage recent results from optimal transport
theory to parametrize them by the seed points s and the measures ν = {ν1, . . . , νN} ∈ RN of the associated
cells. In the present applications, the shape Ω is iteratively optimized with respect to an objective and
constraint functions J(Ω) and G(Ω). Their evaluation and that of their derivatives, which in turn determine
the velocity field governing the evolution of Ω through the process, raise the need to solve one or several
boundary value problems posed on Ω; this is a major additional difficulty with respect to the aforementioned
works [80, 74, 91, 92], where heuristic simplifications made it possible to express the velocity field for Ω in
terms of geometric quantities of the diagram only. In order to solve these boundary value problems, we
take advantage of the tessellation of Ω into convex polytopes induced by its diagram representation; this
offers a convenient support for the use of the Virtual Element Method – a recent variant of the classical
Finite Element Method adapted to polygonal meshes, see e.g. [12]. The calculation of the sensitivities of the
optimization criteria J(Ω) and G(Ω) with respect to the seed points s and cell measures ν of the diagram
is realized in two steps: we first apply shape calculus techniques to compute their sensitivities with respect
to the vertices of the diagram and we next employ a suitable adjoint method to reformulate them in terms
of s and ν. A descent direction for the optimization problem is then inferred from this information, and
the parameters s and ν of the Laguerre diagram for Ω are updated; the new diagram associated to the
resulting seed points and weights is generated, revealing the next iterate of the shape Ω. This strategy is
Lagrangian by nature since the evolution of Ω is realized by tracking the motion of the defining seed points;
it consistently features an exact, body-fitted description of the shape Ω. In the meantime, it leaves the
room for a robust account of dramatic deformations between iterations, including topological changes: the
deformations of (the mesh of) Ω are never tracked explicitly; rather, the shape is rediscovered after each
iteration, once the defining Laguerre diagram has been calculated anew.

As reflected by the previous discussion, one originality of our approach is that it leverages recent concepts
and techniques pertaining to quite different fields: shapes are represented via Laguerre diagrams, a notion
from computational geometry and optimal transport; the Virtual Element Method from numerical analysis
is used for the solution of the physical boundary value problems at play on polygonal meshes; eventually,
fine techniques from shape and topology optimization are used to orchestrate the optimal design process.

To the best of our knowledge, the present work is the first one using all these ingredients together even
though, admittedly some of them have already been combined in the literature. Voronoi-like diagrams,
polygonal meshes, and numerical methods dedicated to this type of structures have been considered in
the perspective of optimal design or more generally interface motion tracking, as we now briefly overview,
without exhaustivity. In [58], the cells of a Voronoi diagram are used to represent the many individual
entities of a granular medium. The collection is subjected to the viscous, elastic and contact forces between
cells, which are modeled by a finite-dimensional system of ordinary differential equations. The contributions
[118, 119] arise in the field of fluid dynamics; the 2d polygonal mesh induced by a Voronoi diagram is used
as computational support for the finite volume calculations involved in the simulation of the flow, notably
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for the reconstruction of the fluxes at the interface between cells. Although this discretization is not fitted
with the surface of the fluid, the defining seed points evolve according to the flow velocity. A high-order
version of this strategy was proposed in [56], see also [49] for another contribution in this setting. Still in the
context of fluid mechanics, the article [43] associates a Laguerre diagram to a collection of fluid particles;
its weights are adjusted to take into account the compressibility or incompressibility of the fluid. A simple,
approximate numerical solver based on discrete differential operators allows to compute the velocity of the
fluid. This framework has been recently revisited in [103], where entropy-regularized transport plans are
used to ease the calculation of the Laguerre cell attached to each particle. It can be adapted to the case of
free surfaces, owing to a modified version of this entropy-regularized optimal transport formulation and of
the Sinkhorn algorithm used to calculate the transport plan. Voronoi diagrams appear more systematically
as the pivotal ingredient of the so-called Voronoi Implicit Interface Method introduced in [108, 109], see
also [129] for a mathematical analysis in the context of multiphase motion driven by curvature. Briefly, a
partition of a fixed domain into multiple phases is represented via the Voronoi diagram generated by a set
of seed objects (and not mere seed points). The evolution of these phases is achieved by first calculating the
domains induced by the ε-offset of the collection of edges (in 2d) or faces (in 3d) of the diagram, then by
realizing their evolution via the “classical” level set method. The updated collection of phases is retrieved as
the Voronoi diagram of the resulting objects. Beyond the field of computational physics, Voronoi diagrams
have inspired popular formats for shapes in applicative disciplines such as computer graphics, see e.g. the
article [2] where the motion of a shape is tracked by introducing a clipped Voronoi tessellation of a template
shape, whose cells are rigidly deformed to match a target.

Closer to the setting of the present article, the specific features of Voronoi diagrams have inspired various
original representations of the shape in optimal design. The recent contribution [51] is dedicated to trusses,
i.e. networks of bars. The considered structures are represented by the edges of a Voronoi diagram contained
in a fixed “hold-all” domain D ⊂ Rd; when it comes to calculating their elastic behavior, a density function
ρ : D → [0, 1] is generated, featuring a continuous interpolation between the value 1 inside the bars and that
0 in void. This function is parametrized by the seed points of the diagram, and the optimal design problem
is solved in terms of these variables. A quite similar strategy is used in the article [77], dealing with the
optimization of foams.

The use of a polygonal computational mesh of the shape Ω or a larger hold-all domain D is not extraneous
to the field of shape and topology optimization, either. For instance, the contributions [122, 11, 33] rely on a
density topology optimization method, where the hold-all domain D is equipped with a fixed polygonal mesh
serving as the support for all the mechanical computations of the workflow, which are performed by means
of the Virtual Element Method. The added value of the use of the Virtual Element Method on a general
polygonal mesh with respect to the more classical practice of the Finite Element Method on a simplicial
mesh hinges on its reported superior stability properties. To the best of our knowledge, only a few recent
contributions leverage the greater flexibility of general polygonal meshes over simplicial meshes to propose
shape and topology optimization methods featuring a body-fitted discretization of the optimized shape. In
[89, 90], the authors rely on the level set method; a level set function φ : D → R for the shape Ω is defined
on a fixed hexahedral mesh of the computational domain D and at each iteration, the 0 isosurface of φ is
explicitly discretized in this mesh, thus revealing a polygonal mesh of the shape. Mechanical computations
are performed on this computational support for Ω thanks to a moving least-square approximation, which
allows to calculate the shape derivative of the minimized function of the domain. A similar strategy is used
in [54], where a polygonal mesh of the computational domain D is used and the level set function φ : D → R
for the shape Ω is represented as a discontinuous Finite Element function. Again, at each iteration of the
process, the 0 level set of φ for the shape Ω is explicitly discretized in the mesh of D, which results in
a new, non conforming polygonal mesh of the latter, on which Finite Element analyses can be conducted
by a discontinuous Galerkin solver. The topological derivative of the minimized function of the domain is
calculated and the level set function φ is updated from this information. Let us eventually mention the
related, very recent work [53] where a very fine simplicial mesh of D is used to update the level set function,
and a coarse polygonal mesh is generated when it comes to mechanical computations, whose elements are
agglomerations of the simplices of the fine mesh.

To conclude this brief overview of related works, let us point out that, from the conceptual viewpoint,
our shape and topology optimization framework shares similarities with that developed in [71, 20]. In there,
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a decomposition of the computational domain D into K phases is described by a so-called minimization
diagram. The latter is attached to a collection {φk}k=1,...,K of scalar functions φk : D → R, in such a way

that each phase k = 1, . . . ,K is made of those points x ∈ D where φk(x) is minimum among φ1(x), . . . , φk(x).
The motion of the boundary between each phase is accounted for by a quite similar mechanism as in the
context of the level set method. We also mention the recent contribution [21] about the reconstruction of a
potential in an inverse problem, which is piecewise constant with respect to the cells of a Voronoi diagram.

The present article focuses on the exposition of our shape and topology optimization framework in two
space dimensions, where its main ingredients can be conveniently described with a minimum level of tech-
nicality. There is no conceptual obstruction to the three-dimensional extension of this work, but only an
increase in the implementation burden. Indeed, the chief tools involved – notably, the calculation of Laguerre
diagrams and the Virtual Element Method – are already available in this situation. To emphasize this fact,
our presentation takes place in the general, d dimensional case whenever it is possible without jeopardizing
with clarity. On a different note, as we have already noted, our strategy leverages concepts and algorithms
pertaining to disciplines which seldom appear together in the literature: computational geometry, via the
handling of Laguerre diagrams, numerical analysis for the simulation of physical phenomena (and notably,
the Virtual Element Method), and optimal design for the notions of shape and topological derivatives, the
adjoint method, etc. In order to ensure a relatively self-contained presentation, we provide a reasonable
amount of background material about these ingredients, including proofs when they help intuition or when
they are not readily available in the precise context of interest. Our implementation essentially relies on
open-source libraries, and we aim to make it available in a short future, together with associated tutorials.
We believe that the methods introduced in this work will find useful applications beyond shape optimization,
e.g. in computational physics.

The remainder of this article is organized as follows. The next Section 2 sets the scene of the shape
optimization problems analyzed in this article. In particular, we introduce the main notation used throughout
and recall a few basic notions about shape optimization. Section 3 is devoted to the numerical representation
of our shapes in terms of the seed points and cell measures of a Laguerre diagram; the general shape
optimization workflow adopted in this context is then presented. The subsequent Sections 4 to 6 are more in-
depth presentations of the main operations involved therein. Section 4 deals with the geometric computations
attached to Laguerre diagrams involved in our framework, and notably their construction, cell regularization,
resampling, etc. Section 5 sketches the implementation of the Virtual Element Method for the solution of
the conductivity equation and the linear elasticity system. Eventually, Section 6 details the calculation of
the objective and constraint functionals featured in our shape optimization problem and their sensitivities
with respect to the parameters of our shape representation, namely the seed points and cell measures of the
representing diagram. A series of numerical examples is presented and discussed in Section 7 to showcase
the main features of our approaches. In Section 8, we draw a few conclusions about this strategy and we
outline natural perspectives for future work. The article ends with a series of appendices, devoted to the
proofs of some technical results which are not completely new, but are adaptations of existing results, or
known facts which are not easily found under the needed form in the literature. It also contains several
useful implementation details.

2. Presentation of the shape optimization problem

Our main purpose in this article is to optimize shapes, that is, bounded, Lipschitz domains Ω of Rd, where
d = 2, 3 in practice. We consider optimization problems of the general form:

(P) min
Ω

J(Ω) s.t. G(Ω) = 0,

where J(Ω) is an objective criterion, and G(Ω) := (G1(Ω), . . . , Gp(Ω)) is a collection of p scalar-valued
equality constraint functionals.

Elementary examples of shape functionals are the volume Vol(Ω) and the perimeter Per(Ω), defined by:

(2.1) Vol(Ω) =

∫
Ω

dx, and Per(Ω) =

∫
∂Ω

ds.

More involved instances about J(Ω) and G(Ω) depend on the physical behavior of Ω via a so-called state
function uΩ, which is the solution to a boundary value problem posed on Ω.

5



After setting a few notations about calculus in Section 2.1, we describe in Section 2.2 the applicative
situations considered in the present article, namely those of conductive media and of elastic structures.
Eventually, in Section 2.3, we recall a few facts about differentiation with respect to the domain.

2.1. Notations

Throughout this article, vectors x in a Euclidean space RN appear in bold face, and their components are
denoted by x = (x1, . . . , xN ). Moreover, we rely on the following conventions:

• For N ≥ 1, the Euclidean space RN is equipped with its canonical basis {ei}i=1,...,N . The attached

Euclidean inner product is denoted by 〈·, ·〉, and sometimes only with a ·, and the norm is denoted
by |·|. We also introduce the supremum norm:

|x|∞:= sup
i=1,...,N

|xi|, x ∈ RN .

• The open ball in RN with center x ∈ RN and radius r > 0 is denoted by B(x, r).

• Let f : RN → R be a (smooth enough) scalar function and let x ∈ RN ; we denote by ∂f
∂x (x) the

derivative of f at x, i.e. ∂f
∂x (x) : RN → R is the linear mapping giving rise to the expansion:

f(x + x̂) = f(x) +
∂f

∂x
(x)(x̂) + o(x̂), where

o(x̂)

|x̂| → 0 as x̂→ 0.

The gradient ∇f(x) ∈ RN of f at x is the Riesz representative of this linear mapping, that is:

∀x̂ ∈ RN , 〈∇f(x), x̂〉 =
∂f

∂x
(x)(x̂).

When needed, we shall explicitly indicate in the operator∇x the variables x involved in the derivative.
• Still considering a (smooth enough) scalar function f : RN → R, the Hessian matrix

[
∇2f(x)

]
of f

at x is the N ×N matrix with entries:[
∇2f(x)

]
ij

=
∂2f

∂xi∂xj
(x), i, j = 1, . . . , N.

• For M,N ≥ 1, the derivative of a smooth enough vector-valued function ψ = (ψ1, . . . , ψM ) : RN →
RM is the linear mapping ∂ψ

∂x (x) : RN → RM featured in the expansion

ψ(x + x̂) = ψ(x) +
∂ψ

∂x
(x)(x̂) + o(x̂), where

o(x̂)

|x̂| → 0 as x̂→ 0.

The M × N matrix ∇ψ(x) associated to this derivative – sometimes also denoted by [∇ψ(x)] for
clarity – is that with entries:

[∇ψ(x)]ij =
∂ψi
∂xj

(x), i = 1, . . . ,M, j = 1, . . . , N.

As a result, the following relation holds true:

∀x̂ ∈ RN ,
∂ψ

∂x
(x)(x̂) = [∇ψ(x)] x̂,

where the right-hand side features the matrix-vector product between the M × N matrix [∇ψ(x)]
and the vector x̂ ∈ RN . Note the (classical and hopefully harmless) ambiguity of these notations in
the case M = 1 where ∇ψ(x) is a vector with size N and [∇ψ(x)] is the transpose 1×N matrix.

More specific notations will be introduced when needed, later in the article.

2.2. Mathematical models for conductive media and elastic structures

In this section, we introduce the two physical applications of our shape optimization problems. We refer
to classical treaties about continuum mechanics such as [123] for further details, see also [63] about linear
elasticity.
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2.2.1. Optimal design of conductive media

Let the shape Ω stand for an electric conductor in Rd (d = 2 or 3). It is filled by a material with smooth
conductivity γ ∈ C∞(Rd), satisfying the following ellipticity condition:

∃ 0 < γ ≤ γ <∞ s.t. ∀x ∈ Rd, γ ≤ γ(x) ≤ γ.

The boundary ∂Ω is maintained at fixed potential 0. Introducing a source f ∈ C∞(Rd), the voltage potential
uΩ inside Ω is the unique solution in H1

0 (Ω) to the following boundary value problem:

(Cond)

{
−div(γ∇uΩ) = f in Ω,

uΩ = 0 on ∂Ω.

The associated variational formulation reads:

(2.2) Search for uΩ ∈ H1
0 (Ω) s.t. ∀v ∈ H1

0 (Ω),

∫
Ω

γ∇uΩ · ∇v dx =

∫
Ω

fv dx.

In this context, a typical objective function measuring the performance of Ω is the compliance

(2.3) C(Ω) =

∫
Ω

γ|∇uΩ|2 dx =

∫
Ω

fuΩ dx,

which appraises the energy stored inside the shape Ω, or equivalently, the work done by the source. One
may also be interested in minimizing the first eigenvalue λ1

Ω (resp. the kth eigenvalue λkΩ) of the operator
−div(γ∇·) on Ω equipped with Dirichlet boundary conditions: λ1

Ω is the smallest positive number λ (resp.
the kth smallest positive number) for which there exists a non trivial function u ∈ H1

0 (Ω) satisfying

(2.4)

{
−div(γ∇u) = λu in Ω,

u = 0 on ∂Ω.

From the physical viewpoint, λ1
Ω accounts for the minimum energy of a potential u with unit squared

amplitude, as reflected by the classical Rayleigh quotient formula:

(2.5) λ1
Ω = min

u∈H1
0(Ω),

u 6=0

∫
Ω

γ|∇u|2 dx∫
Ω

u2 dx

.

Remark 2.1. We shall also consider a two-phase variant of this setting, where the shape Ω represents one
phase made of a material with conductivity γ1 ∈ C∞(Rd) within a fixed domain D made of a material with
different conductivity γ0 ∈ C∞(Rd). One then aims to optimize the repartition D = Ω ∪ (D \ Ω) of both
materials within D with respect to, e.g. the compliance of the total device D; see Section 7.3 for a numerical
example in this setting.

2.2.2. Optimization of the shape of elastic structures

In this section, Ω ⊂ Rd stands for a mechanical structure, whose boundary is divided into three disjoint
pieces:

∂Ω = ΓD ∪ ΓN ∪ Γ.

In this decomposition,

• The shape Ω is clamped on ΓD;
• Surface loads g : ΓN → Rd are applied on ΓN ;
• The region Γ is free of applied efforts.

In practice, ΓD and ΓN are often imposed by the context, so that only the free boundary Γ is subject to
optimization. Introducing (smooth) body forces f : Rd → Rd representing e.g. gravity, the displacement uΩ

of Ω belongs to the space

H1
ΓD

(Ω)d :=
{
u ∈ H1(Ω)d, u = 0 on ΓD

}
.
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It is the unique solution in the latter to the linearized elasticity system:

(Elas)


−div(Ae(uΩ)) = f in Ω,

uΩ = 0 on ΓD,
Ae(uΩ)n = g on ΓN ,
Ae(uΩ)n = 0 on Γ.

Here, e(u) := 1
2 (∇u+∇uT ) is the linearized strain tensor induced y a vector field u : Ω→ Rd. The material

properties of the elastic medium are encoded in the Hooke’s tensor A, which reads:

For all symmetric matrix ξ ∈ Rd×d, Aξ = 2µξ + λtr(ξ)I,

where λ > 0 and µ > 0 are the Lamé coefficients of the material. The boundary value problem (Elas)
rewrites, under variational form:

(2.6) Search for uΩ ∈ H1
ΓD

(Ω)d s.t. ∀v ∈ H1
ΓD

(Ω)d,

∫
Ω

Ae(uΩ) : e(v) dx =

∫
Ω

f · v dx +

∫
ΓN

g · v ds.

The shape optimization problem (P) under scrutiny in the present context of mechanical engineering may
for instance consist in minimizing the compliance J(Ω) = C(Ω) of the structure as a means to maximize its
rigidity,

(2.7) C(Ω) :=

∫
Ω

Ae(uΩ) : e(uΩ) dx =

∫
Ω

f · uΩ dx +

∫
ΓN

g · uΩ ds,

under a volume constraint G(Ω) = Vol(Ω)− VT , where VT is a volume target.

Remark 2.2. For simplicity of the presentation, we have assumed that all the data of the models of the
previous and present sections (the domain Ω, the forces f , g, etc.) are smooth. This framework is by no
means the minimal one guaranteeing the well-posedness of these models, and the validity of our developments.

2.3. Shape optimization in a nutshell

The mathematical analysis and numerical resolution of a shape optimization problem of the form (P) hinges
on the sensitivities of the objective and constraint functions J(Ω) and G(Ω) with respect to the domain Ω
– a notion which can be appraised in various ways. In this work, we mainly rely on the boundary variation
method of Hadamard, see for instance [9, 66, 86, 114]. The latter is based on variations of a given shape
Ω ⊂ Rd of the form:

Ωθ := (Id + θ)(Ω), θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd) < 1.

Loosely speaking, Ωθ is obtained by moving the points of Ω according to the “small” vector field θ, see
Fig. 1.
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Figure 1. Variation Ωθ of a shape Ω in the sense of Hadamard’s method.
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One function F (Ω) of the domain is called shape differentiable at a particular shape Ω when the underlying
mapping θ 7→ F (Ωθ), defined from a neighborhood of 0 in W 1,∞(Rd,Rd) into R, is Fréchet differentiable
at 0. Its derivative θ 7→ F ′(Ω)(θ) is called the shape derivative of F at Ω and it satisfies the following
expansion:

F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
o(θ)

||θ||W 1,∞(Rd,Rd)

θ→0−−−→ 0.

Intuitively, a “small” perturbation of Ω following a “descent direction” θ, i.e. a deformation such that
F ′(Ω)(θ) < 0, for a short pseudo-time step τ > 0 produces a shape Ωτθ with a “better” performance (i.e. a
lower value), as measured in terms of F :

F (Ωτθ) ≈ F (Ω) + τF ′(Ω)(θ) < F (Ω).

Simple examples of shape derivatives are those of the volume and perimeter functionals defined in (2.1).
Under mild assumptions that we omit for brevity, these read:

(2.8) Vol′(Ω)(θ) =

∫
Ω

div(θ) dx =

∫
∂Ω

θ · n ds, and Per′(Ω)(θ) =

∫
∂Ω

κ θ · n ds,

where κ : ∂Ω→ R is the mean curvature of ∂Ω.
The analysis of the “physical” functionals of interest in this article is more intricate, as they involve the

solution uΩ to a boundary value problem posed on Ω, see e.g. (2.3) and (2.7). Nevertheless, the classical
adjoint method allows to calculate their shape derivatives in closed form, in terms of uΩ and possibly of an
adjoint state pΩ, solution to a boundary value problem similar to that for uΩ. Although it is non trivial,
this technical issue is well-known in the literature, and we do not enter into details, referring to e.g. [7, 78],
and also [101] for a comprehensive introduction.

Remark 2.3. The adjoint method will be deployed (and detailed) in Section 6.2 below to achieve another
purpose, that of converting a derivative with respect to the vertices of a Laguerre diagram into derivatives
with respect to its seed points and cell measures.

For further reference, let us note that the shape derivative of a generic shape functional F (Ω) has often
two different, albeit equivalent structures:

• A volume form

(2.9) F ′(Ω)(θ) =

∫
Ω

(tΩ · θ + SΩ : ∇θ) dx,

featuring an integral over the domain Ω of the deformation θ and its derivative, and some vector-
and matrix-valued functions tΩ :→ Rd and SΩ : Ω→ Rd×d depending on the function F (Ω).

• A surface form

(2.10) F ′(Ω)(θ) =

∫
∂Ω

vΩ θ · n ds,

involving a scalar field vΩ : ∂Ω→ R which depends on F (Ω).

The surface expression (2.10) is often deemed more appealing: it indeed reflects the natural fact that the
shape derivative of a “regular enough” objective function depends only on the normal component of the
deformation θ on ∂Ω, see for instance [47, 66] about the so-called Structure theorem for shape derivatives.
Besides, it easily lends itself to the identification of a descent direction for F (Ω), as letting θ = −vΩn on ∂Ω
straightforwardly ensures that F ′(Ω)(θ) < 0. However, the volume form (2.9) is usually more suitable for
mathematical analysis, see e.g. [68, 61].

Remark 2.4. The deformations θ considered in the practice of the method of Hadamard are often restricted
to a subset of W 1,∞(Rd,Rd), which is for instance made of vector fields with higher regularity, or vector
fields vanishing on a fixed, non optimizable region of space.

Remark 2.5. The notion of shape derivative is not the only means to understand differentiation with respect
to the domain. The alternative concept of topological derivative appraises the sensitivity of a function F (Ω)
with respect to the nucleation of a “small” hole inside Ω. It relies on variations of Ω of the form:

Ωx,r := Ω \B(x, r), where x ∈ Ω and r � 1.
9



The function F (Ω) is then said to have a topological derivative dTF (Ω)(x) at x ∈ Ω if the following expansion
holds:

F (Ωx,r) = F (Ω) + rddTF (Ω)(x) + o(rd), where
o(rd)

rd
r→0−−−→ 0.

We refer to [60, 113] for the seminal contributions about topological derivatives and to [10, 94] for recent
overviews.

3. Discretization and evolution of shapes using modified Laguerre diagrams

This section details the representation of shapes adopted in our framework. The first Section 3.1 introduces
basic notions about Laguerre diagrams, in their original acceptation and in the modified version introduced
in [80]. In the next Section 3.2, we explain how such objects can be conveniently parametrized by the seed
points and the measures of their cells. Finally, Section 3.3 sketches our optimization strategy, whose most
critical operations are more extensively described in the next parts of the article.

3.1. Representation of shapes via Laguerre diagrams

Let D ⊂ Rd be a fixed bounded and Lipschitz domain containing all the shapes of interest. We start with
the classical definitions of Voronoi and Laguerre diagrams, the latter being more general, weighted versions
of the former; we refer to [14, 24] about these classical notions from computational geometry.

Definition 3.1.

• Let s = {si}i=1,...,N ∈ RdN be a collection of seed points. The Voronoi diagram Vor(s) induced by s

is the following decomposition of D:

(3.1) D =

N⋃
i=1

Vori(s),

where for i = 1, . . . , N , the Voronoi cell Vori(s) is defined by:

(3.2) Vori(s) :=
{
x ∈ D, |x− si|2 ≤ |x− sj |2, ∀j 6= i

}
.

• Let s = {si}i=1,...,N ∈ RdN be a collection of seed points and ψ = {ψi}i=1,...,N ∈ RN be a set of

associated weights. The (classical) Laguerre diagram Lag(s,ψ) attached to s and ψ is the following
decomposition of D:

(3.3) D =

N⋃
i=1

Lagi(s,ψ),

where for i = 1, . . . , N , the Laguerre cell Lagi(s,ψ) reads:

(3.4) Lagi(s,ψ) :=
{
x ∈ D, |x− si|2 − ψi ≤ |x− sj |2 − ψj , ∀j 6= i

}
.

The concept of Laguerre diagram paves the way to a way of representing a shape Ω ⊂ D, as a subset of
the cells of a diagram of the form (3.3) and (3.4), associated to suitably chosen seed points s and weights ψ:

(3.5) Ω =

K⋃
i=1

Lagi(s,ψ), where K < N,

and the cells Lagi(s,ψ), i = K + 1, . . . , N form a decomposition of the void phase D \Ω. In addition to this
option, we shall also rely on another point of view, introduced in [80], which leverages a slightly modified
version of the notion of Laguerre diagram.

Definition 3.2. Let Ω ⊂ D be a shape; two sets s = {si}i=1,...,N ∈ RdN and ψ = {ψi}i=1,...,N ∈ RN of

seed points and weights generate a (modified) Laguerre diagram V(s,ψ) for Ω if the following decomposition
holds:

(3.6) Ω =

N⋃
i=1

Vi(s,ψ),

10



where each closed cell Vi(s,ψ) is obtained by intersection of the corresponding Laguerre cell Lagi(s,ψ) in

(3.4) with the ball centered at si with radius ψ
1/2
i :

(3.7) Vi(s,ψ) = Lagi(s,ψ) ∩B(si, ψ
1/2
i ).

Both types of decomposition (3.5) and (3.6) will be used in the present work to represent a shape Ω ⊂
D. The analyses of their mathematical properties are very similar, and since “classical” diagrams of the
form (3.3) and (3.4) are more familiar in the literature (although not in the present shape and topology
optimization context), we essentially focus our presentation on the modified diagrams of Definition 3.2,
pointing out the differences with their classical counterparts when relevant.

The next statement draws the main geometric features of the representation (3.6) and sets related no-
tations used throughout the sequel, see Fig. 2. For simplicity, it is only provided in the case of two space
dimensions. Its elementary proof is completely similar to that of the corresponding statement for “classical”
Laguerre diagrams (3.3), about which we refer to e.g. [14], and it is omitted for brevity.

Definition 3.3. Let d = 2, and let Ω ⊂ D be a shape defined via the diagram (3.6) associated to seed points
s = {si}i=1,...,N and weights ψ = {ψi}i=1,...,N . The following facts hold true:

(i) The cells Vi(s,ψ) in (3.7) are closed, bounded and convex subsets of R2.
(ii) The intersection Vi(s,ψ) ∩ Vj(s,ψ) between two different cells i 6= j is either empty, or a point or a

(closed) straight segment eij orthogonal to sisj.
(iii) When the intersection Vi(s,ψ)∩Vj(s,ψ) is a segment with positive length, Vj(s,ψ) is called a neighbor

of Vi(s,ψ). The index set of the neighbors of the ith cell is denoted by Ni ⊂ {1, . . . , i− 1, i+ 1, . . . , N}.
(iv) We denote by E ⊂ {1, . . . , N}2 the set of neighboring pairs of cells in the diagram (3.6), that is, (i, j) ∈ E

if j ∈ Ni (and so i ∈ Nj).
(v) For each i = 1, . . . , N , the boundary ∂Vi(s,ψ) can be decomposed as:

∂Vi(s,ψ) =

 ⋃
j∈Ni

eij

 ∪ Ci ∪ Li,
where
• For j ∈ Ni, eij := ∂Vi(s,ψ) ∩ ∂Vj(s,ψ) is a line segment;
• Ci = ∂Ω ∩ ∂Vi(s,ψ) is a (possibly empty) collection of circular arcs;
• Li = ∂D ∩ ∂Vi(s,ψ) is a (possibly empty) collection of line segments.

(vi) The endpoints of the (straight or curvilinear) pieces of this representation are called the vertices of the
diagram (3.6). We denote by q := {qj}j=1,...,M ∈ R2M the collection of these M vertices.

Remark 3.1. Although the seed points of a Voronoi diagram obviously belong to the interior of their re-
spective cells, the defining seed points of a Laguerre diagram may lie far outside; actually, they may even lie
outside the computational domain D although, for implementation stability purposes, we shall impose that
they remain inside the latter, see Section 6.3.

To illustrate this point, let us consider a collection of seed points s = {si}i=1,...,N ∈ RdN . Let h be

an arbitrary vector in Rd; we introduce the collection of seed points s̃ = {si + h}i=1,...,N resulting from a

common translation of s1, . . . , sN by h and the weight vector ψ̃ given by ψ̃i = 2si · h, i = 1, . . . , N . Then,
for any index i = 1, . . . , N and any point x ∈ D, a simple calculation reveals that:

x ∈ Lagi(s̃, ψ̃) ⇔ |x− h− si|2−2si · h ≤ |x− h− sj |2−2sj · h ∀j 6= i

⇔ |x− si|2−2h · (x− si) + |h|2−2si · h ≤ |x− sj |2−2h · (x− sj) + |h|2−2sj · h ∀j 6= i

⇔ |x− si|2 ≤ |x− sj |2 ∀j 6= i

⇔ x ∈ Vori(s).

In other terms, the Voronoi tessellation Vor(s) of D, whose seed points s1, . . . , sN belong to the interior of

their respective cells, has the same cells as the Laguerre diagram Lag(s̃, ψ̃) whose seed points lie arbitrarily
far away.
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<latexit sha1_base64="J442kpfx70emx970JbW7/REhsUs=">AAAB7nicdVDJSgNBEK1xjXGLevQyGARPYUaCegx48RjBLJAMoadTkzTp6Rm6a4Qw5CO8eFDEq9/jzb+xswhxe1DweK+KqnphKoUhz/twVlbX1jc2C1vF7Z3dvf3SwWHTJJnm2OCJTHQ7ZAalUNggQRLbqUYWhxJb4eh66rfuURuRqDsapxjEbKBEJDgjK7W6YSYlUq9U9iveDK73i3xZZVig3iu9d/sJz2JUxCUzpuN7KQU50yS4xEmxmxlMGR+xAXYsVSxGE+SzcyfuqVX6bpRoW4rcmbo8kbPYmHEc2s6Y0dD89KbiX14no+gqyIVKM0LF54uiTLqUuNPf3b7QyEmOLWFcC3ury4dMM042oeJyCP+T5nnFv6hUb6vlWnURRwGO4QTOwIdLqMEN1KEBHEbwAE/w7KTOo/PivM5bV5zFzBF8g/P2CXhJj6A=</latexit>•

<latexit sha1_base64="J442kpfx70emx970JbW7/REhsUs=">AAAB7nicdVDJSgNBEK1xjXGLevQyGARPYUaCegx48RjBLJAMoadTkzTp6Rm6a4Qw5CO8eFDEq9/jzb+xswhxe1DweK+KqnphKoUhz/twVlbX1jc2C1vF7Z3dvf3SwWHTJJnm2OCJTHQ7ZAalUNggQRLbqUYWhxJb4eh66rfuURuRqDsapxjEbKBEJDgjK7W6YSYlUq9U9iveDK73i3xZZVig3iu9d/sJz2JUxCUzpuN7KQU50yS4xEmxmxlMGR+xAXYsVSxGE+SzcyfuqVX6bpRoW4rcmbo8kbPYmHEc2s6Y0dD89KbiX14no+gqyIVKM0LF54uiTLqUuNPf3b7QyEmOLWFcC3ury4dMM042oeJyCP+T5nnFv6hUb6vlWnURRwGO4QTOwIdLqMEN1KEBHEbwAE/w7KTOo/PivM5bV5zFzBF8g/P2CXhJj6A=</latexit>•

<latexit sha1_base64="J442kpfx70emx970JbW7/REhsUs=">AAAB7nicdVDJSgNBEK1xjXGLevQyGARPYUaCegx48RjBLJAMoadTkzTp6Rm6a4Qw5CO8eFDEq9/jzb+xswhxe1DweK+KqnphKoUhz/twVlbX1jc2C1vF7Z3dvf3SwWHTJJnm2OCJTHQ7ZAalUNggQRLbqUYWhxJb4eh66rfuURuRqDsapxjEbKBEJDgjK7W6YSYlUq9U9iveDK73i3xZZVig3iu9d/sJz2JUxCUzpuN7KQU50yS4xEmxmxlMGR+xAXYsVSxGE+SzcyfuqVX6bpRoW4rcmbo8kbPYmHEc2s6Y0dD89KbiX14no+gqyIVKM0LF54uiTLqUuNPf3b7QyEmOLWFcC3ury4dMM042oeJyCP+T5nnFv6hUb6vlWnURRwGO4QTOwIdLqMEN1KEBHEbwAE/w7KTOo/PivM5bV5zFzBF8g/P2CXhJj6A=</latexit>•

<latexit sha1_base64="0BysT8kY3pZYfeUVkUsDjIWSxak=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgKiSlapcFNy4r2Ac0oUymk3bsZBJnJkIJ/Q03LhRx68+482+c9AFqPTBwOOde7pkTJJwp7ThfVmFtfWNzq7hd2tnd2z8oHx61VZxKQlsk5rHsBlhRzgRtaaY57SaS4ijgtBOMr3O/80ilYrG405OE+hEeChYygrWRPC/CehSE2cO0f98vVxzbmQE5drVWr17UkbtUlqQCCzT75U9vEJM0okITjpXquU6i/QxLzQin05KXKppgMsZD2jNU4IgqP5tlnqIzowxQGEvzhEYz9edGhiOlJlFgJvOM6q+Xi/95vVSHdT9jIkk1FWR+KEw50jHKC0ADJinRfGIIJpKZrIiMsMREm5pKpoSVL6+SdtV2L+3aba3SqC3qKMIJnMI5uHAFDbiBJrSAQAJP8AKvVmo9W2/W+3y0YC12juEXrI9voCSSCw==</latexit>qj
<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="4BqzCsKLClmWtx+0WqEtLVMk+dw=">AAAB83icdVDLSsNAFL3xWeur6tLNYBFclUSKuiy4cVnBPqAJZTK9aYdOJmFmIpTQ33DjQhG3/ow7/8ZJW6G+Dlw4nHMv93DCVHBtXPfDWVldW9/YLG2Vt3d29/YrB4dtnWSKYYslIlHdkGoUXGLLcCOwmyqkcSiwE46vC79zj0rzRN6ZSYpBTIeSR5xRYyXfj6kZhVGup33er1S9mjsDcX+RL6sKCzT7lXd/kLAsRmmYoFr3PDc1QU6V4UzgtOxnGlPKxnSIPUsljVEH+SzzlJxaZUCiRNmRhszU5YucxlpP4tBuFhn1T68Q//J6mYmugpzLNDMo2fxRlAliElIUQAZcITNiYgllitushI2ooszYmsrLJfxP2uc176JWv61XG/VFHSU4hhM4Aw8uoQE30IQWMEjhAZ7g2cmcR+fFeZ2vrjiLmyP4BuftE3fVke8=</latexit>si

<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•<latexit sha1_base64="SA+bx4KfoOZRByBTNwy92z/Jiio=">AAAB7nicbVDJSgNBEK2JW4xb1KOXxiB4GmbCqDkGvHiMYBZIhtDTqUma9Cx09whhyEd48aCIV7/Hm39jZwM1Pih4vFdFVb0gFVxpx/myChubW9s7xd3S3v7B4VH5+KSlkkwybLJEJLITUIWCx9jUXAvspBJpFAhsB+Pbmd9+RKl4Ej/oSYp+RIcxDzmj2kjtXpAJgbpfrji2Mwdx7KpXq17ViLtSVqQCSzT65c/eIGFZhLFmgirVdZ1U+zmVmjOB01IvU5hSNqZD7Boa0wiVn8/PnZILowxImEhTsSZz9edETiOlJlFgOiOqR+qvNxP/87qZDmt+zuM00xizxaIwE0QnZPY7GXCJTIuJIZRJbm4lbEQlZdokVDIhrL28TlpV2722vXuvUveWcRThDM7hEly4gTrcQQOawGAMT/ACr1ZqPVtv1vuitWAtZ07hF6yPb6Iij70=</latexit>•

<latexit sha1_base64="pDhc4Y/UWSKWKb+38j5EHazqsw8=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvctypV4pVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5pXjNE=</latexit>

D

<latexit sha1_base64="th1x6FqgyEn00eF2GiM8F+nrnLg=">AAACCHicbVDLSsNAFJ3UV62vqEsXBotQQUoiRV1JwY3LCvYBTQiTyaQdOnkwcyOW0KUbf8WNC0Xc+gnu/BsnbRbaemCYwzn3cu89XsKZBNP81kpLyyura+X1ysbm1vaOvrvXkXEqCG2TmMei52FJOYtoGxhw2ksExaHHadcbXed+954KyeLoDsYJdUI8iFjACAYlufphx2U1G+gDeEEmJ6e2F3NfjkP12YlkJ65eNevmFMYisQpSRQVarv5l+zFJQxoB4VjKvmUm4GRYACOcTip2KmmCyQgPaF/RCIdUOtn0kIlxrBTfCGKhXgTGVP3dkeFQ5supyhDDUM57ufif108huHQyFiUp0IjMBgUpNyA28lQMnwlKgI8VwUQwtatBhlhgAiq7igrBmj95kXTO6tZ5vXHbqDavijjK6AAdoRqy0AVqohvUQm1E0CN6Rq/oTXvSXrR37WNWWtKKnn30B9rnDyf0mhA=</latexit>

Vi(s, )

<latexit sha1_base64="CGS/X/+5qb6pd0Wz32mM4bjeA6M=">AAAB7XicbVDJSgNBEK2JW4xb1KOXxiB4CjMi0WPEizcjmAWSIfR0epI2vQzdPUIYAn6CFw+KePV/vPk3dpaDJj4oeLxXRVW9KOHMWN//9nIrq2vrG/nNwtb2zu5ecf+gYVSqCa0TxZVuRdhQziStW2Y5bSWaYhFx2oyG1xO/+Ui1YUre21FCQ4H7ksWMYOukRudW0D7uFkt+2Z8CLZNgTkowR61b/Or0FEkFlZZwbEw78BMbZlhbRjgdFzqpoQkmQ9ynbUclFtSE2fTaMTpxSg/FSruSFk3V3xMZFsaMROQ6BbYDs+hNxP+8dmrjyzBjMkktlWS2KE45sgpNXkc9pimxfOQIJpq5WxEZYI2JdQEVXAjB4svLpHFWDirlyt15qXr1NIsjD0dwDKcQwAVU4QZqUAcCD/AMr/DmKe/Fe/c+Zq05bx7hIfyB9/kDiHaPhQ==</latexit>

⌦

<latexit sha1_base64="rTgQNwe09YtCukNgI8BokfFo6rM=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFcDTOl1C4r3bisYB/QjiWTZtrQTGZIMkoZCn6GGxeKuPVf3Pk3ZvoAtR64cDjnXnJy/JgzpR3ny1pb39jc2s7t5Hf39g8OC0fHLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3743rmt++pVCwSt3oSUy/EQ8ECRrA20l3aC7EeEcxRfdpn/ULRsZ0ZkGOXytWSW0HuUlmSIizQ6Bc+e4OIJCEVmnCsVNd1Yu2lWGpGOJ3me4miMSZjPKRdQwUOqfLSWeopOjfKAAWRNCM0mqk/L1IcKjUJfbOZhVR/vUz8z+smOqh6KRNxoqkg84eChCMdoawCNGCSEs0nhmAimcmKyAhLTLQpKm9KWPnyKmmVbLdiV27KxdrV47yOHJzCGVyAC5dQg2toQBMISHiCF3i1Hqxn6816n6+uWYsKT+AXrI9vnBKTAQ==</latexit>Ci

<latexit sha1_base64="WgS7lYGponnP/QumdZsN7/ZtShM=">AAAB9XicdVDLSsNAFL2pr1pfVZduBovgKiSltC4rbly4qGAf0MYymU7aoZNJmJkoJRT8DDcuFHHrv7jzb5y0FarogQuHc+7lHo4fc6a043xauZXVtfWN/GZha3tnd6+4f9BSUSIJbZKIR7LjY0U5E7Spmea0E0uKQ5/Ttj++yPz2HZWKReJGT2LqhXgoWMAI1ka6TXsh1iOCObqa9lm/WHJtZwbk2NWyW3YqhiyUb6sECzT6xY/eICJJSIUmHCvVdZ1YeymWmhFOp4VeomiMyRgPaddQgUOqvHSWeopOjDJAQSTNCI1m6vJFikOlJqFvNrOQ6reXiX953UQHZ17KRJxoKsj8UZBwpCOUVYAGTFKi+cQQTCQzWREZYYmJNkUVlkv4n7TKtlu1q9eVUv38YV5HHo7gGE7BhRrU4RIa0AQCEh7hGV6se+vJerXe5qs5a1HhIfyA9f4FnlmTAg==</latexit>Li

Figure 2. Representation (3.6) of the shape Ω ⊂ D as the modified Laguerre diagram (3.6)
associated to the seed points s = {s1, . . . , sN} and weights ψ = {ψ1, . . . , ψN}.

Remark 3.2. Although, strictly speaking, a decomposition of the form (3.6) is not a classical Laguerre
diagram, it can be understood as the diagram associated to the collection of “seed objects” s∪{s0} and weights
ψ ∪ {ψ0}, where the additional object s0 is the whole domain D and ψ0 = 0, see [80]. A straightforward
adaptation of the Definition 3.1 of a Laguerre diagram to allow seed objects (and not just seed points) shows
indeed that the cells of this new diagram are exactly those Vi(s,ψ) in (3.7) for i = 1, . . . , N , with the following
additional “void cell”, associated to s0:

(3.8) V0(s,ψ) :=
{
x ∈ D, ∀i = 1, . . . , N, 0 ≤ |x− si|2 − ψi

}
.

Hence, up to a small abuse of terminology, we shall refer to (3.6) as a (modified) Laguerre diagram for Ω.

An insightful geometric viewpoint about classical and modified Laguerre diagrams (3.3) and (3.4) and (3.6)
and (3.7) is to consider them as minimization diagrams of a family of functions, as we now briefly explain
in the case d = 2 for simplicity, see Fig. 3 for an illustration. The Voronoi diagram Vor(s) of a set of seed
points s ∈ R2N is generated by the 3d paraboloids given by the graphs of the functions x 7→ pi(x) = |x−si|2,
in the sense that:

For each i = 1, . . . , N, Vori(s) =

{
x ∈ D s.t. i ∈ arg min

j=1,...,N
pj(x)

}
,

i.e. Vori(s) is the set of points x ∈ D where pi(x) is minimal among p1(x), . . . , pN (x). The “classical”
Laguerre diagram Lag(s,ψ) involving weights ψ ∈ RN is obtained by “shifting” each of the aforemen-
tioned 3d paraboloids by the corresponding weight ψi in the negative e3 direction. Eventually, a corre-
sponding representation of the modified diagram V(s,ψ) is obtained by adding the function p0(x) = 0
to the minimization diagram, i.e. by intersecting each of the 3d paraboloids with the lower half-space{
x = (x1, x2, x3) ∈ R3 s.t. x3 ≤ 0

}
.

3.2. Parametrization of the diagram representation via the seed points and cell measures

The effect of the weights ψ on the shapes of the cells Vi(s,ψ) as encoded in (3.7) is implicit and difficult to
handle. It turns out that the decomposition (3.6) of Ω can be equivalently characterized by the seed points
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a b c

d e f

Figure 3. (a) Two-dimensional Voronoi diagrams (and “classical” Laguerre diagrams) can
be described by collections of three-dimensional paraboloids with axes aligned with the third
coordinate vector; (d) The 2d diagram is obtained by “seeing this collection from below”; (b)
Modified Laguerre diagrams are obtained by inserting the 3d lower half-space in the diagram,
and (d) The intersections between the paraboloids and this half-space create circular arcs at
the boundaries of the modified cells; (c) The weights ψi of a (classical or modified) Laguerre
diagram correspond to shifts of the parabolas along the vertical axis; (f) This results in a
change of the area of the cells.

s ∈ RdN and the vector

ν := {νi}i=1,...,N ∈ RN , νi = |Vi(s,ψ)|

gathering the measures of the cells. This section discusses this convenient alternative viewpoint which will
be used throughout the following. It relies on optimal transport; for the convenience of the reader, we recall
a few useful facts about this theory, referring to [72, 76, 99, 107, 124] for more exhaustive treatments.

Let X stand for the compact set D. For x,y ∈ X, we denote by c(x,y) = |x− y|2 the quadratic ground
cost on X, which intuitively represents the cost of moving one unit of mass from the position x to y. When
µ and ν are positive measures on X with equal mass µ(X) = ν(X), the Monge formulation of the optimal
transport problem of µ onto ν consists in the search for a mapping T : X → X realizing the transfer of the
mass of µ onto ν at minimal cost, that is:

(OT-M) min

{∫
X

c(x, T (x)) dµ(x), T : X → X is (µ, ν)-measurable with T#µ = ν

}
,

where T#µ is the push-forward of the measure µ by T , i.e.

For all ν-measurable subset B ⊂ X, T#µ(B) = µ(T−1(B)).
13



Unfortunately, the problem (OT-M) is often ill-posed; for instance, an admissible mapping T in (OT-M) may
easily fail to exist. One therefore usually considers instead the so-called Kantorovic relaxation of (OT-M):

(OT-K) min

{∫
X×X

c(x,y) dπ(x,y), π is a positive measure on X ×X s.t. π1 = µ, π2 = ν

}
.

Here, π1 and π2 denote the first and second marginals of the measure π on X ×X:

For all π1, π2-measurable subsets A ⊂ X, B ⊂ X, π1(A) = π(A×X) and π2(B) = π(X ×B).

In (OT-K), the minimization is realized over positive measures π on X × X (also called transport plans
or couplings) with marginals µ and ν. Intuitively, when A and B are µ- and ν- measurable subsets of X,
π(A×B) is the “quantity of mass” transferred from A to B. The problem (OT-K) is often better behaved
than (OT-M) from the mathematical viewpoint; for instance, it is immediate to see that it is convex.

Let us specialize this abstract setting to our purpose. Let s = {si}i=1,...,N ∈ RdN be a collection of seed

points, and let ψ = {ψi}i=1,...,N be a weight vector. According to Remark 3.2 we let ψ0 := 0 be the weight

for the seed object s0 = D. Likewise, when ν = {νi}i=1,...,N is a collection of volume targets such that

∀i = 1, . . . , N, νi ≥ 0, and
N∑
i=0

νi ≤ |D|,

we denote by ν0 := |D| −∑N
i=1 νi the volume of the corresponding “void phase” V0(s,ψ) in (3.8). We then

aim to apply the aforementioned optimal transport theory to the situation where µ := 1Ddx is the restriction
to X of the d-dimensional Lebesgue measure and

(3.9) ν :=

N∑
i=1

νiδsi + ν0
1

|D|1D dx

is the discrete measure induced by the objects {si}i=1,...,N ∪ {s0}. In this perspective, we shall often invoke

the following assumptions about s and ψ to rule out very degenerate situations as far as the diagram V(s,ψ)
is concerned:
(G1)
All the cells Vi(s,ψ) have positive Lebesgue measure, i = 0, 1, . . . , N (in particular, they are non empty).

(G2) No three distinct seed points si, sj , sk are aligned.

(G3) For each vertex q at the intersection between 2 neighboring cells Vi(s,ψ), Vj(s,ψ), i, j = 1, . . . , N,

and the void phase V0(s,ψ), q, si and sj are not aligned.

(G4) Each vertex q is at the intersection of at most 3 distinct cells

Vi(s,ψ), Vj(s,ψ), Vk(s,ψ), i, j, k = 0, 1, . . . , N.

(G5) The boundary ∂D of the computational domain is smooth at each vertex q lying on ∂D.

Such a point is moreover at the intersection of at most 2 distinct cells Vi(s,ψ), Vj(s,ψ), i, j = 0, . . . , N.

(G6) For each vertex q at the intersection of ∂D and 2 distinct cells Vi(s,ψ), Vj(s,ψ), i, j = 1, . . . , N,

the line ∂Vi(s,ψ) ∩ ∂Vj(s,ψ) is not orthogonal to n(q).

(G7) For each vertex q at the intersection between ∂D, one cell Vi(s,ψ) and the void V0(s,ψ),

the line qsi is not orthogonal to n(q).

The desired description of shapes Ω in terms of the seed points s and cell measures ν of an associated
diagram (3.6) is enabled by the following result. Its proof, which is an adaptation of those of Theorems 37
and 40 in [84], is postponed to Appendix C.
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Theorem 3.1. Let D ⊂ Rd be a bounded, Lipschitz domain and X := D. Let s = {si}i=1,...,N ∈ RdN be a

set of seed points in D, and let ν = {νi}i=1,...,N ∈ RN be a vector of associated cell measures, satisfying:

(3.10) ∀i = 1, . . . , N, νi > 0, and

N∑
i=1

νi < |D|.

The following statements hold true:

(i) There exists a unique weight vector ψ∗ ≡ ψ∗(s,ν) ∈ RN such that:

(3.11) ∀i = 1, . . . , N, |Vi(s,ψ∗)| = νi, and so |V0(s,ψ∗)| = ν0.

(ii) The vector ψ∗(s,ν) is one solution to the maximization problem

(3.12) max
ψ∈RN

K(s,ν,ψ),

where the so-called Kantorovic functional K : RdNs × RNν × RNψ → R is defined by:

(3.13) K(s,ν,ψ) :=

N∑
i=1

∫
Vi(s,ψ)

(
|x− si|2 − ψi

)
dx +

N∑
i=1

νiψi.

(iii) Assuming that the genericity conditions (G1) to (G7) hold true, this solution is unique. Moreover, K
is smooth on an open neighborhood of (s,ν,ψ∗(s,ν)) in RdNs × RNν × RNψ , and ψ∗(s,ν) is the unique
solution to the equation:

(3.14) F(s,ν,ψ∗(s,ν)) = 0, where F : RdNs × RNν × RNψ → RN is defined by F(s,ν,ψ) := ∇ψK(s,ν,ψ).

(iv) There exists a unique optimal transport mapping Tψ between the measures µ and ν in the Monge
formulation (OT-M), which is given by:

(3.15) For a.e. x ∈ X, Tψ(x) =

{
si if x ∈ Vi(s,ψ∗(s,ν)), i = 1, . . . , N,
x otherwise.

Remark 3.3. The uniqueness statement (iii) in the above theorem actually holds true under weaker assump-
tions than the collection (G1) to (G7). It only requires that the mapping ψ 7→ K(s,ν,ψ) be differentiable, i.e.
loosely speaking that the area |Vi(s,ψ)| of each cell be differentiable with respect to ψ, while (G1) to (G7) im-
ply that all the individual vertices of the cells of V(s,ψ) are differentiable with respect to ψ, see Remark B.1
below about this point.

Remark 3.4. The situation where
∑N
i=1 νi = |D| corresponds to the “classical” setting where the cell V0(s,ψ)

is empty and the diagram V(s,ψ) coincides with the Laguerre diagram Lag(s,ψ). Then, there still exists
a collection of weights ψ fulfilling the conclusions of Theorem 3.1, but the latter is only unique up to the
addition of a common factor to all the weights ψi, i = 1, . . . , N [84].

Remark 3.5. Our representation (3.6) of shapes and their deformations echoes to the framework of “lin-
earized optimal transport”, recently proposed in [46, 83, 126]. Briefly, the latter advocates to parametrize
measures ν on X by the unique optimal transport mapping between a fixed reference measure µ on X and ν,
i.e. the solution to (OT-M). By comparison, our parametrization (3.6) of shapes Ω ⊂ D boils down to con-
sidering the particular class (3.15) of optimal transport mapping between the uniform measure µ = 1

|D|1D dx

on X and measures ν of the form (3.9).

3.3. General sketch of the Laguerre diagram-based shape and topology optimization method

This section outlines our algorithmic strategy for the resolution of a generic shape and topology optimization
problem of the form (P), in which the objective and constraint functionals J(Ω) and G(Ω) depend on the
optimized shape Ω via the solution uΩ to a boundary value problem posed on Ω, as in the examples of
Section 2.2. The method is summarized in Algorithm 1; its main steps are illustrated on Fig. 4 and they are
more thoroughly described in the next sections of the article.

At each iteration n = 0, . . ., we label with an n superscript the actual instances of the various objects at
stake. The shape Ωn ⊂ D is consistently described by the seed points sn ∈ RdN and the vector νn ∈ RN of
the cell measures of a diagram V(sn,ψn) of the form (3.6) and (3.7). The iteration starts with the calculation
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Algorithm 1 Laguerre diagram based shape and topology optimization algorithm for (P).

Input: Initial shape Ω0 characterized via (3.6) and (3.7) by the datum of:

• The collection of seed points s0 =
{
s0

1, . . . , s
0
N

}
;

• The vector ν0 :=
{
ν0

1 , . . . , ν
0
N

}
gathering the measures of the cells.

for n = 0, ..., until convergence do
(1) Calculate the unique weight vector ψn ∈ RN such that:

∀i = 1, . . . , N, |Vi(sn,ψn)|= νni .

(2) (Optionally) Modify this diagram by resampling and Lloyd regularization.
(3) Construct a polygonal mesh T n for Ωn from the diagram V(sn,ψn).
(4) Calculate the solutions uΩn , pΩn to the state and adjoint equations on the mesh T n.
(5) Calculate a descent direction (hn, ν̂n) for the problem (P), that is:

• A collection hn = {hni }i=1,...,N ∈ RdN of vectors attached to the seed points sn;

• An update vector ν̂n ∈ RN for the measures.

(6) Update the seed points and measure vectors sn and νn as:

sn+1
i = sni + τnhni , and νn+1 = νn + ρnν̂n,

where τn > 0 and ρn > 0 are suitable descent steps.
end for
return Seed points sn and measures νn representing the optimized shape Ωn via (3.6) and (3.7).

of the unique weight vector ψn ∈ RN such that the measure of each cell Vi(s
n,ψn) equals νi, see Section 4.1.

The diagram associated to these data is computed, as described in Section 4.1. A number of post-processing
operations are conducted on the latter, such as regularization, resampling, etc., see Sections 4.2 and 4.3.
Note that these operations may alter the number N of seed points – a detail which is omitted in the present
sketch for simplicity. A polygonal mesh T n of Ωn is then constructed from this diagram, see again Section 4.
Then, the solution uΩn to the mechanical system of interest (and that pΩn to the adjoint system) is calculated
on the mesh T n; this task relies on the Virtuel Element Method, and its treatment is described in Section 5.
The derivatives of the objective and constraint functions J(Ω) and G(Ω) are evaluated, at first with respect
to the vertices qn of the polygonal mesh T n – see Section 6.1 – then with respect to the seed points and
cell measures sn and νn defining the representation (3.6) of Ωn, see Section 6.2. A descent direction for
the considered optimization problem is inferred thanks to a constrained optimization algorithm under the
form of update vectors for seeds and cell measures, see Sections 6.3 and 6.4. This procedure is iterated until
convergence.

4. Geometric computations on Ω

This section provides a few details about the non trivial operations from algorithmic geometry involved in
Algorithm 1. In Section 4.1, we discuss the calculation of the unique weight vector ψ∗(s,ν) supplied by
Theorem 3.1, guaranteeing that the diagram V(s,ψ∗(s,ν)) complies with the measure constraints (3.11);
we notably describe the computation of this diagram. In Section 4.2, we present a variant of the well-known
Lloyd’s algorithm aimed at improving the aspect of the cells of the diagram V(s,ψ), in the perspective of
realizing accurate mechanical computations. Eventually, in Section 4.3, we sketch simple numerical recipes
to adjust the local density of cells and remove “small” components disconnected from the main structure in
the course of the iterative process.

4.1. Calculation of the diagram V(s, ν) associated to seed points s and cell measures ν

Throughout this section, s ∈ RdN and ν ∈ RN are collections of seed points and weights satisfying the
assumptions of Theorem 3.1; notably, they satisfy (G1) to (G7). We describe the calculation of the unique
weight vector ψ∗(s,ν) guaranteeing that each cell i = 1, . . . , N of the modified diagram V(s,ψ∗(s,ν)) has
measure νi, together with the practical construction of this diagram. Our strategy is based on Theorem 3.1,
whereby ψ∗(s,ν) ∈ RN is characterized as the unique solution to the non linear equation (3.14), that we
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Figure 4. Illustration of the main steps of Algorithm 1; (a) At the beginning of each
iteration, the weight vector ψn is computed, and the diagram V(sn,ψn) for Ωn is constructed
(the seed points are depicted in red); (b) The state equation for uΩn is solved by the Virtual
Element Method on the polygonal mesh T n of Ωn induced by V(sn,ψn); (c) A descent
direction is calculated as a vector field hn for the seed points and an update νn for the cell
measures; (d) The seed points sn+1 of the new diagram for Ωn+1 are obtained by moving
those in sn along hn; the cell measures νn+1 are obtained likewise; (e) The new weight
vector ψn+1 and the diagram V(sn+1,ψn+1) for Ωn+1 are computed.

rewrite below for convenience:

(4.1) F(s,ν,ψ∗(s,ν)) = 0, where F(s,ν,ψ) := ∇ψK(s,ν,ψ).

This feature paves the way to a Newton-Raphson algorithm [70], based on the differentiability of F(s,ν, ·),
and thus on the second order differentiability of the Kantorovic functional K(s,ν, ·) with respect to weights
ψ, which hold true since s and ν are generic in the sense of (G1) to (G7).

This numerical strategy is sketched in Algorithm 2 and it is illustrated in Fig. 5. Briefly, the algorithm
starts with a suitable initial guess ψ0. At each iteration n = 0, . . ., whose corresponding objects are labelled
with an n superscript, we first construct the diagram V(s,ψn). The entries of the gradient ∇ψK(s,ν,ψn) ∈
RN and Hessian matrix [∇2

ψK(s,ν,ψn)] ∈ RN×N of the Kantorovic functional are then calculated from this
17



geometric support. The update step pn ∈ RN for the weight vector is then obtained by the solution of the
following Newton linear system with size N :

(4.2) [∇ψF(s,ν,ψn)] pn = −F(s,ν,ψn).

Eventually, a descent parameter αn > 0 is chosen to update the weight vector ψn into the next iterate ψn+1.
We provide a little more details about the main steps of this process in the next subsections.

Algorithm 2 Computation of the diagram V(s,ψ) associated to given seed points s and cell measures ν

Inputs:

• Fixed collection s = {s1, . . . , sN} of seed points.
• Fixed collection ν = {ν1, . . . , νN} of cell measures.
• Initial weight vector ψ0 = {ψ0

1 , . . . , ψ
0
N} such that for all i = 1, . . . , N , Vi(s,ψ

0) 6= ∅.
• Tolerance parameter εNewt about the fulfillment of (4.1).

for n = 0, ..., until convergence do
(1) Compute the Laguerre diagram V(s,ψn)
(2) Calculate the gradient F(s,ν,ψn) = ∇ψK(s,ν,ψn) of the functional K(s,ν, ·) at ψn.
(3) if |F(s,ν,ψn)|∞< εNewt then exit loop
(4) Calculate the N ×N Hessian matrix [∇ψF(s,ν,ψn)] = [∇2

ψK(s,ν,ψn)] of K(s,ν, ·) at ψn.

(5) Calculate the solution pn ∈ RN to the linear system (4.2).
(6) Select a suitable descent parameter αn > 0.
(7) Update the weight vector as: ψn+1 = ψn + αnpn.

end for
return Diagram V(s,ψ) satisfying |Vi(s,ψn)|= νi, for all i = 1, . . . , N , up to precision εNewt.

4.1.1. Initialization

According to Theorem 3.1, the initial weight vector ψ0 must be such that all the cells Vi(s,ψ
0), i = 0, 1, . . . , N

(i.e. including the “void” phase V0(s,ψ0) given by (3.8)) are non empty. In particular, this property is meant
to ensure that the Kantorovic mapping K(s,ν, ·) is differentiable at ψ0, see Remark 3.3.

One sufficient condition for this to hold is to select a common positive value ψ > 0 for all the ψ0
i ,

i = 1, . . . , N . Indeed, the classical Laguerre diagram Lag(s,ψ0) then coincides with the Voronoi diagram
Vor(s) associated to the seed points s, where each cell Vori(s) contains at least its associated seed point si.

In turn, each modified cell Vi(s,ψ
0) = Lagi(s,ψ

0) ∩ B(si, ψ
1/2
i ) is non empty, i = 1, . . . , N , and since the

common value ψ is arbitrary, it is easy to guarantee that V0(s,ψ0) is also non empty. In practice, we choose
ψ0 = {1, 1, . . . , 1} as initial weight vector.

If all the target measures νi are equal to a common value ν, a simple heuristic suggests an initialization
procedure with “better” practical behavior. Intuitively, if a seed point si lies “sufficiently far away” from all

the other seeds sj , j 6= i, then the classical Laguerre cell Lagi(s,ψ) contains the ball B(si, ψ
1/2
i ); thus the

modified cell Vi(s,ψ) coincides with this ball. Going further, it is easy to show that if the seed points si are
“well separated” from one another in the sense that:

(4.3) |sj − si|>
√
νi
π

+

√
νj
π

in 2d, and |sj − si|>
(

3νi
4π

) 1
3

+

(
3νj
4π

) 1
3

in 3d,

then the optimal transport problem (3.14) is trivial, its solution being given by:

(4.4) ψi =

{
ν
π if d = 2,(

3ν
4π

) 2
3 if d = 3,

i = 1, . . . , N,

and the balls B(si, ψ
1/2
i ) are disjoint from one another.

In general, the data s and ν do not satisfy the separation property (4.3), and the cells of the diagram
V(s,ψ) “interact” through their common boundaries, see Fig. 5. Then, several iterations of Algorithm 2
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n=0 n=3 n=5

n=0 n=4
n=7

Figure 5. Three different Newton iterations in the calculation of the modified diagram
V(s,ψ) in Section 4.1. The weight vector ψ is initialized with a value ψ0 ensuring that
none of the cells Vi(s,ψ

0) is empty, and it is iteratively updated by Newton iterations. This
procedure appraises contacts between neighboring cells, and at convergence, ψn is such that
the measure of each cell |Vi(s,ψn)| corresponds to the prescribed value νi, up to the precision
parameter εNewt.

are needed to achieve convergence (typically 5 to 10), but in practice, the heuristic initialization (4.4) saves
a couple of Newton iterations.

Last but not least, when the target measures νi are different, the choice (4.4) still proves quite efficient

when used with the average value ν := 1
N

∑N
i=1 νi.

4.1.2. Computation of Laguerre diagrams

This section briefly describes the construction of the modified diagram V(s,ψ) associated to given seed
points s ∈ RdN and weights ψ ∈ RN . We consider the 2d case d = 2 for simplicity, and refer to [80] and the
bibliography therein for further details, including the treatment of the 3d case. The task under scrutiny is
decomposed into two steps.

Step 1: We compute the classical Laguerre diagram Lag(s,ψ) associated to s and ψ.
Several algorithms are available to achieve this task, whose outcome is illustrated on Fig. 6 (a). In

the present article, we rely on the iterative insertion algorithm of Bowyer and Watson proposed in [28,
127], see also [55] – a strategy originally intended to construct Voronoi diagrams (or their dual, Delaunay
triangulations), which can handle more general Laguerre diagrams up to simple adaptations, see [14].

The Bowyer-Watson algorithm proceeds by iterative insertion of the seed points s1, . . . , sN . Each stage

n = 1, . . . , N of the process starts with the datum of the Laguerre diagram Lag(ŝn−1, ψ̂n−1) associated

to the subcollections ŝn−1 := {s1, . . . , sn−1} and ψ̂n−1 := {ψ1, . . . , ψn−1} of seed points and weights, with
an obvious adaptation of this setting in the case n = 1. This diagram is stored under the dual form of a
so-called regular triangulation T n−1 of D, see Fig. 6 (b): the vertices of T n−1 are exactly s1, . . . , sn−1 and
its triangles are those connecting the 3-uples of seed points {si, sj , sk} ⊂ ŝn−1 (with disjoint indices i, j, k)
whose associated cells share a common vertex q. Working with this dual structure is convenient since all
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dual cells (i.e. the triangles of T n−1) have the same number of vertices, whereas storing directly the Laguerre

cells of Lag(ŝn−1, ψ̂n−1) would require a more complicated data structure, since the latter have different
numbers of vertices.

a b c

Figure 6. Computation of the modified Laguerre diagram V(s,ψ) in Section 4.1.2: (a)
“Classical” Laguerre diagram Lag(s,ψ); (b) Associated dual regular triangulation used to
store Lag(s,ψ) internally; (c) Modified diagram V(s,ψ) obtained from Lag(s,ψ) after
clipping each cell Lagi(s,ψ) by the ball with center si and radius

√
ψi.

The algorithm then inserts the seed sn into Lag(ŝn−1, ψ̂n−1), see Fig. 7. To achieve this, one first identifies

the vertices q of Lag(ŝn−1, ψ̂n−1) that are in conflict with the presence of sn, in the sense that they cannot

exist in the updated diagram Lag(ŝn, ψ̂n) because they lie inside the Laguerre cell Lagn(ŝn, ψ̂n) of the new
seed point sn in the latter. Such a conflicting vertex q, defined by the intersection of the three Laguerre
cells attached to the seeds si, sj , sk, is characterized by the following relation:

(4.5) |q− sn| − ψn < Rijk, where Rijk := |q− si|2 − ψi = |q− sj |2 − ψj = |q− sk|2 − ψk.
The equalities featured in (4.5) yield a linear system characterizing the coordinates of q, see also Appendix A.
By solving the latter with the classical Cramer’s formulas, substituting the resulting values into the above
condition and symmetrizing the determinant by row manipulations, (4.5) rewrites:

(4.6) C(si, sj , sk, sn, ψi, ψj , ψk, ψn) :=

∣∣∣∣∣∣∣∣∣∣∣

si,1 si,2 s2
i,1 + s2

i,2 − ψi 1

sj,1 sj,2 s2
j,1 + s2

j,2 − ψj 1

sk,1 sk,2 s2
k,1 + s2

k,2 − ψk 1

sn,1 sn,2 s2
n,1 + s2

n,2 − ψn 1

∣∣∣∣∣∣∣∣∣∣∣
> 0.

One then constructs the cavity Cn−1, defined as the collection of the dual triangles in T n−1 associated to
the vertices in conflict with sn, see the red triangles in Fig. 7 (b). With a small abuse of notations, we use
the same notation for this collection of triangles and the closed subset of D formed by their reunion. It
can be shown that Cn−1 is a connected set containing sn. Hence the identification of Cn−1 starts by finding
one triangle T ∈ T n−1 containing sn, and then proceeds by propagation through the neighbors of T while
they are in conflict with sn, in the sense that (4.6) holds, see Fig. 7 (b). Finally, the triangles in the cavity
Cn−1 are removed from the dual triangulation T n−1, and the new triangles dual to the vertices of the new

Laguerre cell Lagn(ŝn, ψ̂n) are constructed. Each of them connects sn with an edge of the boundary of Cn−1,
see Fig. 7 (c). This procedure is iterated until all the seed points in s have been inserted.

The Bowyer-Watson algorithm crucially hinges on geometric predicates, that is, procedures taking combi-
natorial decisions based on the fulfillment of inequalities between the coordinates of some geometric objects.
Notably, the conflict test (4.6) is based on a predicate; moreover, the aforementioned search for a dual
triangle in Cn−1 containing the inserted seed point sn requires another predicate, measuring the relative
orientation of three points. The implementation of both predicates requires a particular attention, in order
to overcome the lack of precision of standard computer arithmetics. They amount to evaluate the sign of a
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a

b c

Figure 7. Iterative construction of the classical Laguerre diagram Lag(s,ψ) with the
Bowyer-Watson algorithm in Section 4.1.2; (a) Insertion of a new seed sn (in red) into

the diagram Lag(ŝn−1, ψ̂n−1) under construction; (b) Some of the vertices of the current
diagram (in red) cannot exist in the new diagram because they lie inside the Laguerre cell of
the new seed sn; (c) The cavity formed by the associated dual triangles (in red) is removed
and the vertices of the new Laguerre cell are dual to triangles connecting the new seed to
those at the border of the cavity (in green).

polynomial function evaluated at the coordinates of the seed points si and weights ψi. Such a quantity can
be exactly computed at a reasonable computational cost thanks to a combination of different techniques, see
[112, 73] and references therein.

The above Bowyer-Watson procedure also rests on the assumption that the seed points s and the weights
ψ are in a generic configuration (see again Theorem 3.1 and Remark 3.3). In practice, this assumption
guarantees that the determinant in the characterization (4.6) of the dual triangles in the cavity Cn−1 does
not vanish – a situation where sn would lie on the boundary of this cavity, making the procedure invalid.
However, “pathologic” configurations where this determinant vanishes happen in practice, and they require a
specific treatment. For instance, if ψ = 0 (and then Lag(s,ψ) is the Voronoi diagram Vor(s)), the predicate
(4.6) evaluates whether the added seed point sn lies inside the disk circumscribed to the triangle with vertices
si, sj , sk; the determinant in (4.6) then equals zero if the four seed points si, sj , sk, sn are cocyclic. In this
case, two triangulations of the cavity Cn−1 based on sn are possible, and one would need to consistently
choose among them.

One possibility to treat situations where the determinant C(si, sj , sk, sn, ψi, ψj , ψk, ψn) vanishes is to evade
from singular configurations thanks to the symbolic perturbation approach [50]: we conceptually perturb
each weight ψi as ψi + εi, where ε � 1 is a very small parameter, and we consider the expansion of the
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associated determinant in terms of the powers of ε:

(4.7) C(si, sj , sk, sl, ψi + εi, ψj + εj , ψk + εk, ψn + εn) =

∣∣∣∣∣∣∣∣∣∣∣

si,1 si,2 s2
i,1 + s2

i,2 − ψi − εi 1

sj,1 sj,2 s2
j,1 + s2

j,2 − ψj − εj 1

sk,1 sk,2 s2
k,1 + s2

k,2 − ψk − εk 1

sn,1 sn,2 s2
n,1 + s2

n,2 − ψn − εn 1

∣∣∣∣∣∣∣∣∣∣∣
= C(si, sj , sk, sl, ψi, ψj , ψk, ψn)− εi

∣∣∣∣∣∣
sj,1 sj,2 1
sk,1 sk,2 1
sn,1 sn,2 1

∣∣∣∣∣∣+ εj

∣∣∣∣∣∣
si,1 si,2 1
sk,1 sk,2 1
sn,1 sn,2 1

∣∣∣∣∣∣
− εk

∣∣∣∣∣∣
si,1 si,2 1
sj,1 sj,2 1
sn,1 sn,2 1

∣∣∣∣∣∣+ εn

∣∣∣∣∣∣
si,1 si,2 1
sj,1 sj,2 1
sk,1 sk,2 1

∣∣∣∣∣∣ ,
where the second equality follows from the multilinearity of the determinant. In the last expression of the
above right-hand side, the factor of εn does not vanish since according to (G2) the seed points si, sj , sk
are not aligned; hence, using the sign of the leading term in the above expansion in powers of ε results in
a modified predicate which never returns 0 and takes consistent combinatorial decisions in the presence of
degeneracies.

Step 2: Computation of V(s,ψ) by truncation of Lag(s,ψ).
For each i = 1, . . . , N , the ith cell Vi(s,ψ) of the modified diagram V(s,ψ) is obtained by computing

the intersection between its classical counterpart Lagi(s,ψ) with the ball centered at si with radius
√
ψi, as

depicted in Fig. 6 (c). According to Definition 3.3, the boundary of Vi(s,ψ) is composed of line segments
– some of them pertaining to the boundary of the computational domain D, possibly bearing particular
references inherited from the latter – and, occasionally, circular arcs, see Figs. 2 and 5.

As we shall see more precisely in the next Section 5, the mechanical computations involved in the evaluation
of the shape functionals of our optimization problem (P) rely on a discretization of Ω made of convex
polytopes. The latter is constructed via the procedure described in [75]: a number narc is chosen, and each
circular arc is discretized into a polygonal line made of narc line segments and (narc + 1) vertices. The
calculation of the positions of these vertices from the datum of the seed points s is detailed in Appendix A.

4.1.3. Computation of the gradient and of the Hessian matrix of the Kantorovic functional

In Steps 2 and 4 of Algorithm 2, the diagram V(s,ψn) is used to evaluate the entries of the gradient
F(s,ν,ψn) = ∇ψK(s,ν,ψn) and of the Hessian matrix ∇ψF(s,ν,ψn) = ∇2

ψK(s,ν,ψn) of the Kantorovich

functional K(s,ν, ·) at ψn.
These components depend on the measures of the cells |Vi(s,ψn)| of the diagram V(s,ψn) and on the

lengths of their edges eij . Their expressions have been calculated in e.g. [70, 76]; for the sake of completeness,
they are recalled in Appendix B, where an intuitive proof is provided under simplifying assumptions.

4.1.4. Solution mechanism for the linear systems

The calculation of the Newton step pn in Step 5 of Algorithm 2 is based on the solution of the following
linear system with size N ×N :

(4.8) [∇ψF(s,ν,ψn)] pn = −F(s,ν,ψn).

When two-dimensional applications are concerned, featuring a relatively small number N of seed points (say,
N < 105), direct methods such as Gaussian elimination or LDLT factorization are available.

Larger configurations raise the need to use an iterative solver, that takes advantage of the sparse nature
of the matrix involved in (4.8), see again its expression in Appendix B. The Conjugate Gradient algorithm
[67] combined with the simple Jacobi preconditionner (which involves division by the diagonal coefficients)
is an efficient candidate in this perspective.
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When very large problems are considered (where the number N of seed points exceeds 106), yet another
strategy is handful. The latter is based on the fact that the linear system (4.8) corresponds to the discretiza-
tion of a Poisson equation with P1 finite elements. This calls for a multigrid method, that can solve such
a Poisson system in linear time. In our case, the mesh characterizing this discretization is irregular and
we recommend the use of an algebraic multigrid method [48]. Roughly speaking, such a multi-grid method
creates a hierarchy of operators by merging nodes in the graph that corresponds to the non-zero entries of
the sparse matrix. This technique made it possible to solve 3d problems featuring up to 108 points in our
previous works [74, 81].

4.1.5. Stopping criterion

The components of the gradient F(s,ν,ψn) = ∇ψK(s,ν,ψn) of the Kantorovic functional express the
difference between the target cell measures νi and the measures |Vi(s,ψn)| of the cells of the actual version
V(s,ψn) of the diagram. Hence, the supremum norm of this gradient appraises the largest error on the
fulfillment of the cell measure constraint. This geometric interpretation of F(s,ν,ψn) suggests a natural
convergence criterion for Algorithm 2: the Newton procedure is terminated as soon as the largest measure
error is smaller than 1 % of the smallest measure prescription, i.e. when the following inequality is satisfied:

|F(s,ν,ψn)|∞< εNewt, where εNewt = 0.01

(
min

i=1,...,N
νi

)
.

4.1.6. Determination of the descent parameter

The selection of a suitable descent parameter αn for the update of the weight vector ψ in Step 6 of Algorithm 2
deserves a particular attention. Indeed, the invertibility of the Hessian matrix F(s,ν,ψn) of the Kantorovic
functional involved in the linear system (4.8) for the Newton step pn crucially requires that none of the cells
Vi(s,ψ

n) is empty, n = 0, . . . , N , see again the expressions in Appendix B. Hence, the choice of αn must
guarantee that no cell Vi(s,ψ

n+1) in the updated diagram V(s,ψn+1) is empty.
To ensure this property, we rely on the Kitagawa-Mérigot-Thibert strategy, described in Algorithm 3 and

analyzed in [70]: starting from the Newton step αn,0 = 1, the descent parameter is halved until the magnitude
of the gradient F(s,ν,ψn) has sufficiently decreased while the size of the smallest cell in V(s,ψn+1) is larger
than a certain threshold νmin; in practice, we take:

(4.9) νmin =
1

2
min

(
min

i=0,1,...,N
|Vi(s,0)|, min

i=0,1,...,N
νi

)
.

Using the so-computed descent parameter, the convergence of the Newton algorithm Algorithm 2 is proven,
see [70] for the details.

Algorithm 3 Determination of a suitable descent parameter for the update of the weight vector

Input: The current Newton iterate n in Algorithm 2, characterized by the datum of:

• The collection of seed points s = {s1, . . . , sN};
• The current weight vector ψn;
• The current Newton step vector pn;
• The initial guess about the descent parameter αn,0 = 1.

for k = 0, ..., until convergence do

(1) if min
i=0,...,N

|Vi(ψn + αn,kpn)| > νmin and |F(s,ν,ψn + αn,kpn)|≤ (1 − αn,k

2 )|F(s,ν,ψn)| exit

loop
(2) Update the descent parameter as: αn,k+1 = αn,k/2.
(3) Compute the new diagram V(s,ψn + αn,k+1pn)

end for
return Descent parameter αn := αn,k.
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4.2. Smoothing of a diagram by a variant of Lloyd’s algorithm

As we shall describe more extensively in Section 5, the polygonal mesh induced by the diagram V(s,ψ)
representing the shape Ω in our optimal design Algorithm 1 is used, in particular, as the numerical support
for the solution of boundary value problems posed on Ω, by means of the Virtual Element Method. The
accuracy of the latter, like that of any Galerkin-based solution strategy, is tightly related to the “quality”
of this polygonal mesh; intuitively, this notion appraises how close its polygons are from being regular
[117, 116]. Unfortunately, Algorithm 1 does not offer any guarantee about the quality of the cells of the
diagrams V(sn,ψn) at play, and it is necessary to periodically stop the process, say every 3, 4 iterations, to
improve their quality.

One possibility to achieve this goal borrows from the famous Lloyd’s algorithm for Voronoi diagrams [79].
Roughly speaking, the latter produces a “well-shaped” centroidal Voronoi tessellation (i.e. where the seed
point of each cell coincides with its centroid) from an arbitrary initial diagram Vor(s); it proceeds within a
series of iterations, by replacing the seed point si of each cell i = 1, . . . , N by the centroid ci of the latter,
and then computing the new diagram Vor(c). Often, a relaxed version of this procedure is used, whereby
each seed point si is moved towards ci for a short pseudo-time step α ∈ (0, 1).

In our strategy, we rely on a natural extension of this procedure to the present context of Laguerre
diagrams in which the measure of each cell is imposed. This was recently proposed in [42, 43, 128], see also
[27]; it is sketched in Algorithm 4.

Algorithm 4 Smoothing of a diagram with constrained cell measures by a variant of Lloyd’s algorithm

Inputs:

• Diagram V(s0,ψ0) induced by:

- An initial collection of seed points s0 ∈ RN ;
- A given vector ν ∈ RN of cell measures;
- The unique weight vector ψ0 ∈ RN such that each cell Vi(s

0,ψ0) has measure νi.

• Relaxation parameter α ∈ (0, 1).

for n = 0, ..., until convergence do
(1) Calculate the collection cn := {cni }i=1,...,N of the centroids cni ∈ Rd of the cells Vi(s

n,ψn).

(2) Update the seed points as: sn+1 = (1− α)sn + αcn.
(3) Calculate the weight vector ψn+1 guaranteeing that |Vi(sn+1,ψn+1)|= νi for i = 1, . . . , N .
(4) Compute the new diagram V(sn+1,ψn+1).

end for
return Diagram V(sn,ψn) where each cell Vi(s

n,ψn) is “well-shaped” and has measure νi

4.3. Additional operations on diagrams

In this section, we outline two geometric operations on diagrams of the form (3.6) and (3.7) that significantly
improve the efficiency of the shape optimization Algorithm 2.

4.3.1. Resampling of a diagram

As will be exemplified in the numerical examples of Section 7, the optimization of the shape Ωn generally
entails significant changes in its volume through the iterations n = 0, . . . of the process; it is often relevant
to dynamically adjust the number N of cells of the defining diagram V(sn,ψn) according to these changes.

To achieve this, we periodically carry out a simple resampling procedure, at the end of every one iteration
over, say, 3 or 4 of Algorithm 1: a desired average value ν for the measures of the cells of the diagram of the
shape Ωn is given, and we infer the suitable number Nn of cells in the latter via the following relation:

Nn =
Vol(Ωn)

ν
.

We then add or delete seed points from the collection sn to attain this number, according to the following
rules:
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• Seed points si are added inside the regions of Ωn lying far from the boundary of Ωn (so that this
entity is unchanged in the process), where the local cell measures are largest. The measures νi of
the corresponding added cells are set to ν, and the (larger) measures of the neighboring cells are
decreased so that the volume of Ωn is unaltered by this operation.

• The deleted seed points si lie far from ∂Ωn, and they correspond to cells Vi(s
n,ψn) with “small”

measures. Their mass is redistributed to the neighboring cells, so that Vol(Ωn) is unchanged in the
process.

4.3.2. Elimination of material “islands” disconnected from the main structure

As described in Section 4.1.2, some of the edges of the cell in the diagrams V(sn,ψn) produced by Algorithm 1
may bear particular labels, inherited from the boundary ∂D of the computational domain. These notably
serve to identify the regions of ∂Ωn bearing particular boundary conditions in the physical problem at play.
For instance, in the settings of Sections 2.2.1 and 2.2.2, they characterize the regions ΓD and ΓN supporting
homogeneous Dirichlet and inhomogeneous Neumann boundary conditions. In practice, it may be desirable
to remove the components of Ωn that are not connected to any cell bearing such a label. For instance, in
the situation of Section 2.2.2, the regions of Ωn that are not connected to ΓD cause the problem (Elas) to be
ill-posed, since the elastic displacement uΩn is only characterized by this problem up to a rigid-body motion
inside each such material “islands”.

The elimination of these regions is realized thanks to a simple algorithmic procedure, based on the
connectivity of V(sn,ψn). We start by storing into a pile all the indices i ∈ {1, . . . , N} belonging to cells
having one edge bearing the desired label. We then travel the cells of the diagram by propagating through
the neighbors of the elements in the pile, and we thus obtain all the indices of the connected component of
Ωn attached to the label at stake. We eventually discard all the cells (i.e. the associated seed points) in
V(s,ψ) that have not been visited in this process.

5. Mechanical computations on Ω via the Virtual Element Method

In this section, we describe – in 2d for simplicity – the resolution of physical boundary value problems of the
form (Cond) and (Elas) on a polygonal mesh T of the shape Ω. Different numerical methods are available
to achieve this goal. Although they are slightly unusual in the physical contexts at stake in this article,
let us notably mention finite volume methods – see [32] for the treatment of heat conduction problems,
or [69] for linear elasticity –, discontinuous Galerkin methods [31], or the recent Network Element Method
[37, 38]. Here, we rely on the Virtual Element Method, which is an elegant variant of the well-known Finite
Element Method adapted to the solution of boundary value problems on arbitrary polygonal meshes, see e.g.
[12, 15, 39, 57, 120], or [41] for a recent open-source implementation.

After setting notations in Section 5.1, we present this method in Section 5.2 in the context of the 2d
conductivity equation (Cond), where its salient features can be exposed in a relatively non technical manner.
This presentation is not intended to be minimal; rather, it prepares the ground for the treatment of the
linear elasticity system which is discussed next in Section 5.3. Practical implementation details are deferred
to Appendix D.

5.1. Notations

Throughout this section, Ω is a two-dimensional shape equipped with a polygonal mesh T . The latter is
composed of N (closed) elements Ei, i = 1, . . . , N , and M vertices, denoted by qj , j = 1, . . . ,M . Each
polygon E ∈ T is characterized by its nE vertices, which form a subset

{
qEj
}
j=1,...,nE of {qj}j=1,...,M ; these

are numbered in a counterclockwise fashion and we set qE0 := qEnE and qEnE+1 := qE1 , see Fig. 8 (a). We also
introduce the following notation:

• The diameter of E is denoted by hE := supx,y∈E |x− y|.
• For i = 1, . . . , nE − 1, ei is the edge with endpoints qEi and qEi+1; e0 = enE stands for the edge

between qEnE and qE1 .

• For i = 0, . . . , nE , we denote by nei
the unit normal vector to ei, pointing outward E.
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• For i = 1, . . . , nE , we denote by êi the edge between qEi−1 and qEi+1, and by nêi
the unit normal

vector to êi, oriented so that 〈nêi
nej 〉 ≥ 0 for j ∈ {i− 1, i}. A simple calculation shows that

(5.1) |ei−1|nei−1
+ |ei|nei

= |êi|nêi
.

• For any continuous function v : E → R, we denote by

v̄ =
1

nE

nE∑
j=1

v(qEj )

the average of v over the vertices of E; the same notation is used when v is replaced by a vector field
or a tensor field on E.

• Accordingly, qE = (qE1 , q
E
2 ) is the average position of the vertices of E, i.e.

qE =
1

nE

nE∑
j=1

qEj ;

note that qE differs from the centroid of E.
• For any integrable function v : E → R, we denote the average of v over E by

〈v〉 =
1

|E|

∫
E

v(x) dx;

the same notation is used when v is replaced by a vector field or a tensor field on E.
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<latexit sha1_base64="Rbzy8D8McYdx1tdGH1d4NJjHpAE=">AAAB7nicdZDLSgNBEEVr4ivGV9Slm8YguAozyZhkGXDjMoJ5QDKEnk5N0qTnQXePEEI+wo0LRdz6Pe78G3uSCCp6oeFwq4quun4iuNK2/WHlNja3tnfyu4W9/YPDo+LxSUfFqWTYZrGIZc+nCgWPsK25FthLJNLQF9j1p9dZvXuPUvE4utOzBL2QjiMecEa1sboDPxUC9bBYssu2U72q1okBu1J3G0twatUacQxkKsFarWHxfTCKWRpipJmgSvUdO9HenErNmcBFYZAqTCib0jH2DUY0ROXNl+suyIVxRiSIpXmRJkv3+8SchkrNQt90hlRP1O9aZv5V66c6aHhzHiWpxoitPgpSQXRMstvJiEtkWswMUCa52ZWwCZWUaZNQwYTwdSn5HzqVslMru7duqemu48jDGZzDJThQhybcQAvawGAKD/AEz1ZiPVov1uuqNWetZ07hh6y3T8eoj9c=</latexit>•<latexit sha1_base64="Rbzy8D8McYdx1tdGH1d4NJjHpAE=">AAAB7nicdZDLSgNBEEVr4ivGV9Slm8YguAozyZhkGXDjMoJ5QDKEnk5N0qTnQXePEEI+wo0LRdz6Pe78G3uSCCp6oeFwq4quun4iuNK2/WHlNja3tnfyu4W9/YPDo+LxSUfFqWTYZrGIZc+nCgWPsK25FthLJNLQF9j1p9dZvXuPUvE4utOzBL2QjiMecEa1sboDPxUC9bBYssu2U72q1okBu1J3G0twatUacQxkKsFarWHxfTCKWRpipJmgSvUdO9HenErNmcBFYZAqTCib0jH2DUY0ROXNl+suyIVxRiSIpXmRJkv3+8SchkrNQt90hlRP1O9aZv5V66c6aHhzHiWpxoitPgpSQXRMstvJiEtkWswMUCa52ZWwCZWUaZNQwYTwdSn5HzqVslMru7duqemu48jDGZzDJThQhybcQAvawGAKD/AEz1ZiPVov1uuqNWetZ07hh6y3T8eoj9c=</latexit>•

<latexit sha1_base64="Rbzy8D8McYdx1tdGH1d4NJjHpAE=">AAAB7nicdZDLSgNBEEVr4ivGV9Slm8YguAozyZhkGXDjMoJ5QDKEnk5N0qTnQXePEEI+wo0LRdz6Pe78G3uSCCp6oeFwq4quun4iuNK2/WHlNja3tnfyu4W9/YPDo+LxSUfFqWTYZrGIZc+nCgWPsK25FthLJNLQF9j1p9dZvXuPUvE4utOzBL2QjiMecEa1sboDPxUC9bBYssu2U72q1okBu1J3G0twatUacQxkKsFarWHxfTCKWRpipJmgSvUdO9HenErNmcBFYZAqTCib0jH2DUY0ROXNl+suyIVxRiSIpXmRJkv3+8SchkrNQt90hlRP1O9aZv5V66c6aHhzHiWpxoitPgpSQXRMstvJiEtkWswMUCa52ZWwCZWUaZNQwYTwdSn5HzqVslMru7duqemu48jDGZzDJThQhybcQAvawGAKD/AEz1ZiPVov1uuqNWetZ07hh6y3T8eoj9c=</latexit>•

<latexit sha1_base64="Rbzy8D8McYdx1tdGH1d4NJjHpAE=">AAAB7nicdZDLSgNBEEVr4ivGV9Slm8YguAozyZhkGXDjMoJ5QDKEnk5N0qTnQXePEEI+wo0LRdz6Pe78G3uSCCp6oeFwq4quun4iuNK2/WHlNja3tnfyu4W9/YPDo+LxSUfFqWTYZrGIZc+nCgWPsK25FthLJNLQF9j1p9dZvXuPUvE4utOzBL2QjiMecEa1sboDPxUC9bBYssu2U72q1okBu1J3G0twatUacQxkKsFarWHxfTCKWRpipJmgSvUdO9HenErNmcBFYZAqTCib0jH2DUY0ROXNl+suyIVxRiSIpXmRJkv3+8SchkrNQt90hlRP1O9aZv5V66c6aHhzHiWpxoitPgpSQXRMstvJiEtkWswMUCa52ZWwCZWUaZNQwYTwdSn5HzqVslMru7duqemu48jDGZzDJThQhybcQAvawGAKD/AEz1ZiPVov1uuqNWetZ07hh6y3T8eoj9c=</latexit>•

<latexit sha1_base64="txKGvdi34xnw4LWyYuvoNk9tRpQ=">AAAB9XicdZDLSgMxFIYz9VbrrerSTbAIrspMW6ddFkRwWcFeoJ2WTJppQzMXkzNqGfoeblwo4tZ3cefbmGkrqOgPgY//nMM5+d1IcAWm+WFkVlbX1jeym7mt7Z3dvfz+QUuFsaSsSUMRyo5LFBM8YE3gIFgnkoz4rmBtd3Ke1tu3TCoeBtcwjZjjk1HAPU4JaKvfA3YPrpfczAZW/2KQL5hF0yqflatYg1mqVmpzsOyyjS0NqQpoqcYg/94bhjT2WQBUEKW6lhmBkxAJnAo2y/VixSJCJ2TEuhoD4jPlJPOrZ/hEO0PshVK/APDc/T6REF+pqe/qTp/AWP2upeZftW4MXs1JeBDFwAK6WOTFAkOI0wjwkEtGQUw1ECq5vhXTMZGEgg4qp0P4+in+H1qlomUX7atKoV5ZxpFFR+gYnSILVVEdXaIGaiKKJHpAT+jZuDMejRfjddGaMZYzh+iHjLdP5OeSwA==</latexit>

qE
1

<latexit sha1_base64="Puli5SHHHir963kqgyorEF6tHII=">AAAB9XicdZDLSgMxFIYz9VbrrerSTbAIrspMW6ddFkRwWcFeoJ2WTJppQzMXkzNqGfoeblwo4tZ3cefbmGkrqOgPgY//nMM5+d1IcAWm+WFkVlbX1jeym7mt7Z3dvfz+QUuFsaSsSUMRyo5LFBM8YE3gIFgnkoz4rmBtd3Ke1tu3TCoeBtcwjZjjk1HAPU4JaKvfA3YPrpfczAal/sUgXzCLplU+K1exBrNUrdTmYNllG1saUhXQUo1B/r03DGnsswCoIEp1LTMCJyESOBVsluvFikWETsiIdTUGxGfKSeZXz/CJdobYC6V+AeC5+30iIb5SU9/VnT6BsfpdS82/at0YvJqT8CCKgQV0sciLBYYQpxHgIZeMgphqIFRyfSumYyIJBR1UTofw9VP8P7RKRcsu2leVQr2yjCOLjtAxOkUWqqI6ukQN1EQUSfSAntCzcWc8Gi/G66I1YyxnDtEPGW+f5m2SwQ==</latexit>

qE
2

<latexit sha1_base64="D0g01Cg6WPwZj7J0wcjvorpunyU=">AAAB9XicdZDLSgMxFIYz9VbrrerSTbAIrspMp067LIjgsoK9QDstmTTThmYuJmfUMvQ93LhQxK3v4s63Mb0IKvpD4OM/53BOfi8WXIFpfhiZldW19Y3sZm5re2d3L79/0FRRIilr0EhEsu0RxQQPWQM4CNaOJSOBJ1jLG5/P6q1bJhWPwmuYxMwNyDDkPqcEtNXrArsHz09vpn27d9HPF8yiadlndgVrMEuVcnUOlmM72NIwUwEtVe/n37uDiCYBC4EKolTHMmNwUyKBU8GmuW6iWEzomAxZR2NIAqbcdH71FJ9oZ4D9SOoXAp673ydSEig1CTzdGRAYqd+1mflXrZOAX3VTHsYJsJAuFvmJwBDhWQR4wCWjICYaCJVc34rpiEhCQQeV0yF8/RT/D81S0XKKzlW5UCsv48iiI3SMTpGFKqiGLlEdNRBFEj2gJ/Rs3BmPxovxumjNGMuZQ/RDxtsn5/OSwg==</latexit>

qE
3

<latexit sha1_base64="f3hZxBW+8G9LxioJFQ9Q76EieNo=">AAAB7XicdZDNSsNAFIUn9a/Wv6pLN4NFcFWSNrZdFty4rGBroQ1lMpm0YyeZMHMjlNB3cONCEbe+jzvfxklbQUUPDHycey9z7/ETwTXY9odVWFvf2Nwqbpd2dvf2D8qHRz0tU0VZl0ohVd8nmgkesy5wEKyfKEYiX7Bbf3qZ12/vmdJcxjcwS5gXkXHMQ04JGKs3FIEEPSpX7Krt1C/qTWzArjXd1gKcRr2BHQO5Kmilzqj8PgwkTSMWAxVE64FjJ+BlRAGngs1Lw1SzhNApGbOBwZhETHvZYts5PjNOgEOpzIsBL9zvExmJtJ5FvumMCEz071pu/lUbpBC2vIzHSQospsuPwlRgkDg/HQdcMQpiZoBQxc2umE6IIhRMQCUTwtel+H/o1apOo+peu5W2u4qjiE7QKTpHDmqiNrpCHdRFFN2hB/SEni1pPVov1uuytWCtZo7RD1lvnwvFj2s=</latexit>. .
.

<latexit sha1_base64="QnoMfYMcGOHVa+TKpg4pcVjmp9k=">AAAB+3icdZDNSsNAFIUn9a/Wv6hLN4NFcFUSW9suBRFcVrC20KZlMp3UoZNJnLkRS8iruHGhiFtfxJ1v46RWUNEDAx/n3su9c/xYcA2O824VFhaXlleKq6W19Y3NLXt750pHiaKsTSMRqa5PNBNcsjZwEKwbK0ZCX7COPznN651bpjSP5CVMY+aFZCx5wCkBYw3tnT6wO/CD9CYbnA1TOTjLhnbZqThu9bjawAaco0atOQO3Xq1j10CuMpqrNbTf+qOIJiGTQAXRuuc6MXgpUcCpYFmpn2gWEzohY9YzKEnItJfObs/wgXFGOIiUeRLwzP0+kZJQ62nom86QwLX+XcvNv2q9BIKml3IZJ8Ak/VwUJAJDhPMg8IgrRkFMDRCquLkV02uiCAUTV8mE8PVT/D9cHVXceqV+USuf1OZxFNEe2keHyEUNdILOUQu1EUV36B49oicrsx6sZ+vls7VgzWd20Q9Zrx/WRpTx</latexit>

qE
nE

<latexit sha1_base64="BbB397erAjdTCfYt+bgjrBIDrLo=">AAAB9XicbVDLSgNBEJyNrxhfUY9eFoPgKexKiB4DIniMYB6QF7OT3mTM7Ow606uGJf/hxYMiXv0Xb/6Nk2QPmljQUFR1093lRYJrdJxvK7Oyura+kd3MbW3v7O7l9w/qOowVgxoLRaiaHtUguIQachTQjBTQwBPQ8EaXU7/xAErzUN7iOIJOQAeS+5xRNFK3jfCEnp/cT3p33atevuAUnRnsZeKmpEBSVHv5r3Y/ZHEAEpmgWrdcJ8JOQhVyJmCSa8caIspGdAAtQyUNQHeS2dUT+8QofdsPlSmJ9kz9PZHQQOtx4JnOgOJQL3pT8T+vFaN/0Um4jGIEyeaL/FjYGNrTCOw+V8BQjA2hTHFzq82GVFGGJqicCcFdfHmZ1M+KbrlYvikVKqU0jiw5IsfklLjknFTINamSGmFEkWfySt6sR+vFerc+5q0ZK505JH9gff4A6t6SwQ==</latexit>

qE
j

<latexit sha1_base64="WKCt5d1gklOFIM2xHf/6MkzfmT8=">AAAB9XicbVDLSsNAFJ3UV62vqks3g0VwFZJSa5cFNy4r2Ac0sUymN+3YySTMTJQS+h9uXCji1n9x5984fYFaD1w4nHMv994TJJwp7ThfVm5tfWNzK79d2Nnd2z8oHh61VJxKCk0a81h2AqKAMwFNzTSHTiKBRAGHdjC6mvrtB5CKxeJWjxPwIzIQLGSUaCPdeUOiceYFIYZJ775XLDm2MwN27HKlVr6oYXepLEkJLdDoFT+9fkzTCISmnCjVdZ1E+xmRmlEOk4KXKkgIHZEBdA0VJALlZ7OrJ/jMKH0cxtKU0Him/pzISKTUOApMZ0T0UP31puJ/XjfVYc3PmEhSDYLOF4UpxzrG0whwn0mgmo8NIVQycyumQyIJ1Saogglh5eVV0irbbtWu3lRK9coijjw6QafoHLnoEtXRNWqgJqJIoif0gl6tR+vZerPe5605azFzjH7B+vgGJe2SRA==</latexit>

êj

<latexit sha1_base64="tegYVXQIzeMJN/zDQiakKYeybEQ=">AAACBHicbVA9SwNBEN3zM8avqKXNYhCswiVETSnYWEYwRsiFY28zl6zu7R27c2I4rrDxr9hYKGLrj7Dz37j5ENT4YODx3gwz84JECoOu++nMzS8sLi0XVoqra+sbm6Wt7UsTp5pDi8cy1lcBMyCFghYKlHCVaGBRIKEd3JyO/PYtaCNidYHDBLoR6ysRCs7QSn5p10O4wyDMVO5n3oAhzbwgpJD717lfKrsVdwzqVmr1Ru2wQavfyjcpkymafunD68U8jUAhl8yYTtVNsJsxjYJLyIteaiBh/Ib1oWOpYhGYbjZ+Iqf7VunRMNa2FNKx+nMiY5ExwyiwnRHDgfnrjcT/vE6KYaObCZWkCIpPFoWppBjTUSK0JzRwlENLGNfC3kr5gGnG0eZWtCHMvDxLLmuV6lHl6LxePqlP4yiQXbJHDkiVHJMTckaapEU4uSeP5Jm8OA/Ok/PqvE1a55zpzA75Bef9C38tmJ0=</latexit>nêj<latexit sha1_base64="rmYsWJh6KJoTtWpeOC8KKb3ReC4=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mkVI8FLx4r2FZoQ9lsJ+3azSbsTsQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqObR4LGN9HzADUihooUAJ94kGFgUSOsH4euZ3HkEbEas7nCTgR2yoRCg4Qyv1eghPGIQZTPsP/XLFrbpz0FXi5aRCcjT75a/eIOZpBAq5ZMZ0PTdBP2MaBZcwLfVSAwnjYzaErqWKRWD8bH7zlJ5ZZUDDWNtSSOfq74mMRcZMosB2RgxHZtmbif953RTDKz8TKkkRFF8sClNJMaazAOhAaOAoJ5YwroW9lfIR04yjjalkQ/CWX14l7YuqV6/Wb2uVRi2Po0hOyCk5Jx65JA1yQ5qkRThJyDN5JW9O6rw4787HorXg5DPH5A+czx+M5ZH+</latexit>ej

<latexit sha1_base64="3qbn/JABMPEN/vJe80lHKcFSyFM=">AAAB+3icbVBNS8NAEN34WetXrEcvwSJ4sSRSqseCCB4r2A9oY9hsN+3azSbuTqQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5fsyZAtv+NlZW19Y3Ngtbxe2d3b1986DUUlEiCW2SiEey42NFORO0CQw47cSS4tDntO2PrqZ++4lKxSJxB5OYuiEeCBYwgkFLnlnqAR2DH6SPmZc+nDnZ/bVnlu2KPYO1TJyclFGOhmd+9foRSUIqgHCsVNexY3BTLIERTrNiL1E0xmSEB7SrqcAhVW46uz2zTrTSt4JI6hJgzdTfEykOlZqEvu4MMQzVojcV//O6CQSXbspEnAAVZL4oSLgFkTUNwuozSQnwiSaYSKZvtcgQS0xAx1XUITiLLy+T1nnFqVVqt9VyvZrHUUBH6BidIgddoDq6QQ3URASN0TN6RW9GZrwY78bHvHXFyGcO0R8Ynz8WrZRw</latexit>

qE
j�1

<latexit sha1_base64="Dr63AX8b86QmNUSTRcGcDhzlE7Q=">AAAB+3icbVBNS8NAEN34WetXrEcvwSIIQkmkVI8FETxWsB/QxrDZbtq1m03cnUhLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPz/JgzBbb9baysrq1vbBa2its7u3v75kGppaJEEtokEY9kx8eKciZoExhw2oklxaHPadsfXU399hOVikXiDiYxdUM8ECxgBIOWPLPUAzoGP0gfMy99OHOy+2vPLNsVewZrmTg5KaMcDc/86vUjkoRUAOFYqa5jx+CmWAIjnGbFXqJojMkID2hXU4FDqtx0dntmnWilbwWR1CXAmqm/J1IcKjUJfd0ZYhiqRW8q/ud1Ewgu3ZSJOAEqyHxRkHALImsahNVnkhLgE00wkUzfapEhlpiAjquoQ3AWX14mrfOKU6vUbqvlejWPo4CO0DE6RQ66QHV0gxqoiQgao2f0it6MzHgx3o2PeeuKkc8coj8wPn8AE52Ubg==</latexit>

qE
j+1

<latexit sha1_base64="lHxrPmtUtvSU+pN8q9IfH7C/jIY=">AAAB/3icbVBNS8NAEN3Ur1q/qoIXL4tF8FQSKdVjwYvHClaFpoTNdqJrN5uwOxFLzMG/4sWDIl79G978N25rDn49GHi8N8PMvDCVwqDrfjiVmdm5+YXqYm1peWV1rb6+cWaSTHPo8UQm+iJkBqRQ0EOBEi5SDSwOJZyHo6OJf34D2ohEneI4hUHMLpWIBGdopaC+5SPcYhjlqgjy3A8jCkVwXQT1htt0p6B/iVeSBinRDerv/jDhWQwKuWTG9D03xUHONAouoaj5mYGU8RG7hL6lisVgBvn0/oLuWmVIo0TbUkin6veJnMXGjOPQdsYMr8xvbyL+5/UzjA4HuVBphqD416IokxQTOgmDDoUGjnJsCeNa2Fspv2KacbSR1WwI3u+X/5Kz/abXbrZPWo1Oq4yjSrbJDtkjHjkgHXJMuqRHOLkjD+SJPDv3zqPz4rx+tVaccmaT/IDz9gnOWpaU</latexit>nej

a

<latexit sha1_base64="6PTiCpynfALxlOqeMDwhrbVL1g0=">AAAB6HicdZDLSsNAFIZP6q3WW9Wlm8EiuCpJG9suCyK4bMFeoA1lMp20o5NJmJkIJfQJ3LhQxK2P5M63cdJWUNEfBj7+cw5zzu/HnClt2x9Wbm19Y3Mrv13Y2d3bPygeHnVVlEhCOyTikez7WFHOBO1opjntx5Li0Oe0599dZvXePZWKReJGz2LqhXgiWMAI1sZqX42KJbtsO9WLah0ZsCt1t7EAp1atIcdAphKs1BoV34fjiCQhFZpwrNTAsWPtpVhqRjidF4aJojEmd3hCBwYFDqny0sWic3RmnDEKImme0Gjhfp9IcajULPRNZ4j1VP2uZeZftUGig4aXMhEnmgqy/ChIONIRyq5GYyYp0XxmABPJzK6ITLHERJtsCiaEr0vR/9CtlJ1a2W27paa7iiMPJ3AK5+BAHZpwDS3oAAEKD/AEz9at9Wi9WK/L1py1mjmGH7LePgHohIz8</latexit>

E
<latexit sha1_base64="Rbzy8D8McYdx1tdGH1d4NJjHpAE=">AAAB7nicdZDLSgNBEEVr4ivGV9Slm8YguAozyZhkGXDjMoJ5QDKEnk5N0qTnQXePEEI+wo0LRdz6Pe78G3uSCCp6oeFwq4quun4iuNK2/WHlNja3tnfyu4W9/YPDo+LxSUfFqWTYZrGIZc+nCgWPsK25FthLJNLQF9j1p9dZvXuPUvE4utOzBL2QjiMecEa1sboDPxUC9bBYssu2U72q1okBu1J3G0twatUacQxkKsFarWHxfTCKWRpipJmgSvUdO9HenErNmcBFYZAqTCib0jH2DUY0ROXNl+suyIVxRiSIpXmRJkv3+8SchkrNQt90hlRP1O9aZv5V66c6aHhzHiWpxoitPgpSQXRMstvJiEtkWswMUCa52ZWwCZWUaZNQwYTwdSn5HzqVslMru7duqemu48jDGZzDJThQhybcQAvawGAKD/AEz1ZiPVov1uuqNWetZ07hh6y3T8eoj9c=</latexit>•

<latexit sha1_base64="Rbzy8D8McYdx1tdGH1d4NJjHpAE=">AAAB7nicdZDLSgNBEEVr4ivGV9Slm8YguAozyZhkGXDjMoJ5QDKEnk5N0qTnQXePEEI+wo0LRdz6Pe78G3uSCCp6oeFwq4quun4iuNK2/WHlNja3tnfyu4W9/YPDo+LxSUfFqWTYZrGIZc+nCgWPsK25FthLJNLQF9j1p9dZvXuPUvE4utOzBL2QjiMecEa1sboDPxUC9bBYssu2U72q1okBu1J3G0twatUacQxkKsFarWHxfTCKWRpipJmgSvUdO9HenErNmcBFYZAqTCib0jH2DUY0ROXNl+suyIVxRiSIpXmRJkv3+8SchkrNQt90hlRP1O9aZv5V66c6aHhzHiWpxoitPgpSQXRMstvJiEtkWswMUCa52ZWwCZWUaZNQwYTwdSn5HzqVslMru7duqemu48jDGZzDJThQhybcQAvawGAKD/AEz1ZiPVov1uuqNWetZ07hh6y3T8eoj9c=</latexit>•
<latexit sha1_base64="Rbzy8D8McYdx1tdGH1d4NJjHpAE=">AAAB7nicdZDLSgNBEEVr4ivGV9Slm8YguAozyZhkGXDjMoJ5QDKEnk5N0qTnQXePEEI+wo0LRdz6Pe78G3uSCCp6oeFwq4quun4iuNK2/WHlNja3tnfyu4W9/YPDo+LxSUfFqWTYZrGIZc+nCgWPsK25FthLJNLQF9j1p9dZvXuPUvE4utOzBL2QjiMecEa1sboDPxUC9bBYssu2U72q1okBu1J3G0twatUacQxkKsFarWHxfTCKWRpipJmgSvUdO9HenErNmcBFYZAqTCib0jH2DUY0ROXNl+suyIVxRiSIpXmRJkv3+8SchkrNQt90hlRP1O9aZv5V66c6aHhzHiWpxoitPgpSQXRMstvJiEtkWswMUCa52ZWwCZWUaZNQwYTwdSn5HzqVslMru7duqemu48jDGZzDJThQhybcQAvawGAKD/AEz1ZiPVov1uuqNWetZ07hh6y3T8eoj9c=</latexit>•

<latexit sha1_base64="Rbzy8D8McYdx1tdGH1d4NJjHpAE=">AAAB7nicdZDLSgNBEEVr4ivGV9Slm8YguAozyZhkGXDjMoJ5QDKEnk5N0qTnQXePEEI+wo0LRdz6Pe78G3uSCCp6oeFwq4quun4iuNK2/WHlNja3tnfyu4W9/YPDo+LxSUfFqWTYZrGIZc+nCgWPsK25FthLJNLQF9j1p9dZvXuPUvE4utOzBL2QjiMecEa1sboDPxUC9bBYssu2U72q1okBu1J3G0twatUacQxkKsFarWHxfTCKWRpipJmgSvUdO9HenErNmcBFYZAqTCib0jH2DUY0ROXNl+suyIVxRiSIpXmRJkv3+8SchkrNQt90hlRP1O9aZv5V66c6aHhzHiWpxoitPgpSQXRMstvJiEtkWswMUCa52ZWwCZWUaZNQwYTwdSn5HzqVslMru7duqemu48jDGZzDJThQhybcQAvawGAKD/AEz1ZiPVov1uuqNWetZ07hh6y3T8eoj9c=</latexit>•
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Figure 8. (a) One polygonal element E ∈ T ; (b) Graph of the basis function ζ1, attached
to vertex qE1 (see Section 5.2.2).

5.2. The virtual element method for the 2d conductivity equation

This section deals with the implementation of the Virtual Element Method for the solution of the conductivity
equation equipped with homogeneous Dirichlet boundary conditions:

(Cond)

{
−div(γ∇u) = f in Ω,

u = 0 on ∂Ω,

where the sought function u ∈ H1
0 (Ω) is denoted without reference to the (fixed) domain Ω in this section,

the right-hand side f ∈ L2(Ω) stands for a source term, and the conductivity γ is assumed to be a positive
constant. Our presentation relies on the pedagogic article [120], see also [15]. We provide a general overview
of the method in Section 5.2.1 before focusing on the definition of the local space of discrete functions in
Section 5.2.2.
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5.2.1. General presentation of the method

Like the Finite Element Method (see e.g. [36]), the Virtual Element Method leverages the variational
formulation (2.2) of (Cond), which reads:

(5.2) Search for u ∈ V s.t. ∀v ∈ V, a(u, v) = `(v).

Here, the functional space V is H1
0 (Ω), and we have posed:

(5.3) ∀u, v ∈ V, a(u, v) = γ

∫
Ω

∇u · ∇v dx and `(v) =

∫
Ω

fv dx.

The discretization of (5.2) relies on a finite-dimensional subspace WT of V ; the numerical approximation
uT ∈ WT of u is sought as the solution to the problem:

(5.4) Search for uT ∈ WT s.t. ∀v ∈ WT , a(uT , v) = `(v).

The space WT is defined by:

(5.5) WT =
{
u ∈ C(Ω) and u|E ∈ W(E) for all E ∈ T

}
,

where for each element E ∈ T , W(E) is a local space of functions on E whose definition is the topic of
the next Section 5.2.2. For the moment, let us solely mention that the dimension of WT coincides with
the number M of vertices in the mesh T , and that the values of functions u ∈ WT at the vertices qj ,
j = 1, . . . ,M are the degrees of freedom of the discretization. We introduce a basis {ϕk}k=1,...,M of WT as
follows: for k = 1, . . . ,M , the function ϕk ∈ WT is attached to the vertex qk in the sense that:

(5.6) ∀l = 1, . . . ,M, ϕk(ql) =

{
1 if k = l,
0 otherwise.

By writing the decomposition uT =
∑M
l=1 ulϕl of the sought function uT on this basis, and using v = ϕk

as test function in (5.4) for k = 1, . . . ,M , the problem (5.2) and (5.3) boils down to the following M ×M
linear system:

(5.7) KT UT = FT ,

where UT := (u1, . . . , uM ) ∈ RM , and the entries of the stiffness matrix KT ∈ RM×M and force vector
FT ∈ RM are given by:

(5.8) KT ,kl = a(ϕl, ϕk), and FT ,k = `(ϕk), k, l = 1, . . . ,M.

The integrals defining these quantities are sums of contributions from each element E ∈ T , i.e.

(5.9) a(ϕl, ϕk) =
∑
E∈T

aE(ϕl, ϕk), where aE(u, v) := γ

∫
E

∇u · ∇v dx, and

FT ,k =
∑
E∈T

`E(ϕk), where `E(v) :=

∫
E

fv dx.

Hence, the assembly of (5.7) is realized by calculating the local, element-wise contributions aE(ϕl, ϕk),
`E(ϕk) to the entries KT ,kl of the global stiffness matrix and FT ,k of the global force vector, respectively.
These computations are discussed in the next Section 5.2.2 and Appendix D.

5.2.2. The local space W(E) attached to an element E ∈ T
Throughout this section, E is a given polygon in T ; we define W(E) as the space of functions u : E → R
satisfying the following properties:

• The restriction u|e : e→ R of u to any edge e of E is affine;
• The differential operator of (Cond) cancels u, i.e. −div(γ∇u) = −γ∆u = 0 in E.

Obviously, the functions u ∈ W(E) are uniquely determined by their values at the vertices qEj of E, j =

1, . . . , nE ; in particular, W(E) has dimension nE and it contains the space P(E) of affine functions on E:

P(E) :=
{
u(x) = a+ 〈b,x〉, a ∈ R, b ∈ R2

}
.
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We then define a basis {ζi}i=1,...,nE of W(E) as follows: for i = 1, . . . , nE , ζi is the unique function in W(E)
such that:

(5.10) ζi(q
E
j ) =

{
1 if i = j,
0 otherwise.

Observe that the dependency of the functions ζi on the actual element E is omitted for notational simplicity.

Remark 5.1.

• Several definitions of W(E) are actually possible, all of them leading to discrete functions u ∈ WT
whose degrees of freedom are their values at the vertices of T . In fact, a careful selection of W(E)
may significantly ease the numerical implementation, see for instance Appendix D.3 for an alternative
definition of the behavior of functions u ∈ W(E) inside E which lends itself to an easier evaluation
of integrals of the form

∫
E
uv dx, u, v ∈ W(E), or the appendix in [57] for another definition which

is better adapted to the evaluation of quadrature formulas in the 3d elasticity setting.
• Higher-order versions ofW(E), featuring higher degree polynomials, could also be considered, leading

to higher-order approximations uT of u.

With these notations, the global basis functions ϕk defined in (5.6) can be expressed in terms of the local
functions ζi; more precisely:

∀k = 1, . . . ,M, E ∈ T , ϕk|E=

{
ζi if there exists i ∈

{
1, . . . , nE

}
s.t. qEi = qk,

0 otherwise.

As a result, the computation of the entries of the stiffness matrix KT and force vector FT in (5.9) boils down
to that of the local building blocks

(5.11) KE
ij := aE(ζi, ζj) and FEi := `E(ζi), i, j = 1, . . . , nE .

Unfortunately, no explicit expression of the ζi is available to realize these computations; the key idea of
the Virtual Element Method is to take advantage of the definition of W(E) to approximate them with a
computation which uses the sole property (5.10). To achieve this, let us introduce:

• The subspace WR(E) ⊂ P(E) of constant functions on E:

WR(E) := span {m1} , where m1(x) = 1.

• The subspace WC(E) ⊂ P(E) of functions with zero mean value over the vertices of E:

WC(E) := {u ∈ P(E), u = 0} ,
which is spanned by the functions

m2(x) = x1 − qE1 , and m3(x) = x2 − qE2 .
It is easily seen that P(E) is the direct sum of WR(E) and WC(E):

P(E) =WR(E)⊕WC(E).

We next introduce projection operators πR and πC onto WR(E) and WC(E), respectively: for any (smooth
enough) function v : E → R, πRv ∈ WR(E) and πCv ∈ WC(E) are respectively defined by:

πRv(x) = v, and πCv(x) = 〈∇v〉 · (x− qE).

With these notations, the following relations are easily verified:

∀c ∈ WC(E), πRc = 0, πCc = c and ∀r ∈ WR(E), πCr = 0, πRr = r.

We finally define the projection πP :W(E)→ P(E) onto affine functions by:

(5.12) πPv = πCv + πRv.

The following lemma draws elementary, albeit crucial properties of these objects.

Lemma 5.1. The following facts hold true:

(i) The operators πR and πC are the “orthogonal projections” from W(E) onto WR(E) and WC(E),
respectively, in the sense of the bilinear form aE(·, ·):

∀r ∈ WR(E), c ∈ WC(E), v ∈ W(E), aE(r, v) = 0 and aE(c, v − πCv) = 0.
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(ii) The following decomposition of aE(·, ·) holds true:

(5.13) ∀u, v ∈ W(E), aE(u, v) = aE(πCu, πCv) + aE(u− πPu, v − πPv).

Proof. (i) The first relation is obvious since functions in WR(E) are constant on E. The second one arises
from the fact that the gradient ∇c of any function c ∈ WC(E) is constant over E:

aE(c, v − πCv) = γ∇c ·
(∫

E

(∇v −∇(πCv)) dx

)
= γ∇c ·

(
|E|〈∇v〉 − |E|〈∇v〉

)
= 0.

(ii) A straightforward calculation based on the identities in (i) yields:

aE(u, v) = aE(πRu+ πCu+ (u− πPv), πRv + πCv + (v − πPv))

= aE(πCu+ (u− πPv), πCv + (v − πPv))

= aE(πCu, πCv) + aE(u− πPv, v − πPv).

�

Let us now note that (5.13) gives rise to a decomposition of the local stiffness matrix KE ∈ RnE×nE

in
(5.11) into two terms:

KE = PE + SE .

Here, the matrices PE and SE ∈ RnE×nE

are defined by:

∀i, j = 1, . . . , nE , PEij = aE(πCζi, πCζj) and SEij = aE(ζi − πPζi, ζj − πPζj).

The entries of the matrix PE can be calculated exactly; indeed, the projection πCu of a function u ∈ W(E)
has coefficients over the basis {mα}α=1,2,3 that can be calculated solely from the values of u at the vertices
of E, see Appendix D.1 about this fact.

On the other hand, the second term aE(u − πPu, v − πPv) in the right-hand side of (5.13) (associated
to SE) appraises the behavior of aE(·, ·) on those functions in W(E) that are not affine. It is not easily

computed, and it is therefore replaced by another bilinear form s̃E (and matrix S̃E) which can be calculated
just from the values of u and v at the vertices of E (see Appendix D.1 about this calculation):

s̃E(u− πPu, v − πPv), where s̃E(w, z) := αE
nE∑
i=1

w(qEi )z(qEi ),

and αE is a constant which is chosen so that s̃E scale as aE upon refinement of the mesh T ; in this simple
case, we take αE = 1.

This replacement gives rise to the modified bilinear form ãE(·, ·) given by:

∀u, v ∈ W(E), ãE(u, v) = aE(πCu, πCv) + s̃E(u− πPu, v − πPv).

It guarantees the so-called polynomial consistency of ãE with aE (or “patch test” in engineering): ãE(u, v)
and aE(u, v) coincide when at least one of the functions u or v belongs to P(E). Indeed,

∀p ∈ P(E), v ∈ W(E), ãE(p, v) = aE(πCp, πCv)

= aE(πCp, v),

= aE(p, v).

This method can be proved to be convergent, see [39]. Intuitively, it behaves at least as well as if only linear
polynomials were the only basis functions on each element.

Remark 5.2. The strategy illustrated in this section can be adapted to the solution of eigenvalue problems
of the form (2.4), see [59]. The main additional operation required to achieve this purpose is the assembly of
the mass matrix, which is described in Appendix D.3.
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5.3. Resolution of the linear elasticity system with the Virtual Element Method

In this section, whose presentation is based on [18, 57], we briefly describe how the strategy presented
in the previous Section 5.2 can by adapted to deal with the solution of the 2d linear elasticity system.
To emphasize the similarities between the treatments of both situations, we use the same notations for
corresponding quantities when no confusion is possible.

Let us recall the setting of Section 2.2.2: the boundary of the shape Ω is decomposed into three disjoint
regions ΓD, ΓN , Γ, where ΓD is a clamping area, ΓN is the support of external loads g : ΓN → R2 and Γ
is effort-free. Assuming the presence of body forces f : Ω → R2, the elastic displacement u : Ω → R2 is the
unique solution in H1

ΓD
(Ω)2 to the boundary value problem:

(Elas)


−div(Ae(u)) = f in Ω,

u = 0 on ΓD,
Ae(u)n = g on ΓN ,
Ae(u)n = 0 on Γ.

The associated variational formulation reads, see (2.6):

Search for u ∈ V s.t. ∀v ∈ V, a(u,v) = `(v), where V = H1
ΓD

(Ω)2,

a(u,v) =

∫
Ω

Ae(u) : e(v) dx, and `(v) =

∫
Ω

f · v dx +

∫
ΓN

g · v ds.

As described in Section 5.2.1, the cornerstone of the development of the Virtual Element Method lies in
the definition of the local space of discrete functions W(E) and the assembly of the local stiffness matrix

KE ∈ R2nE×2nE

attached to a given polygon E in T . The local space W(E) reads:

W(E) =
{

u : E → R2, u is affine on each edge of ∂E and − div(Ae(u)) = 0
}
.

Again, an element u ∈ W(E) is uniquely determined by its values at the vertices qEj , j = 1, . . . , nE of E and

W(E) has dimension 2nE . Besides, W(E) contains the space P(E) of affine functions, given by:

P(E) :=
{
u(x) = a +Bx, a ∈ R2, B ∈ R2×2

}
.

Let us introduce the natural basis {ζj}j=1,...,2nE of W(E), defined by, for i = 1, . . . , nE :

(5.14) ζ2i−1(qEi ) =

(
1
0

)
, and ζ2i−1(qEj ) =

(
0
0

)
for j 6= i;

(5.15) ζ2i(q
E
i ) =

(
0
1

)
, and ζ2i(q

E
j ) =

(
0
0

)
for j 6= i.

In a similar state of mind as in Section 5.2, among the elements in P(E), we shall distinguish the rigid-body
motions u ∈ WR(E), whose strain e(u) equals 0, and the fields u ∈ WC(E) with constant strain e(u);
precisely:

• The subspace WR(E) ⊂ P(E) of rigid-body motions is defined by

WR(E) :=
{
a +M(x− q̄E), a ∈ R2, M ∈ R2×2, MT = −M

}
;

it is spanned by the three vector fields:

(5.16) r1(x) =

(
1
0

)
, r2(x) =

(
0
1

)
and r3(x) =

(
−(x2 − qE2 )

x1 − qE1

)
.

• The subspace WC(E) ⊂ P(E) of vector fields with constant strain is defined by

WC(E) :=
{
S(x− qE), S ∈ R2×2, ST = S

}
;

it is spanned by the three vector fields:

(5.17) c1(x) =

(
x1 − qE1

0

)
, c2(x) =

(
0

x2 − qE2

)
and c3(x) =

(
x2 − qE2
x1 − qE1

)
.
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Again, it is easily verified that P(E) is the direct sum of WR(E) and WC(E):

P(E) =WR(E)⊕WC(E).

We next define the projections πR and πC from W(E) onto WR(E) and WC(E), respectively.

• For any (smooth enough) vector field u : E → R2, πRu ∈ WR(E) is defined by:

πRu(x) = ū + 〈ω(u)〉
(
−(x2 − qE2 )

x1 − qE1

)
, x ∈ E;

where ω(u) := 1
2

(
∂u2

∂x1
− ∂u1

∂x2

)
is (half) the scalar curl of u.

• For any (smooth enough) vector field u : E → R2, πCu ∈ WC(E) is defined by:

πCu(x) = 〈e(u)〉(x− qE).

The following relations are then easily verified:

∀r ∈ WR(E), πCr = 0, πRr = r, and ∀c ∈ WC(E), πRc = 0, πCc = c.

From these data, we define the projection operator πP onto affine functions in P(E) by:

(5.18) πPu = πCu + πRu.

The next lemma is the counterpart of Lemma 5.1 in the present linear elasticity setting; its very similar
proof is omitted for brevity.

Lemma 5.2. The following facts hold true:

(i) The operators πR and πC are the “orthogonal projections” from W(E) onto WR(E) and WC(E),
respectively, in the sense of the bilinear form aE(·, ·):

∀r ∈ WR(E), c ∈ WC(E), v ∈ W(E), aE(r,v) = 0 and aE(c,v − πCv) = 0.

(ii) The following decomposition of aE(·, ·) holds:

(5.19) ∀u,v ∈ W(E), aE(u,v) = aE(πCu, πCv) + aE(u− πPu,v − πPv).

Let us now discuss the calculation of the local stiffness matrix

KE ∈ R2nE×2nE

, KE
ij = a(ζi, ζj), i, j = 1, . . . , 2nE .

Like in Section 5.2.2, (5.19) induces a convenient decomposition KE into two blocks:

KE = PE + SE , PE , SE ∈ R2nE×2nE

.

Here,

• The first term in the right-hand side of (5.19) gives rise to the matrix PE ∈ R2nE×2nE

defined by:

∀i, j = 1, . . . , 2nE , PEij = aE(πCζi, πCζj),

which roughly speaking corresponds to the block of KE over P(E). The entries of PE can be
calculated exactly, since the coefficients of the projection πCu of a vector field u ∈ W(E) in the
basis {cα}α=1,2,3 can be calculated from the values of u at the vertices of E, see Appendix D.2.

• The second term in the right-hand side of (5.19) appraises the behavior of the bilinear form aE(·, ·)
over those functions in W(E) that are not affine. Again, this second block is replaced by a suitable
quantity which can be calculated just from the values of u and v at the vertices of E.

As the result of these considerations, we replaced the local bilinear form aE(·, ·) with

ãE(u,v) = aE(πCu, πCv) + s̃E(u− πPu,v − πPv), where s̃E(u,v) = αE
n∑
i=1

u(qi) · v(qi),

and the coefficient αE depends on the element E so that s̃E scale as aE upon refinement of the mesh T .
The implementation details of this methodology are presented in Appendix D.2.
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6. Sensitivity of a shape functional with respect to seed points and volume fractions

In this section, we return to our main purpose of solving the shape and topology optimization problem

(P) min
Ω
J(Ω) s.t. G(Ω) = 0,

where J(Ω) and G(Ω) depend on Ω via the solution uΩ to a boundary value problem such as (Cond) or
(Elas). We describe how the shape derivative of a general objective function J(Ω) (or similarly, that of a
general constraint function G(Ω)) can be expressed in terms of the defining variables of a diagram V(s,ψ)
representing Ω in the sense that (3.6) holds. In this perspective, in Section 6.1, we first deal with the
discretization of J(Ω) into a function J(q) of the vertices q ∈ RdM of the diagram, and we expose how
the theoretical expression of the shape derivative J ′(Ω)(θ) allows to calculate the gradient ∇qJ(q) of this

discrete function. As we have mentioned, J(q) (resp. G(q)) in turn induces a function J̃(s,ν) (resp. G̃(s,ν))
of the seed points s ∈ RdN and cell measures ν ∈ RN of the diagram V(s,ψ). This gives rise to our discrete
shape and topology optimization problem:

(P-disc) min
(s,ν)

J̃(s,ν) s.t. G̃(s,ν) = 0.

We explain in Section 6.2 how the sensitivities ∇sJ̃(s,ν) and ∇ν J̃(s,ν) of J(Ω) with respect to the param-
eters (s,ν) of the diagram for Ω can be inferred from the gradient ∇qJ(q). In Section 6.3, we recall the
Hilbertian trick, which allows among other things to smooth these sensitivities in a consistent manner. This
procedure is also a key algorithmic component of the constrained optimization algorithm used to tackle (P),
that we finally describe in Section 6.4.

Notation. In this section, the shape Ω ⊂ Rd is described by a modified diagram V(s,ψ) of the form (3.6)
and (3.7). We consider a generic function J(Ω) of Ω, standing for either the objective or a constraint in
(P). To simplify the presentation and without loss of generality, we shall sometimes assume that the space
dimension d equals 2, and that J(Ω) is of the form

(6.1) J(Ω) =

∫
Ω

j(uΩ) dx,

where j : R→ R is a smooth function, satisfying adequate growth conditions, and uΩ is the solution to the
conductivity equation (Cond). As we have hinted at, J(Ω) induces several discrete versions, one depending
on the vertices q of the diagram, that we shall denote by J(q) with a small abuse of notation, and in turn,

another function J̃(s,ν), depending on the seed points s and the cell measures ν.

6.1. Discretization and differentiation of J(Ω) in terms of the vertices of a diagram for Ω

In this section, we discuss the discretization of the shape functional J(Ω) as a function J(q) of the vertices
q ∈ RdM of the diagram V(s,ψ) representing Ω as (3.6) and the calculation of the gradient ∇qJ(q).

As we have mentioned, in our applications, J(Ω) depends on Ω via the solution uΩ to a boundary value
problem posed on Ω, see e.g. (6.1). The latter is solved along the lines of Section 5 by applying the Virtual
Element Method on the polygonal mesh T resulting from the discretization of the diagram V(s,ψ), see
Section 4. The discrete solution is a function of the vertices q of the mesh T , and it gives rise in turn to a
discrete objective function J(q) once the formula (6.1) is discretized by suitable quadrature formulas. In the
present work, we rely on very basic expressions, which are exemplified in the forthcoming discussion. More
elaborate rules are available in the context of general polygonal elements [34, 115]; for brevity, we do not
emphasize on this classical, albeit technical issue.

The calculation of the gradient ∇qJ(q) is a slightly more delicate issue. It falls under the “discretize-then-
optimize” setting, in which the derivatives of the discrete quantities of interest are used [100]; several methods
can be used to achieve this goal. One convenient practice relies on automatic differentiation, see e.g. [85] for
an introduction in the shape optimization context. In a nutshell, the gradient of the mapping q 7→ J(q) can
be calculated concurrently with its evaluation by leveraging adequate data structures and by implementing
all the constituent operations of the evaluation pipeline (including the assembly and inversion of the stiffness
matrix involved in calculations by the Virtual Element Method) together with their derivatives. This elegant
framework is unfortunately very stringent, and it is not always compatible with realistic applications where
the mechanical solver is used in a black-box fashion.
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When automatic differentiation of J(q) is not available, the computation of ∇qJ(q) can be realized “by
hand”. In fact, the derivatives of the aforementioned building blocks of the evaluation of q 7→ J(q) can be
calculated explicitly, in principle. Even though this strategy could be adopted in our context, it is still very
intrusive as it requires a complete knowledge of the mechanical solver, notably.

For this reason, we consider yet another option, borrowing from the “optimize-then-discretize” paradigm
in optimal design, which mainly relies on the continuous formula for the shape derivative J ′(Ω)(θ). More
precisely, we leverage an elegant remark from [19]: the sensitivity ∂J

∂qi
(q)(hi) of J(q) to a perturbation of

the ith vertex qi in the direction hi ∈ Rd can be approximated by evaluating (a discretization of) the volume
form of the continuous shape derivative θ 7→ J ′(Ω)(θ) with the particular deformation field θ = ϕihi, where
ϕi is the unique function in the discrete space WT given by (5.5) taking the value 1 at vertex i and 0
elsewhere, see (5.6):

∂J

∂qi
(q)(hi) = J ′(Ω)(ϕihi), where ϕi ∈ WT is defined by: ϕi(qj) =

{
1 if i = j,
0 otherwise.

In a nutshell, this practice is legitimated by the fact that the theoretical formula for the volume form of
J ′(Ω)(θ) can be obtained by the exact same adjoint-based trail as that for the discrete derivative ∂J

∂qi
(q)(hi).

We refer to e.g. [62] and §2.9 in [64] for related discussions about the (non) commutation of discretization
and differentiation in optimal design.

In order to describe this possibility more precisely, let us assume that the shape derivative J ′(Ω)(θ) is
available under the following volume form (2.9):

J ′(Ω)(θ) =

∫
Ω

(tΩ · θ + SΩ : ∇θ) dx, for some tΩ : Ω→ Rd and SΩ : Ω→ Rd×d,

and let us suppose for a moment that the fields tΩ and SΩ are given approximate, discrete counterparts tT
and ST that are constant in restriction to each element E ∈ T :

(6.2) J ′(Ω)(θ) ≈ J ′T (θ) :=

∫
Ω

(tT · θ + ST : ∇θ) dx.

The gradient of J(q) with respect to the coordinates of the ith vertex of the mesh is then approximated as:

∇qi
J(q) ≈

 J ′T (θ1
i )

...
J ′T (θdi )

 ,

where for k = 1, . . . , d, θki ∈ Wd
T is the unique vector-valued discrete function such that:

(6.3) θki (qj) = ek if i = j and 0 otherwise.

The aforementioned approximations of tΩ, SΩ by tT and ST can be realized in various ways. For instance
one could use the simple formulas:

tT |E=
1

nE

nE∑
j=1

tΩ(qEj ), and ST |E=
1

nE

nE∑
j=1

SΩ(qEj ),

where we have used the notations of Section 5.1.
When SΩ involves the gradient of the state function uΩ, say for instance SΩ = γ∇uΩ ⊗∇uΩ, one could

also make the approximation:

ST |E= γE∇(πPu)⊗∇(πPu), where γE :=
1

nE

nE∑
j=1

γ(qEj ),

and πP is the projector over first-order polynomial functions in P(E), defined in (5.18).
In any event, the integrals featured in the quantities J ′T (θki ) can be naturally decomposed as sums of

integrals running over the elements E of the mesh T :

J ′T (θki ) =
∑
E∈T

(
tT |E ·tE(θki ) + ST |E : SE(θki )

)
,
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where the vectors tE(θki ) and matrices SE(θki ) are defined by:

tE(θki ) =

∫
E

θki dx and of the matrices SE(θki ) =

∫
E

∇θki dx.

These basic ingredients can be calculated or approximated in explicit terms of the physical characteristics
of the element E. For instance, in the case where the space dimension d equals 2, we approximate tE(θ1

i )
and tE(θ2

i ) as:

tE(θ1
i ) ≈ 1

nE
|E|
(

1
0

)
and tE(θ2

i ) ≈ 1

nE
|E|
(

0
1

)
.

As far as the matrices SE(θ1
i ), SE(θ2

i ) are concerned, similar integrations by parts to those used in Appen-
dix D.1 yield:

SE(θ1
i ) =

1

2

(
|êj |(nêj

)1 |êj |(nêj
)2

0 0

)
, and SE(θ2

i ) =
1

2

(
0 0

|êj |(nêj
)1 |êj |(nêj

)2

)
.

Remark 6.1. In principle, the continuous shape derivative J ′(Ω)(θ) depends only on the values of the
deformation θ on the boundary ∂Ω, see Section 2.3 about this general feature. On the contrary, it is not
exactly true that the approximation J ′T (θki ) in (6.2) vanishes when the deformation θki is associated to an
internal vertex qi. This is a manifestation of the lack of commutation between the operations of discretization
and differentiation in optimal design, see again [62] and §2.9 in [64]. However, we expect (and indeed verify)
that if the approximation (6.2) is “good enough”, the entries of ∇qJ(q) attached to internal vertices should
be “very small” when compared to those related to boundary vertices. For this reason, it is enough to compute
the quantities J ′T (θkj ) for the indices j = 1, . . . ,M of the boundary vertices of Ω.

6.2. Calculation of the derivative of a functional with respect to the positions of the seeds and
the cell measures

We have seen in Section 6.1 how a general function of the domain J(Ω) can be discretized into a function
J(q) depending on the positions q ∈ RdM of the vertices of the mesh T , and how to calculate the gradient
∇qJ(q). In turn, q depends on the seed points s and the weights ψ of the diagram V(s,ψ) of Ω, and, again,
on the seed points s and the cell measures ν, which are the design variables of our discrete version of the
shape and topology optimization problem (P), as explained in Section 3.3. This raises the need to express
the derivative of a general function J(q) of the vertices q of the diagram V(s,ψ) in terms of s and ν.

To formulate this issue rigorously, let us write the relation between the seeds points s ∈ RdN , the weights
ψ ∈ RN and the vertices q of the diagram V(s,ψ) under the abstract form:

(6.4) q = Q(s,ψ∗(s,ν)),

where Q : RdNs × RNψ → RdM produces the collection of vertices of the mesh T induced by V(s,ψ), and,

as in Section 3.2, ψ∗(s,ν) is the unique weight vector such that each cell Vi(s,ψ
∗(s,ν)) has measure νi,

i = 1, . . . , N . We then wish to calculate the derivatives of the functional J̃ : RdNs × RNν → R defined by:

(6.5) J̃(s,ν) := J(Q(s,ψ∗(s,ν)).

This is the purpose of the next result.

Proposition 6.1. Let J : RdM → R be a differentiable function. Then the composite function J̃ : RdNs ×
RNν → R in (6.5) is differentiable almost everywhere, and its derivatives read:

(6.6) ∇sJ̃(s,ν) =
[
∇sQ(s,ψ∗(s,ν))

]T
∇qJ(q) +

[
∇sF(s,ν,ψ∗(s,ν))

]T
p(s,ν),

and

(6.7) ∇ν J̃(s,ν) = −p(s,ν).

Here, the function F : RdNs ×RNν ×RNψ → RN is the derivative ∇ψK(s,ν,ψ), see (3.14); the adjoint vector

p(s,ν) ∈ RN is defined as the solution to the N ×N system:

(6.8)
[
∇ψF(s,ν,ψ∗(s,ν))

]T
p(s,ν) = −

[
∇ψQ(s,ψ∗(s,ν))

]T
∇qJ(q).

In these formulas,
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• The gradient ∇qJ(q) is a vector in RdM , whose expression is assumed to be known.
• The matrices [∇sQ(s,ψ∗(s,ν))] and [∇ψQ(s,ψ∗(s,ν))] have respective sizes dM×dN and dM×N ;

their explicit expressions (in 2d) are the subject of Appendix A.

• The matrix [∇ψF(s,ν,ψ∗(s,ν))]
T

has size N ×N , and its calculation (in 2d) is provided in Appen-
dix B.

Proof. At first, Proposition A.1 below states that the mapping Q is differentiable at any point (s,ψ) ∈
RdN ×RN satisfying the assumptions of Theorem 3.1. These points form an open subset of RdN ×RN whose
complement has null Lebesgue measure. Moreover, for any such point (s,ν) ∈ RdN ×RN , we have seen that
ψ∗(s,ν) is the unique solution to the equation (3.14). By the implicit function theorem and the regularity
of F expressed in Theorem 3.1, it follows that ψ∗ is differentiable at such a point (s,ν), and by composition,

J̃ is differentiable at a.e. point (s,ν) in RdN × RN .

Let us now prove (6.6). At any point (s,ν) where J̃ is differentiable, the chain rule shows that:

∀h ∈ RdN ,
∂J̃

∂s
(s,ν)(h) =

∂J

∂q
(q)

(
∂Q

∂s
(s,ψ∗(s,ν))(h) +

∂Q

∂ψ
(s,ψ∗(s,ν))

(
∂ψ∗

∂s
(s,ν)(h)

))
,

where we have set q := Q(s,ψ∗(s,ν)). This rewrites, in terms of gradients and matrices:

(6.9) ∇sJ̃(s,ν) =
([
∇sQ(s,ψ∗(s,ν))

]T
+
[
∇sψ

∗(s,ν)
]T [
∇ψQ(s,ψ∗(s,ν))

]T)
∇qJ(q).

All the terms are explicit in this formula, except for the matrix [∇sψ
∗(s,ν)]. The calculation of the latter is

difficult, since the function s 7→ ψ∗(s,ν) is only known implicitly, through the relation (3.14). To overcome
this difficulty, we use the classical adjoint technique for the differentiation of a quantity depending on the
solution to a parametrized implicit equation, see again [78, 101]. Differentiation with respect to s in (3.14)
yields:

(6.10)
[
∇sF(s,ν,ψ∗(s,ν))

]
︸ ︷︷ ︸

N×dN matrix

+
[
∇ψF(s,ν,ψ∗(s,ν))

]
︸ ︷︷ ︸

N×N matrix

[
∇sψ

∗(s,ν)
]

︸ ︷︷ ︸
N×dN matrix

= 0.

We then introduce the adjoint state p(s,ν) ∈ RN , defined as the solution to the N ×N linear system:[
∇ψF(s,ν,ψ∗(s,ν))

]T
p(s,ν) = −

[
∇ψQ(s,ψ∗(s,ν))

]T
∇Jq(q).

Injecting this identity into (6.9), we obtain:

∇sJ̃(s,ν) =
[
∇sQ(s,ψ∗(s,ν))

]T
∇qJ(q)−

[
∇sψ

∗(s,ν)
]T [
∇ψF(s,ν,ψ∗(s,ν))

]T
p(s,ν).

Eventually, using (6.10) to transform the last expression in the above right-hand side, we obtain:

∇sJ̃(s,ν) =
[
∇sQ(s,ψ∗(s,ν))

]T
∇qJ(q) +

[
∇sF(s,ψ∗(s,ν))

]T
p(s,ν),

which is the desired formula.

Let us then consider the second formula (6.7). Again, a simple use of the chain rule yields:

(6.11)
∇ν J̃(s,ν) = ∇ν

(
J(Q(s,ψ∗(s,ν)))

)
=

[
∇νψ∗(s,ν)

]T [
∇ψQ(s,ψ∗(s,ν))

]T
∇qJ(q),

where q := Q(s,ψ∗(s,ν)). As in the proof of (6.6), we rely on the adjoint method to eliminate the difficult

term [∇νψ∗(s,ν)]
T

from this expression. Recalling the defining system (6.8) for p(s,ν) ∈ RN , we obtain
immediately:

∇ν J̃(s,ν) = −
[
∇νψ∗(s,ν)

]T [
∇ψF(s,ν,ψ∗(s,ν))

]T
p(s,ν)

= −p(s,ν),

which is the desired expression. �
35



Remark 6.2. When the optimized shape Ω is only one phase within a large computational domain D and
is represented as a subcollection of the cells of a “true” Laguerre diagram Lag(s,ψ) of D, of the form (3.3)
and (3.4), similar considerations show that formula (6.7) reads instead:

∇ν J̃(s,ν) = −
(

p(s,ν)− 1

N

N∑
i=1

pi(s,ν)

)
.

Remark 6.3. The geometric calculations needed in the present section for the expressions of the matrices[
∇sF(s,ν,ψ)

]
,
[
∇ψF(s,ν,ψ)

]
,
[
∇sQ(s,ν,ψ)

]
and

[
∇ψQ(s,ν,ψ)

]
are provided in Appendices A and B.

They need only be implemented once and for all. In particular, this implementation is independent of the
particular objective function.

6.3. The Hilbertian method

We have described in the previous Sections 6.1 and 6.2 how to calculate the sensitivities ∇sJ̃(s,ν) and

∇ν J̃(s,ν) of a function J , depending on the domain Ω via the seeds s ∈ RdN and the cell measures ν ∈ RN
of a diagram V(s,ψ) of the form (3.6). Unfortunately, a direct use of these derivatives in the solution of
our discrete shape and topology optimization problem (P-disc) often proves awkward in practice: on the one
hand, they may show very irregular variations in space (i.e. they may have very different components along
the indices i = 1, . . . , N of neighboring cells), thus causing numerical instabilities. On the other hand, in
multiple applications, it is desirable to handle sensitivities that take into account certain requirements, for
instance that some of their components associated to cells located in non optimizable regions of space should
vanish. In this section, we explain how the so-called Hilbertian method allows to achieve both purposes with
rigorous guarantees that the resulting modified sensitivities retain descent properties. The application in
shape optimization of this classical procedure in the context of gradient flows is exposed in e.g. [7, 30, 44, 85].

6.3.1. The general strategy

Let us describe the use of the Hilbertian method in the illustrative perspective of regularizing the gradient

∇sJ̃(s,ν) of a discrete objective function J̃(s,ν) at a given point (s,ν) ∈ RdN × RN .

To this end, let us recall that ∇sJ̃(s,ν) is obtained by identifying the derivative h 7→ ∂J̃
∂s (s,ν)(h) with

an element in the space RdN via the following relation:

∀h ∈ RdN ,
∂J̃

∂s
(s,ν)(h) =

〈
∇sJ̃(s,ν),h

〉
.

The main idea of the Hilbertian method is to introduce a subspace V of the space RdN of seed points,
equipped with an inner product as(·, ·) different from the canonical one 〈·, ·〉, and to search for the gradient

hJ ∈ V of J̃(·,ν) with respect to this inner product. In other terms, we solve the following variational
problem:

(6.12) Search for hJ ∈ V s.t. for all h ∈ V, as(hJ ,h) =
∂J̃

∂s
(s,ν)(h).

Depending on the nature of the space V and its inner product as(·, ·), the gradient hJ may for instance be

more regular than its counterpart∇sJ̃(s,ν) associated to the canonical inner product, some of its components
may vanish, etc.

Our choices of V and as(·, ·) in the present context rely on the smoothing effect of the discrete Laplace
operator acting on mass–spring networks, see for instance [106] or [87] for reviews about the role of such
discrete Laplace operators in the field of computer graphics. We take V = RdN and search for the regularized

gradient of J̃(·,ν) at s as the solution hJ := {hJ,i}i=1,...,N ∈ RdN to the following minimization problem:

(6.13) min
h∈RdN

E(h), where E(h) :=
α2

2

∑
(i,j)∈E

j>i

|hi − hj |2+
1

2

N∑
i=1

|hi|2−
N∑
i=1

〈
∇si J̃(s,ν),hi

〉
,

where α is a user-defined parameter encoding a regularization length scale. Intuitively, the solution hJ to

(6.13) is a version of ∇sJ̃(s,ν) whose spatial variations are averaged over a region with radius α. The strictly
36



convex optimization problem (6.13) has a unique solution, which is characterized by the following first-order
optimality condition:

For i = 1, . . . , N, α2
∑
j∈Ni

(hi − hj) + hi = ∇si J̃(s,ν).

This rewrites as a 2N × 2N matrix system:

(α2As + I)h = ∇sJ̃(s,ν),

where the matrix As ∈ R2N×2N is given by the entries:

(6.14) As,2(i−1)+1,2(j−1)+1 = As,2(i−1)+2,2(j−1)+2 =

 #Ni if j = i,
−1 if j ∈ Ni,
0 otherwise,

and

As,2(i−1)+1,2(j−1)+2 = As,2(i−1)+2,2(j−1)+1 = 0, i, j = 1, . . . , N.

The inner product as(·, ·) on V = RdN associated to this strategy is:

(6.15) ∀ h1,h2 ∈ V, as(h
1,h2) =

〈
(α2As + I)h1,h2

〉
.

Remark 6.4. A similar strategy can be applied to impose smooth spatial variations of the gradient ∇ν J̃(s,ν)

of J̃ with respect to the measures of cells. One then relies on the choice V = RN , equipped with the inner
product:

(6.16) aν(ν1,ν2) =
〈
Aνν

1,ν2
〉
, where Aν,ij =

 #Ni if j = i,
−1 if j ∈ Ni,
0 otherwise,

6.3.2. Imposing that seeds stay inside the computational domain

The Hilbertian method naturally allows to enforce certain constraints on the regularized sensitivity hJ of J
with respect to the seed points s in (6.12). For instance hJ can be imposed to have null components over
the indices i inside a given subset I ⊂ {1, . . . , N} of the seed points by simply taking the following Hilbert
space V in (6.12):

V :=
{
h = (h1, . . . , hN ) ∈ RdN s.t. hi = 0 for i ∈ I

}
.

In this section, we exemplify how the seed points s of the diagram V(s,ψ) featured in Algorithm 1 can
be constrained to stay inside the computational domain D during the optimization process thanks to this
practice, see also Remark 3.1 about this point.

Let (s,ν) ∈ RdN × RN be a given stage of the process of Algorithm 1, and let ψ = ψ∗(s,ν). To simplify
the presentation, we assume that the seed points of the diagram V(s,ψ) are numbered in such a way that
the first B ≤ N ones are those adjacent to the external boundary ∂D. For notational simplicity and without
loss of generality, we also assume that for each i = 1, . . . , B at most one edge of each cell Vi(s,ψ) belongs
to the external boundary ∂D, and we denote by ni the unit normal vector to this edge, pointing outward

D. We then search for a gradient h of J̃ at (s,ν) with the property that, for each index i = 1, . . . , B, the
normal component hi · ni of the displacement hi should vanish:

(6.17) ∀i = 1, . . . , B, hi · ni = 0.

One possibility to enforce this requirement is to proceed by exact penalization, i.e. to take V = RdN and
replace the inner product (6.15) with:

as(h
1,h2) =

〈
(α2As + I)h1,h2

〉
+

1

ε

B∑
i=1

(h1
i · ni)(h2

i · ni),

where As ∈ R2N×2N is the matrix defined in (6.14) and ε is a “sufficiently small” parameter.
Another strategy consists in setting:

V =
{
h ∈ RdN , hi · ni = 0 for i = 1, . . . , B

}
, with the inner product (6.15).
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The identification problem (6.12) for the gradient hJ amounts to solving the optimization problem (6.13)
under the additional constraint (6.17). This is again a convex optimization problem, whose first-order
optimality conditions read:

∃λ ∈ RB s.t.


α2
∑
j∈Ni

(hi − hj) + hi + λini = ∇si J̃(s) for i = 1, . . . , B,

α2
∑
j∈Ni

(hi − hj) + hi = ∇si J̃(s) for i = B + 1, . . . , N,

hi · ni = 0 for i = 1, . . . , B.

The search for the pair (h,λ) ∈ R2N × RB rewrites as the following (2N +B)× (2N +B) matrix system: α2As + I L

LT 0

 h

λ

 =

 ∇sJ̃(s)

0

 ,

where the matrix L ∈ R2N×B is defined by:

L2(i−1)+1,j =

{
ni,1 if j = i,
0 otherwise,

and

L2(i−1)+2,i =

{
ni,2 if j = i,
0 otherwise,

ni,2 for i = 1, . . . , N, j = 1, . . . , B.

6.4. Exploitation of these derivatives with a constrained optimization algorithm

In this section, we describe how the derivatives of the objective and constraint functions J(Ω), G(Ω) with
respect to the seeds s and measures ν calculated in the previous Sections 6.1 to 6.3 are exploited to solve
our discrete constrained optimization problem:

(P-disc) min
(s,ν)

J̃(s,ν) s.t. G̃(s,ν) = 0.

This task relies on a constrained optimization algorithm developed in one of our previous works [52] which is
sketched briefly in Section 6.4.1. We then describe its application to our particular context in Section 6.4.2.

6.4.1. The null-space optimization algorithm in a nutshell

Let V be a Hilbert space, equipped with the inner product a(·, ·). We consider an optimization problem of
the form:

(6.18) min
h∈V

J(h) s.t. G(h) = 0,

where J : V → R is a smooth objective function and G : V → Rp accounts for a collection of p smooth
equality constraints. We denote by θJ , θGi

∈ V , i = 1, . . . , p the gradients of J and Gi at a particular given
value h of the optimized variable, that is:

∀ζ ∈ V, J ′(h)(ζ) = a(θJ , ζ), and G′i(h)(ζ) = a(θGi
, ζ).

Let h ∈ V stand for an arbitrary stage of the solution process for (6.18). We search for an update of h of
the form h+ ∆tξ, where ∆t > 0 is a suitable descent step, and the direction ξ ∈ V is of the form:

(6.19) ξ = −(αJξJ + αGξG).

The two contributions ξJ and ξG ∈ V are orthogonal, and they are characterized by the following require-
ments:

• The null-space step ξJ is the best descent direction for J(h) which leaves the values of the constraint
functional G(h) unaltered at first order. Formally, ξJ is the projection of the gradient θJ of J(h)

onto the null space Ker(G′(h)) = span
{
θG1 , . . . , θGp

}⊥
of the constraints. It is of the form

(6.20) ξJ = θJ +

p∑
j=1

λjθGj
for some λ ∈ Rp.
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The requirement that a(ξJ , θGj ) = 0 for j = 1, . . . , p shows that the vector λ ∈ Rp is the solution to
the following p× p system:

(6.21) Sλ = b, where S ∈ Rp×p and b ∈ Rp are given by the entries:

Sij = a(θGi
, θGj

), and bi = −a(θJ , θGi
).

• The range space step ξG aims to decrease the violation of constraints. It belongs to Ker(G′(h))⊥ =
span {θGi

}i=1,...,p, and so it can be expressed as

(6.22) ξG =

p∑
j=1

βjθGj
, for some coefficient vector β ∈ Rp.

The components βi, i = 1, . . . , p are determined by imposing the following decrease in the value of
G in the course of one iteration:

G(h+ ∆tξ) = (1−∆tαG)G(h),

which we approximate by

G′(h)(ξG) ≈ G(h).

This requirement is discretized as:

(6.23) Sβ = c, where S ∈ Rp×p is the matrix (6.21) and c ∈ Rp has entries ci = Gi(h), i = 1, . . . , p.

As far as the choice of the descent step ∆t is concerned, we rely on a merit function: the update h+ ∆tξ
of h should result in a decrease in the value of the function

M(h) := αJ

(
J(h)− λ ·G(h)

)
+
αG
2
S−1G(h) ·G(h),

whose negative gradient is ξ by construction.

6.4.2. Application to the context of interest

Let us now apply the general optimization strategy of Section 6.4.1 to our discrete shape and topology
optimization problem (P-disc). Since the optimized variables s ∈ RdN and ν ∈ RN are of very independent
natures, we treat optimization with respect to each of them separately, via an alternating descent strategy:

• When it comes to updating the seed points s, we apply the Hilbertian method of Section 6.4.1 with the
space V = RdN and the inner product as(·, ·) defined in (6.15). The gradients θJ,s, θGi,s, i = 1, . . . , p,

are calculated by solving the identification problem (6.12) from the derivatives of s 7→ J̃(s,ν) and

s 7→ G̃(s,ν) supplied by Proposition 6.1. The coefficients λs ∈ Rp and βs ∈ Rp involved in the
expressions (6.20) and (6.22) of the steps ξJ,s and ξG,s are then easily calculated from these data,
see (6.21) and (6.23), and the resulting descent direction ξs ∈ RdN for the seed points s reads:

ξs = −αJ,sξJ,s − αG,sξG,s, where ξJ,s := θJ,s −
p∑
i=1

λs,iθGi,s and ξG,s =

p∑
i=1

βs,iθGi,s,

with the weights αJ,s and αG,s for the relative contributions of the null space and range space steps
to the descent direction.

• When it comes to updating the vector ν, we use the space V = RN and the inner product aν(·, ·) in
(6.16). Similar considerations yield the following descent direction ξν ∈ RN for the measures ν:

ξν = −αJ,νξJ,ν − αG,νξG,ν , where ξJ,ν := θJ,ν −
p∑
i=1

λν,iθGi,ν and ξG,ν =

p∑
i=1

βν,iθGi,ν ,

where again λν ,βν ∈ Rp are calculated via (6.21) and (6.23), and αJ,ν and αG,ν are suitable weights.

Moreover, as suggested in [52], instead of considering fixed weights αJs, αG,s for the contributions of the
null space and range space steps, we consistently select these coefficients as:

αJ,s =
AJ,shav
|ξJ,s|∞

and αG,s =
AG,shav
|ξG,s|∞
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where AJ,s, and AG,s ∈ [0, 1] are fixed parameters controlling the decrease rates of the objective function
and the violation of the constraint, and hav is the typical distance between two neighboring seed points. This
allows to bound the maximum displacement of a seed induced by the update ξs in this step by (AJ,s+AG,s)hav.
Likewise, we take

αJ,ν =
AJ,νVav
|ξJ,ν |∞

, and αG,ν =
AG,νVav
|ξV,ν |∞

,

where AJ,ν , AG,ν ∈ [0, 1] and Vav is the average volume of cells. Doing so ensures that the maximum change
in a local volume fraction induced in the update of ν by ξν is (AJ,ν +AG,ν)Vav.

Remark 6.5. In the optimization problems featured in the examples of the next Section 7, only p = 1 equality
constraint is imposed, which is related to the volume of the shape Ω as: G(Ω) = Vol(Ω) − VT . In such a
situation, the foregoing formulas conveniently simplify into:

θG,s = 0, and θG,ν =

 1
...
1

 ∈ RN ,

so that the optimization with respect to the seed points s is unconstrained, and the coefficients featured in the
above scheme (6.20), (6.22) and (6.23) read

S = aν(θG,ν ,θG,ν) = N, λ =
1

N
aν(θJ,ν ,θG,ν) and β =

1

N

(
Ṽol(s,ν)− VT

)
.

Note that if the volume constraint is satisfied at the current stage (s,ν) of the optimization process, then

ξG = 0. In particular, if the vector ν of cell measures satisfies
∑N
i=1 νi = VT , the update (6.19) of the null-

space optimization algorithm for (6.18) coincides (up to a positive coefficient) with that of the unconstrained

gradient algorithm for the minimization of J̃(·,ν).

7. Numerical examples

In this section, we present various 2d numerical examples to illustrate the main features of our shape
optimization Algorithm 1. After starting in Section 7.1 with a “simple” geometric optimization problem, we
revisit in Section 7.2 the classical subject of optimization of the eigenvalues of the Laplace operator with our
new framework. We then turn to more concrete physical applications in the contexts of thermal devices in
Section 7.3 and of mechanical structures in Sections 7.4 to 7.6.

7.1. Optimization of the perimeter of shapes

Our first example deals with a well-known shape optimization problem, featuring only geometric functionals
of the domain, i.e. no physical boundary value problem is involved. We minimize the perimeter of the shape
Ω ⊂ R2 under an equality constraint on its volume:

(7.1) min
Ω

Per(Ω) s.t. Vol(Ω) = VT ,

where Per(Ω) and Vol(Ω) are defined by (2.1) and VT is a volume target.
Among the numerous motivations for (7.1), let us mention that the flow induced by its solution from an

initial shape Ω0 is the well-known mean curvature flow, which proceeds by steadily blurring its sharp features
(i.e. its bumps and creases with high mean curvature) while preserving its total volume, see e.g. [82] about
the latter.

From the mathematical viewpoint, such problems have been extensively considered in the literature, see
e.g. [97, 102]. In particular, according to the famous isoperimetric inequality, the unique global minimizers

to (7.1) are 2d disks with radius
√
VT /π.

Remark 7.1. In this example, the discrete versions Vol(q) and Per(q) of the volume and perimeter Vol(Ω)
and Per(Ω) of the shape Ω as well as their derivatives can be explicitly calculated from the polygonal mesh
T induced by the diagram V(s,ψ) representing Ω. Indeed, simple calculations show that:

Vol(q) =
∑
E∈T
|E|,
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where the measure of an element E with vertices qE1 , . . . ,q
E
n can be calculated by the following formula, where

we use the notations of Section 5.1:

|E|= 1

2

n∑
j=1

|êj |nêj
· qEj .

Taking derivatives, then summing over the elements E ∈ T , an elementary calculation shows that the gradient
of the volume functional equals:

∇qj
Vol(q) =

{
1
2 |êj |nêj

if qj is a vertex on the boundary ∂Ω
0 otherwise.

Likewise, assuming for notational simplicity that the vertices qj are enumerated in such a way that the border
∂Ω is discretized by the nb < M first vertices q1, . . . ,qnb

= q0 of the collection q and the associated line
segments qj−1qj, j = 1, . . . , nb, one has

Per(q) =

nb∑
j=1

|qjqj+1|,

and so

∇qj
Per(q) =

{
qj−qj−1

|qj−qj−1| +
qj−qj+1

|qj−qj+1| if j = 1, . . . , nb,

0 otherwise.

We apply the “free boundary” version of our shape and topology optimization Algorithm 1 to the solution
of this problem. The initial shape Ω0 is represented by a diagram V(s0,ψ0) made of a random collection of
N = 500 cells with equal measures ν := VT /N . Throughout the optimization process, we impose that the
cells Vi(s

n,ψn), i = 1, . . . , N , satisfy this measure constraint, so that our optimization procedure becomes
constraint free, as noted in Remark 6.5. A few snapshots of the solution process are depicted on Fig. 9. As
expected, the optimized shape is close to a disk. Remarkably, the shape undergoes drastic topological changes
during the process: our algorithm is able to detect that the only means to decrease the total perimeter of
the shape Ω by moving the defining seed points s without altering the measures ν of the cells is to aggregate
the cells. This operation – and the underlying shape sensitivity of the objective functional – is completely
different from that of a more classical boundary variation algorithm as in e.g. [8, 6, 100], whereby each
individual cell would shrink, regardless of the others, without capturing this collective behavior. We shall
retrieve this trend in the mechanical example of Section 7.4.

7.2. Optimization of the eigenvalues of the Dirichlet Laplace operator

Our first example involving boundary value problems concerns the minimization of some of the eigenvalues
of the Laplace operator equipped with Dirichlet boundary conditions. We consider the problem:

(7.2) min
Ω

λ
(k)
Ω s.t. Vol(Ω) = VT ,

where we recall from Section 2.2.1 that λ
(k)
Ω is the kth lowest real number for which there exists a non trivial

function u ∈ H1
0 (Ω) such that

−∆u = λ
(k)
Ω u, with the normalization

∫
Ω

u2
Ω dx = 1.

These eigenvalues arise in multiple applications, such as acoustics (where they are related to the properties
of sound propagation), thermal conduction (where they encode the dissipation rate of a peak of temperature
over time), and structure mechanics (where they represent the vibration modes of a thin membrane), to
name a few. Spectral shape optimization problems, of the form (7.2), have been extensively studied in the
literature, from both theoretical [16, 88, 65] and numerical [13, 98] viewpoints.

We address the numerical solution of the problem (7.2) thanks to the “free boundary” strategy described
in Section 3.3. The shape Ω is described by a diagram V(s,ψ) attached to collections s and ψ of N seed
points and weights, respectively. As in the previous Section 7.1, the measures of the cells are consistently set
to the common value ν := VT /N , so that the solution of (7.2) boils down to the unconstrained minimization

of λ
(k)
Ω with respect to the positions s of the seed points, see again Remark 6.5. On a different note, the
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n = 0 n = 10 n = 25

n = 100 n = 220 n = 260

Figure 9. A few intermediate shapes Ωn produced in the course of the solution of the
perimeter minimization problem (7.1) in Section 7.1. The cells Vi(s

n,ψn) of the diagram,
i = 1, . . . , N , are represented with different colors to help vizualization.

sensitivity of the discrete version of λ
(k)
Ω with respect to the vertices q of V(s,ψ) is calculated by automatic

differentiation before being interpreted in terms of the positions s of the seed points, see Sections 6.1 and 6.2.

In this context, we conduct two numerical experiments. At first, we address the minimization of the first
Dirichlet eigenvalue, i.e. k = 1 in (7.2). It is well-known since the seminal conjecture of Lord Rayleigh [104]

that disks with radius
√
VT /π are the unique minimizers of (7.2), see [29] for a rigorous proof of the associated

Faber-Krahn inequality. The initial shape Ω0 is depicted in Fig. 10. It is discretized with N = 1000 cells
with equal measures ν = VT /N . We apply 200 iterations of our optimization Algorithm 1 to solve this
problem; a few intermediate shapes are depicted on Figs. 10 and 11, and the associated convergence history
is reported in Fig. 13 (a); as expected, the optimized shape is a disk. Note that disconnected structures
naturally appear during the optimization process. While they are harmless to the resolution, we explicitly
enforce the connectedness of the shape at each iteration by removing and randomly resampling the cells that
are disconnected from the main region.

We next turn to a more challenging problem of the form (7.2), featuring the 5th Dirichlet eigenvalue, i.e.
k = 5 in (7.2). The fifth eigenmode is indeed suspected to be the lowest order eigenvalue that is minimized
by a shape which is neither a disk, nor a reunion of disks. Moreover, it is expected that, at the optimum, this
eigenvalue is multiple, leading to a non differentiable behavior of this function of the domain. Starting from
an initial shape Ω0 made of N = 1000 cells with equal measures, we apply 1000 iterations of our shape and
topology optimization Algorithm 1 to the solution of this problem. A few intermediate shapes Ωn arising
in the course of the process are depicted on Fig. 12, and the associated convergence history is reported
in Fig. 13 (b). The resulting optimized shape is qualitatively very similar to the candidate for minimizer
evidenced in [98].
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n = 0 n = 20 n = 50

n = 100 n = 150 n = 200 (final)

Figure 10. Intermediate shapes Ωn produced in the course of the minimization of the first
eigenvalue of the Dirichlet Laplace operator in Section 7.2.

7.3. Shape optimization in two-phase conductivity

From this section on, we deal with shape optimization problems which are more directly related to mechanical
applications. We first consider the setting of the conductivity equation presented in Section 2.2.1, and notably
its two-phase version, evoked in Remark 2.1.

The situation under scrutiny is that depicted in Fig. 14 (a): inside a fixed computational domain D with
size 1× 1, the shape Ω ⊂ D accounts for one phase Ω1 := Ω occupied by a material with high conductivity
γ1 = 10, the complementary phase Ω0 := D \Ω being filled by a material with low conductivity γ0 = 1. The
temperature uΩ within D is set to 0 on a region ΓD ⊂ ∂D located at the left-hand side of ∂D, while the
remaining part ΓN := ∂D \ ΓD is insulated from the outside. Assuming the presence of a constant source
f ≡ 1 within D, uΩ is the solution to the following two-phase conductivity problem:

(7.3)


−div(γΩ∇uΩ) = f in D,

uΩ = 0 on ΓD,

γΩ
∂uΩ

∂n = 0 on ΓN ,
where γΩ(x) =

{
γ1 if x ∈ Ω1,
γ0 otherwise.

We aim to minimize the mean temperature T (Ω) within D, i.e. we solve:

(7.4) min
Ω⊂D

T (Ω) s.t. Vol(Ω) = VT ,

where VT is a volume target, and we have defined:

T (Ω) =
1

Vol(D)

∫
D

uΩ dx.

In this context, the shape Ω is represented via a classical Laguerre diagram Lag(s,ψ) ofD: complementary
subcollections of cells of the latter account for Ω and D \ Ω, in the sense that (3.5) holds true. Moreover,
contrary to our practice in the previous Sections 7.1 and 7.2, we rely on the non intrusive approach of
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Figure 11. Graph of the first eigenfunction of the Dirichlet Laplace operator at various
iterations of the minimization process of the first Dirichlet eigenvalue in Section 7.2.

Section 6.1 to calculate the derivative of T (Ω) with respect to the seed points and weights of the representing
diagram. In this perspective, we recall in the following proposition the expression of the shape derivative of
T (Ω); since the result is fairly classical in the literature, we omit the proof for brevity, see e.g. [7].

Proposition 7.1. The functional T (Ω) is shape differentiable at any shape Ω ⊂ D, and its derivatives reads
for any deformation field θ vanishing on ΓD:

T ′(Ω)(θ) =
1

Vol(D)

∫
D

div(θ)uΩ dx +

∫
D

γΩ(divθI−∇θ −∇θT )∇uΩ · ∇pΩ dx−
∫
D

div(fθ)pΩ dx,

where the adjoint state pΩ is the unique H1(D) solution to the boundary value problem:
−div(γΩ∇pΩ) = − 1

Vol(D) in D,

pΩ = 0 on ΓD,

γΩ
∂pΩ

∂n = 0 on ΓN .

Remark 7.2. Since in our context the source f is identically equal to 1, we immediately see that the adjoint
state pΩ equals pΩ = − 1

Vol(D)uΩ. This self-adjoint property of the problem (7.4) conveniently allows to avoid

the solution of an extra boundary value problem at each stage of the optimization process.

We perform 200 iterations of our shape and topology optimization Algorithm 1 to solve this problem.
On average, the considered diagrams contain about 3,500 cells, and the total computation takes about 45
min on a regular Macbook Pro laptop with 2 GHz Quad-Core Intel Core i5 and 16 Gb of memory. A few
snapshots of the optimization path are presented in Fig. 15, and the associated convergence histories are
reported in Fig. 16. Again, the shape undergoes dramatic deformations in the course of the process, while
being consistently equipped with an explicit discretization, which is updated in a Lagrangian manner.
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n = 0 n = 20 n = 50

n = 500 n = 700 n = 1000 (final)

Figure 12. Intermediate shapes arising in the course of the minimization of the 5th Dirich-

let eigenvalue λ
(5)
Ω in Section 7.2; the colors refer to the values of an associated eigenfunction.

a b

Figure 13. (a) Evolution of the first eigenvalue λ
(1)
Ω of the shape in the course of the first

experiment of Section 7.2; (b) Evolution of the fifth eigenvalue in the course of the second
experiment.
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<latexit sha1_base64="HnKMTBRZ6VLo8oRkqYAP58JGmHw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRL0F9OAxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5YMYJ+hEdSB5yRo2V6ne9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlR9irlSv2yVL3J4sjDCZzCOXhwBVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD5hGjMo=</latexit>

D

<latexit sha1_base64="mLt1jOgpFnicbpxmzMNrdW5EH30=">AAAB73icdVDJSgNBEK2JW4xb1KOXwSB4CjMi0YOHgIIeI5gFkiHUdHqSJt09Y3ePEIb8hBcPinj1d7z5N3YWwfVBweO9KqrqhQln2njeu5NbWFxaXsmvFtbWNza3its7DR2nitA6iXmsWiFqypmkdcMMp61EURQhp81weD7xm3dUaRbLGzNKaCCwL1nECBortTqXKAR2L7rFkl/2pnC9X+TTKsEctW7xrdOLSSqoNISj1m3fS0yQoTKMcDoudFJNEyRD7NO2pRIF1UE2vXfsHlil50axsiWNO1W/TmQotB6J0HYKNAP905uIf3nt1ESnQcZkkhoqyWxRlHLXxO7kebfHFCWGjyxBopi91SUDVEiMjajwNYT/SeOo7FfKlevjUvVsHkce9mAfDsGHE6jCFdSgDgQ43MMjPDm3zoPz7LzMWnPOfGYXvsF5/QCfBY+y</latexit>

�D

<latexit sha1_base64="RRm1uRuVKcKSbQoWQSrVrbNwCx4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4CkmRqreCF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+nbX1jc2t7cJOcXdv/+CwdHTcNEmmGW+wRCa6HVLDpVC8gQIlb6ea0ziUvBWObmd+64lrIxL1iOOUBzEdKBEJRtFKD55b6ZXKnuvNQVaJn5My5Kj3Sl/dfsKymCtkkhrT8b0UgwnVKJjk02I3MzylbEQHvGOpojE3wWR+6pScW6VPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtfBRKg0Q67YYlGUSYIJmf1N+kJzhnJsCWVa2FsJG1JNGdp0ijYEf/nlVdKsuH7Vrd5flms3eRwFOIUzuAAfrqAGd1CHBjAYwDO8wpsjnRfn3flYtK45+cwJ/IHz+QNV3Y0q</latexit>

0.2

<latexit sha1_base64="QFSvFJgWOpo5/Ohc+HAufv7Tpcw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWvK7Ur/M4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDefmMsg==</latexit>

1

<latexit sha1_base64="QFSvFJgWOpo5/Ohc+HAufv7Tpcw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWvK7Ur/M4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDefmMsg==</latexit>

1

<latexit sha1_base64="8ASWFKr2YR3m6NLHUkDehh/6QoU=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKiB4DXrwZwcRAsoTZyWwyZh7LzKwQlvyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e4W19Y3NreJ2aWd3b/+gfHjUNirVhLaI4kp3ImwoZ5K2LLOcdhJNsYg4fYjG1zP/4Ylqw5S8t5OEhgIPJYsZwdZJ7d6toEPcL1f8qj8HWiVBTiqQo9kvf/UGiqSCSks4NqYb+IkNM6wtI5xOS73U0ASTMR7SrqMSC2rCbH7tFJ05ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxVZgxmaSWSrJYFKccWYVmr6MB05RYPnEEE83crYiMsMbEuoBKLoRg+eVV0r6oBvVq/a5WadTyOIpwAqdwDgFcQgNuoAktIPAIz/AKb57yXrx372PRWvDymWP4A+/zB16Njvg=</latexit>

⌦

a

<latexit sha1_base64="EvpPNuxB6sdZ8Of6VAgq6xiXCes=">AAAB73icdVDJSgNBEK2JW4xb1KOXxiB4CjMi0WNAQY8RzALJEGo6PUmT7pmxu0cIQ37CiwdFvPo73vwbO4sQtwcFj/eqqKoXJIJr47ofTm5peWV1Lb9e2Njc2t4p7u41dJwqyuo0FrFqBaiZ4BGrG24EayWKoQwEawbDi4nfvGdK8zi6NaOE+RL7EQ85RWOlVucKpcTuZbdY8sruFMT9Rb6sEsxR6xbfO72YppJFhgrUuu25ifEzVIZTwcaFTqpZgnSIfda2NELJtJ9N7x2TI6v0SBgrW5EhU3VxIkOp9UgGtlOiGeif3kT8y2unJjz3Mx4lqWERnS0KU0FMTCbPkx5XjBoxsgSp4vZWQgeokBobUWExhP9J46TsVcqVm9NS9XQeRx4O4BCOwYMzqMI11KAOFAQ8wBM8O3fOo/PivM5ac858Zh++wXn7BJydj6o=</latexit>

�D

<latexit sha1_base64="8qO+poxI5Kg+UqFTk6zSNC8j3ps=">AAAB73icdVBNSwMxEM36WetX1aOXYBE8LbulVI8FD3qSCvYD2qXMptk2NMmuSVYoS/+EFw+KePXvePPfmLYrVNEHA4/3ZpiZFyacaeN5n87K6tr6xmZhq7i9s7u3Xzo4bOk4VYQ2Scxj1QlBU84kbRpmOO0kioIIOW2H48uZ336gSrNY3plJQgMBQ8kiRsBYqdO7AiGgf9MvlX3XmwN7bq3iV7yqJbnybZVRjka/9NEbxCQVVBrCQeuu7yUmyEAZRjidFnuppgmQMQxp11IJguogm987xadWGeAoVrakwXN1eSIDofVEhLZTgBnp395M/Mvrpia6CDImk9RQSRaLopRjE+PZ83jAFCWGTywBopi9FZMRKCDGRlRcDuF/0qq4fs2t3VbL9WoeRwEdoxN0hnx0juroGjVQExHE0SN6Ri/OvfPkvDpvi9YVJ585Qj/gvH8BwYKPww==</latexit>

�N

<latexit sha1_base64="509o338o65fRVh1hWAGHLjNQtN4=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69BIvgKSSlVI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zZCFX0w8Hhvhpl5QcKZ0q77aRU2Nre2d4q7pb39g8Oj8vFJR8WppNimMY9lLyAKORPY1kxz7CUSSRRw7AbTm4XffUCpWCzu9CxBPyJjwUJGiTZSazwsVzzHXcJ2nXrVq7o1Q3Ll26pAjuaw/DEYxTSNUGjKiVJ9z020nxGpGeU4Lw1ShQmhUzLGvqGCRKj8bHno3L4wysgOY2lKaHuprk9kJFJqFgWmMyJ6on57C/Evr5/q8NrPmEhSjYKuFoUpt3VsL762R0wi1XxmCKGSmVttOiGSUG2yKa2H8D/pVB2v7tRbtUqjlsdRhDM4h0vw4AoacAtNaAMFhEd4hhfr3nqyXq23VWvBymdO4Qes9y/jDoz4</latexit>g

<latexit sha1_base64="QFSvFJgWOpo5/Ohc+HAufv7Tpcw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWvK7Ur/M4inAG53AJHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDefmMsg==</latexit>

1

<latexit sha1_base64="jeIOSs0LDLzzLh65l5isJjOm8Cw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJQY8kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzcqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZ066dcxolByVaLRokgJiKLr8mQK2RGzCyhTHF7K2ETqigzNpuCDcFbf3mTtCtlr1auNaulejWLIw8XcAnX4MEN1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/e32Msw==</latexit>

2

<latexit sha1_base64="xv2fTeA4aLBneWd6RH9EpSYMs5k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1Fjpwa16g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68TtpXVa9erd/XKo1aHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwBS2I0k</latexit>

0.1

b

<latexit sha1_base64="509o338o65fRVh1hWAGHLjNQtN4=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69BIvgKSSlVI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zZCFX0w8Hhvhpl5QcKZ0q77aRU2Nre2d4q7pb39g8Oj8vFJR8WppNimMY9lLyAKORPY1kxz7CUSSRRw7AbTm4XffUCpWCzu9CxBPyJjwUJGiTZSazwsVzzHXcJ2nXrVq7o1Q3Ll26pAjuaw/DEYxTSNUGjKiVJ9z020nxGpGeU4Lw1ShQmhUzLGvqGCRKj8bHno3L4wysgOY2lKaHuprk9kJFJqFgWmMyJ6on57C/Evr5/q8NrPmEhSjYKuFoUpt3VsL762R0wi1XxmCKGSmVttOiGSUG2yKa2H8D/pVB2v7tRbtUqjlsdRhDM4h0vw4AoacAtNaAMFhEd4hhfr3nqyXq23VWvBymdO4Qes9y/jDoz4</latexit>g

<latexit sha1_base64="8qO+poxI5Kg+UqFTk6zSNC8j3ps=">AAAB73icdVBNSwMxEM36WetX1aOXYBE8LbulVI8FD3qSCvYD2qXMptk2NMmuSVYoS/+EFw+KePXvePPfmLYrVNEHA4/3ZpiZFyacaeN5n87K6tr6xmZhq7i9s7u3Xzo4bOk4VYQ2Scxj1QlBU84kbRpmOO0kioIIOW2H48uZ336gSrNY3plJQgMBQ8kiRsBYqdO7AiGgf9MvlX3XmwN7bq3iV7yqJbnybZVRjka/9NEbxCQVVBrCQeuu7yUmyEAZRjidFnuppgmQMQxp11IJguogm987xadWGeAoVrakwXN1eSIDofVEhLZTgBnp395M/Mvrpia6CDImk9RQSRaLopRjE+PZ83jAFCWGTywBopi9FZMRKCDGRlRcDuF/0qq4fs2t3VbL9WoeRwEdoxN0hnx0juroGjVQExHE0SN6Ri/OvfPkvDpvi9YVJ585Qj/gvH8BwYKPww==</latexit>

�N

<latexit sha1_base64="EvpPNuxB6sdZ8Of6VAgq6xiXCes=">AAAB73icdVDJSgNBEK2JW4xb1KOXxiB4CjMi0WNAQY8RzALJEGo6PUmT7pmxu0cIQ37CiwdFvPo73vwbO4sQtwcFj/eqqKoXJIJr47ofTm5peWV1Lb9e2Njc2t4p7u41dJwqyuo0FrFqBaiZ4BGrG24EayWKoQwEawbDi4nfvGdK8zi6NaOE+RL7EQ85RWOlVucKpcTuZbdY8sruFMT9Rb6sEsxR6xbfO72YppJFhgrUuu25ifEzVIZTwcaFTqpZgnSIfda2NELJtJ9N7x2TI6v0SBgrW5EhU3VxIkOp9UgGtlOiGeif3kT8y2unJjz3Mx4lqWERnS0KU0FMTCbPkx5XjBoxsgSp4vZWQgeokBobUWExhP9J46TsVcqVm9NS9XQeRx4O4BCOwYMzqMI11KAOFAQ8wBM8O3fOo/PivM5ac858Zh++wXn7BJydj6o=</latexit>

�D

<latexit sha1_base64="wcqBSifkmRLxcrbyF2uBeVALUew=">AAAB73icdVDJSgNBEK2JW4xb1KOXxiB4CjMi0WPAgx4jmgWSIdR0epIm3TNjd48QhvyEFw+KePV3vPk3dhYhbg8KHu9VUVUvSATXxnU/nNzS8srqWn69sLG5tb1T3N1r6DhVlNVpLGLVClAzwSNWN9wI1koUQxkI1gyGFxO/ec+U5nF0a0YJ8yX2Ix5yisZKrc4lSondm26x5JXdKYj7i3xZJZij1i2+d3oxTSWLDBWoddtzE+NnqAyngo0LnVSzBOkQ+6xtaYSSaT+b3jsmR1bpkTBWtiJDpuriRIZS65EMbKdEM9A/vYn4l9dOTXjuZzxKUsMiOlsUpoKYmEyeJz2uGDViZAlSxe2thA5QITU2osJiCP+TxknZq5Qr16el6uk8jjwcwCEcgwdnUIUrqEEdKAh4gCd4du6cR+fFeZ215pz5zD58g/P2CbNZj7k=</latexit>

�S

<latexit sha1_base64="i1ivJJnqMfA+EZhokuwKHKDxS4Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEq8eCF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB9+96pUrnuvNQVaJn5MK5Kj3yl/dfsKymCtkkhrT8b0UgwnVKJjk01I3MzylbEQHvGOpojE3wWR+6pScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRjfBRKg0Q67YYlGUSYIJmf1N+kJzhnJsCWVa2FsJG1JNGdp0SjYEf/nlVdK8cP2qW72/rNQu8ziKcAKncA4+XEMN7qAODWAwgGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNabo0p</latexit>

1.5

<latexit sha1_base64="jeIOSs0LDLzzLh65l5isJjOm8Cw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJQY8kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzcqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZ066dcxolByVaLRokgJiKLr8mQK2RGzCyhTHF7K2ETqigzNpuCDcFbf3mTtCtlr1auNaulejWLIw8XcAnX4MEN1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/e32Msw==</latexit>

2

<latexit sha1_base64="Gh73kEgwRNsCFeuKCJd/0ai44xU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hKqR4LXjxWtLXQhrLZTtqlm03Y3Qil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737RQ2Nre2d4q7pb39g8Oj8vFJWyeZYthiiUhUJ6QaBZfYMtwI7KQKaRwKfAzHN3P/8QmV5ol8MJMUg5gOJY84o8ZK955b7ZcrnustQNaJn5MK5Gj2y1+9QcKyGKVhgmrd9b3UBFOqDGcCZ6VepjGlbEyH2LVU0hh1MF2cOiMXVhmQKFG2pCEL9ffElMZaT+LQdsbUjPSqNxf/87qZia6DKZdpZlCy5aIoE8QkZP43GXCFzIiJJZQpbm8lbEQVZcamU7Ih+Ksvr5N21fXrbv2uVmnU8jiKcAbncAk+XEEDbqEJLWAwhGd4hTdHOC/Ou/OxbC04+cwp/IHz+QNUXI0l</latexit>
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Figure 14. Settings of the physical numerical examples of Section 7: (a) The heat diffuser
test case of Section 7.3; (b) The elastic cantilever example of Section 7.4; (c) The optimal
bridge example of Section 7.5; (d) The self-sustaining bridge of Section 7.6.

7.4. Optimization of the shape of an elastic cantilever beam

The examples in this section take place in the physical context of mechanical structures presented in Sec-
tion 2.2.2. The considered shapes Ω are enclosed in a fixed computational box D with size 2 × 1; they are
fixed on the left-hand side ΓD of the boundary ∂D, and surface loads g : ΓN → R2 are applied on a region
ΓN at the right-hand side of ∂D. The remaining region Γ := ∂Ω \ (ΓD ∪ΓN ) is the only one which is subject
to optimization, see Fig. 14 (b). Omitting body forces for simplicity, the displacement uΩ : Ω → Rd of the
shape is the solution to the linear elasticity system:

(7.5)


−div(Ae(uΩ)) = 0 in Ω,

uΩ = 0 on ΓD,
Ae(uΩ)n = g on ΓN ,
Ae(uΩ)n = 0 on Γ.

In this situation, we consider the following shape optimization problem:

(7.6) min
Ω⊂D

C(Ω) s.t. Vol(Ω) = VT ,

where C(Ω) is the compliance (2.7) of Ω and the volume target VT is set to 0.7.

To address this problem, we consider both shape optimization strategies presented in Section 3.2. In a
first experiment, we rely on the “free boundary” approach: the shape is discretized as a diagram V(s,ψ),
see Definition 3.2. The N = 3000 cells of this diagram are consistently endowed with the same measure
Vol(Ω)/N . At each stage of the optimization process, the derivative of the objective function C(Ω) with
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n = 0 n = 12 n = 29

n = 51 n = 151 n = 250

Figure 15. A few intermediate design Ωn in the solution of the two-phase conductivity
optimization problem of Section 7.3.

Figure 16. Evolution of the objective T (Ω) and constraint G(Ω) = Vol(Ω)−VT during the
solution of the two-phase conductivity optimization problem of Section 7.3.

respect to the vertices q of this diagram is calculated via automatic differentiation, and the sensitivity of
this function with respect to the seed points s of the diagram is inferred along the lines of Section 6.1, while
the cell measures ν are kept fixed. Concurrently, we periodically decrease the measures of all cells by a fixed
amount until the desired volume constraint VT is attained. The optimized design and a few intermediate
shapes resulting from this procedure are depicted in Fig. 17. Remarkably, the topology of the shape changes
dramatically in the course of the evolution, while no topological derivative is involved in the process. Holes
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spontaneously appear in mechanically relevant locations inside the structure, pretty much in the same manner
as the drastic topological changes occurring in the example of Section 7.1 were nevertheless relevant from
the optimization viewpoint. This observation confirms that the notion of sensitivity with respect to the
domain associated to our representation of shapes via diagrams of the form V(s,ψ) contains a much richer
amount of information when compared to more classical boundary variation algorithms. One drawback of
this approach is the difficulty to control the connectedness of the shape when optimizing the volume of the
cells by means of the strategy of Section 6.2, which is why the heuristic volume update strategy outlined
above is preferred to the use of the formulas for derivative with respect to volume fractions.

n = 0 n = 200

n = 600 n = 1000

n = 1500 n = 2000

Figure 17. Various iterates in the solution of the cantilever optimization problem of Sec-
tion 7.4 using a discretization of shapes by modified diagrams (3.6) and (3.7).

We conduct a second experiment in the same physical context, where we rely on the two-phase diagram
approach for the representation of the shape Ω: the total computational domain D is equipped with a
classical Laguerre diagram Lag(s,ψ), and the shape Ω is defined as a subcollection of the cells of this
diagram, see Definition 3.1 and (3.5). In this setting, we follow the “optimize-then-discretize” approach
of Section 6.1 to calculate the sensitivity of C(Ω) with respect to the vertices q of the diagram (although
automatic differentiation could be used as in the previous examples), before expressing this information
in terms of the seed points s and cell measures ν of the diagram, along the lines of Section 6.2. This
practice relies on the continuous formula for the shape derivative of C(Ω). This result is fairly classical in
the literature (again, see e.g. [7]) and we limit ourselves with the statement of the result.
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Proposition 7.2. The shape derivative of the compliance C(Ω) reads, for any vector field θ vanishing on
ΓD ∪ ΓN :

C ′(Ω)(θ) = −
∫

Ω

div(θ)Ae(uΩ) : e(uΩ) dx + 4µ

∫
Ω

(∇uΩ∇θ) : e(uΩ) dx + 2λ

∫
Ω

tr(∇uΩ∇θ)div(uΩ) dx.

Note that the compliance C(Ω) has the convenient property to make the adjoint state pΩ equal to the
state function uΩ (up to a sign).

We apply our optimization Algorithm 1 to the solution of this problem. Actually, acknowledging that the
retained discretization of shapes causes the boundary to be a little rough, we add a very small penalization
to the objective function C(Ω) of the problem by the perimeter functional Per(Ω). The featured Laguerre
diagrams contain on average 7000 cells, and the computation proceeds in 200 iterations, for a total time
of about 80 min. A few iterates of the optimization process are depicted on Fig. 18, and the associated
convergence histories are represented on Fig. 19. The optimization path is much smoother in this second
experiment as in the former one, which can be explained by the fact that variations of the measures of the
cell do not incur non differentiability of the objective function so easily as in the “free boundary” context.
Indeed, holes cannot emerge naturally inside the bulk structure; this leaves much less room for one of the
conditions (G1) to (G7) for the differentiability of the vertices of the diagram with respect to seed points
and cell measures to become violated. However, one drawback of this approach is admittedly that the total
computational domain D has to be equipped with a diagram, thus resulting in an increase in computational
burden, especially in the perspective of the 3d extension of this work.

7.5. Optimization of the shape of a bridge by combination of shape and topological derivatives

This section deals with the optimization of another type of linearly elastic structures, namely a two-
dimensional bridge. The considered shapes Ω are enclosed in a box D with size 2 × 1.5; they are clamped
on a region ΓD around their lower-left corner, and the vertical displacement is prevented on another region
ΓS around their lower-right corner. A unit vertical load g = (0,−1) is applied on a region ΓN at the middle
of their lower side, see Fig. 14 (c).

In this example, we again minimize the compliance of the structure under a volume constraint, i.e. (7.6)
is solved, with the volume target VT = 0.7. We rely on a discretization of the shape Ω by two-phase
Laguerre diagrams of D, see Definition 3.1 and (3.5), and we calculate the sensitivity of the compliance
C(Ω) with respect to the defining parameters s and ν of the diagram by means of the “optimize-then-
discretize” approach presented in Section 6.1. We also add another ingredient with respect to the workflow
of the previous section: we periodically use the topological derivative to try and drill a tiny hole inside Ω in
an optimal way, see Remark 2.5. In this perspective, let us recall the following result about the topological
derivative of the compliance functional in two space dimensions, see [60, 94].

Theorem 7.1. Let d = 2, and let Ω ⊂ R2 be a bounded, Lipschitz domain. The elastic compliance C(Ω)
defined in (2.7) has a topological derivative at every point x ∈ Ω, which reads:

dTC(Ω)(x) =
π(λ+ 2µ)

2µ(λ+ µ)

(
4µAe(uΩ) : e(uΩ) + (λ− µ)tr(Ae(uΩ))tr(e(uΩ))

)
(x).

Starting from an initial shape Ω0 with trivial topology, see Fig. 20, we apply 200 iterations of our shape
and topology optimization Algorithm 1 (augmented with the aforementioned use of topological derivatives).
On average, the considered Laguerre diagrams contain about 7000 cells, and the total computation takes
about 80 min. A few intermediate shapes arising during the resolution are depicted in Fig. 20, and the
convergence history is provided in Fig. 21. Although the initial shape has a very poor topology, the shape
develops very non trivial features in the course of the optimization process, thanks to the use of topological
derivatives. The final, optimized design is very reminiscent of those obtained in the same context in e.g.
[40].

7.6. Minimization of the stress within a bridge structure

Our last numerical example deals with the minimization of the stress within a two-dimensional self-sustaining
bridge, which is depicted in Fig. 14 (d): the shapes are contained in a square-shaped box D with size 1× 1;
they are clamped on their bottom side ΓD, and a uniform vertical load g = (0,−1) is applied on their upper
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n = 0 n = 20

n = 41 n = 55

n = 75 n = 150

Figure 18. Various iterates in the solution of the cantilever optimization problem of Sec-
tion 7.4 via a discretization of shapes using two-phase Laguerre diagrams of the computa-
tional domain D.

side ΓN , which stands for the deck of the structure. Omitting body forces, the displacement uΩ : Ω→ R2 of
the structure is characterized by the boundary value problem (7.5).

In this setting, we aim to minimize an integral quantity of the stress within the structure, i.e. we solve:

(7.7) min
Ω

S(Ω) s.t. Vol(Ω) = VT .

In this formulation, the stress function S(Ω) is defined by:

S(Ω) =

∫
Ω

||σ(uΩ)||2 dx, where σ(uΩ) := Ae(uΩ),

and the volume target VT is set to 0.8.
We address the solution of (7.7) with the two-phase Laguerre diagram discretization presented in Sec-

tion 3.1 and used in the previous examples Sections 7.4 and 7.5. Here again, the sensitivities of the objective
function with respect to the seed points s and cell measures ν defining the diagrams at stake are calculated
by the optimize-then-discretize approach presented in Section 6.1. From the implementation viewpoint, the
main difference between this example and those addressed in the previous Sections 7.4 and 7.5 is that the
optimization problem is no longer self-adjoint, i.e. the shape derivative of S(Ω) involves an adjoint state pΩ

which is not easily related to uΩ, as revealed by the following result, about which we refer again to e.g. [7].
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Figure 19. Evolution of the objective (mechanical compliance) and volume during the so-
lution of the cantilever optimization problem of Section 7.4.

n = 0 n = 22 n = 39

n = 55 n = 75 n = 200

Figure 20. Various iterates in the solution of the bridge optimization problem of Sec-
tion 7.5.

Proposition 7.3. The function S(Ω) is shape differentiable at any smooth enough shape Ω, and its derivative
reads, for any vector field θ vanishing on ΓD ∪ ΓN :

(7.8) S′(Ω)(θ) =

∫
Ω

div(θ)Ae(uΩ) : e(pΩ) dx− 2µ

∫
Ω

(
(∇uΩ∇θ) : e(pΩ) + (∇pΩ∇θ) : e(uΩ)

)
dx

− λ
∫

Ω

(
tr(∇uΩ∇θ)div(pΩ) + tr(∇pΩ∇θ)div(uΩ)

)
dx,

where the adjoint state pΩ is the solution to the following variational problem:

Search for pΩ ∈ H1
ΓD

(Ω)2 s.t. ∀v ∈ H1
ΓD

(Ω)2,

∫
Ω

Ae(pΩ) : e(v) dx = −2

∫
Ω

Ae(uΩ) : Ae(v) dx.
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Figure 21. Evolution of the objective (mechanical compliance) and volume during the so-
lution of the bridge optimization problem of Section 7.5.

We apply 250 iterations of our shape and topology optimization Algorithm 1 to solve the problem (7.7).
The average number N of cells of the considered Laguerre diagrams is 8000, and the total computation takes
about 3 hours. We note that the calculation of the adjoint state pΩ requires the solution to the boundary
value problem (7.8) for pΩ at each iteration of the process, in addition to that of (7.5), which explains
the significant increase in computational burden observed in this case. A few snapshots of the optimization
process are reported on Fig. 22. Again, the shape dramatically changes topology in the course of the solution
process.

8. Conclusions and perspectives

In this article, we have presented a novel numerical framework for optimal design, inspired by modern
concepts from fields so diverse as optimal transport, computational geometry, and shape and topology
optimization. The key feature of our method is a consistent body-fitted representation of the shape, in terms
of a (modified version of a) Laguerre diagram. The latter is parametrized in terms of the seed points and
the measures of its cells, as permitted by deep results from optimal transport theory. The evolution of the
shape through the iterations of the process is driven by the shape gradients of the objective and constraint
functionals, which are suitably expressed in terms of these defining variables of Laguerre diagrams. Our
numerical strategy is Lagrangian in nature, since the evolution of the shape is tracked via the motion of
the seed points and weights of the diagram. However, dramatic updates can be accounted for in a robust
fashion, including topological changes, since the diagram is never deformed itself – it is rediscovered from the
updated seed points and cell measures. This framework can generally handle complex physical situations,
featuring multiple phases, and we hope that it can serve to other applications. Remarkably, it features a
description of a wide variety of shapes by a relatively small number of parameters, which pleads in favor of
the use of such representation in connection with reduced basis methods, or of the use of neural networks for
a parametrization of shapes by such a diagram, and the realization of its optimization with machine learning
techniques.

For the sake of simplicity, we have focused our presentation and numerical illustrations on the case of two
space dimensions, although the underlying theory holds true in 3d, and the critical numerical ingredients of
the method (notably, the computation of Laguerre diagrams) are already available in this context. In future
work, we ambition to adapt this numerical methodology to this theoretically similar, albeit numerically much
more involved (and much richer) 3d context.

On the longer term, and from a more theoretical viewpoint, it would be fascinating to appraise more
rigorously the new type of shape evolution featured by this method. Indeed, the examples of Sections 7.1
and 7.4 have demonstrated how different the induced notion of sensitivity with respect to the design is
from more “classical” concepts such as shape and topological derivatives: we suspect that these issues are
somehow related to the idea of linearized optimal transport, see Remark 3.5.
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n = 0 n = 34

n = 81 n = 250

Figure 22. Various iterates in the solution of the stress minimization problem within a
self-sustaining bridge of Section 7.6.
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Appendix A. Calculation and differentiation of the coordinates of the vertices of a
diagram with respect to its seed points and weights

In this appendix, we detail the calculation of the positions of the vertices q = {qj}j=1,...,M ∈ RdM of

the diagram V(s,ψ) in (3.6) from the datum of its seed points s and weights ψ. We also investigate the
calculation of their derivatives with respect to s and ψ, which is a central ingredient in the procedure of
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Section 6.2 for expressing differentiation of functions with respect to the positions q of the vertices of the
diagram in terms of the generating seed points s and weights ψ. These formulas are admittedly not new,
but their rigorous exposition and establishment are not so easily found in the literature. Our presentation
focuses on the case d = 2, but similar analyses could be conducted in three space dimensions.

Let us start with the following general result.

Proposition A.1. Let s ∈ RdN and ψ ∈ RN be sets of seed points and weights satisfying the genericity
assumptions (G1) to (G7) and let q = {qj}j=1,...,M ∈ RdM denote the vertices of the diagram V(s,ψ). Then

for ŝ ∈ RdN and ψ̂ ∈ RN small enough, the perturbed diagram V(s + ŝ,ψ + ψ̂) has the same neighbour
relations as V(s,ψ).

Moreover, there exists a mapping m : RdNs ×RNψ →W 1,∞(Rd,Rd) which is differentiable in a neighborhood

of (0,0) such that:

∀i = 1, . . . , N, m(ŝ, ψ̂)
(
Vi(s,ψ)

)
= Vi(s + ŝ,ψ + ψ̂),

and

The vertices of the diagram V(s + ŝ,ψ + ψ̂) are exactly the points m(ŝ, ψ̂)(qj), j = 1, . . . ,M.

Proof. At first, we prove that i 6= j ∈ {1, . . . , N} are the indices of neighbor cells in the diagram V(s,ψ)

if and only if the cells i and j are neighbors in V(s + ŝ,ψ + ψ̂) for small enough perturbations ŝ ∈ RdN

and ψ̂ ∈ RN . For simplicity, we only deal with the case where the edge eij between the cells Vi(s,ψ) and
Vj(s,ψ) in V(s,ψ) lies entirely in the open set D, the treatment of the situation where it intersects ∂D
being similar.

To achieve our purpose, let us first observe that Vi(s,ψ) and Vj(s,ψ) are neighbors in the diagram V(s,ψ)
if and only if the following property holds true:

∃x ∈ D s.t.

{
|x− si|2−ψi = |x− sj |2−ψj ,
|x− si|2−ψi < |x− sk|2−ψk, for each k /∈ {i, j} .

In turn, this is equivalent to the positivity of the optimal value

max
x

{
min
k/∈{i,j}

{
|x− sk|2−ψk −

(
|x− si|2−ψi

)}
, x ∈ D, |x− si|2−ψi = |x− sj |2−ψj

}
.

We now invoke the continuity of the optimal value of a constrained optimization program with respect to
perturbations of its parameters, see e.g. Prop. 4.4 in [23], whose assumptions are satisfied in the present
case. Hence, if the cells indexed by i 6= j are neighbors in the diagram V(s,ψ), then they are also neighbors

in the diagram V(s + ŝ,ψ + ψ̂) for small enough ŝ ∈ RdN , ψ̂ ∈ RN . Note that a similar argument shows

that if V(s,ψ) satisfies (G1) to (G7), then so does V(s + ŝ,ψ + ψ̂).

Conversely, let us now prove that there exists ε > 0 such that, for any perturbations ŝ ∈ RdN , ψ̂ ∈ RN

with |̂s|+|ψ̂|< ε, the diagram V(s + ŝ,ψ + ψ̂)) cannot have neighbor cells that are not already neighbors
in V(s,ψ). To achieve this, we proceed by contradiction, assuming that there exist sequences ŝn ∈ RdN ,

ψ̂n ∈ RN converging to 0 and index sequences in 6= jn ∈ {1, . . . , N} such that the cells with indices in,

jn are neighbors in V(s + ŝn,ψ + ψ̂n) but not in V(s,ψ). Actually, since the number N of seed points is
finite, we may extract a subsequence (still labeled by n) along which these indices i, j are independent of

n. Let then an and bn denote the vertices of the edge between the cells i and j in V(s + ŝn,ψ + ψ̂n), and
let kn, ln /∈ {i, j} denote the (distinct) indices such that an (resp. bn) is at the intersection between the

cells i, j and kn (resp. ln) in V(s + ŝn,ψ + ψ̂n). Up to extraction of another subsequence, we may assume
that these indices do not depend on n, and we denote them by k 6= l. We may also assume that an and
bn converge to limiting positions a∗ and b∗, respectively. Both points belong to the boundaries ∂Vi(s,ψ)
and ∂Vj(s,ψ). Since Vi(s,ψ) and Vj(s,ψ) are not neighbors in V(s,ψ), one must then have a∗ = b∗ and
this single vertex is at the intersection between the four cells Vi(s,ψ), Vj(s,ψ), Vk(s,ψ) and Vl(s,ψ). This
contradicts Assumption (G2), and the statement that i and j are not neighbors in V(s,ψ) is absurd.

At this point, we have proved that for ŝ ∈ RdN , ψ̂ ∈ RN small enough, the perturbed diagram V(s+ ŝ,ψ+

ψ̂) has the same neighbor relations as V(s,ψ). Now, each cell Vi(s + ŝ,ψ + ψ̂) is a closed, convex subset of
D whose non degenerate edges are completely characterized by their endpoints. The calculations below show
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<latexit sha1_base64="LgSvBfcPPLJiq5TIDX5vNRi9FWc=">AAAB9XicdVDLSsNAFJ3UV62vqks3g0VwVRIp1WXBjcsK9gFtLJPpTTt0MokzN2oJ+Q83LhRx67+4829MH0J9HbhwOOde7uF4kRQGbfvDyi0tr6yu5dcLG5tb2zvF3b2mCWPNocFDGeq2xwxIoaCBAiW0Iw0s8CS0vNH5xG/dgjYiVFc4jsAN2EAJX3CGmXTdRbhHz09u0l6i016x5JTtKaj9i3xZJTJHvVd87/ZDHgegkEtmTMexI3QTplFwCWmhGxuIGB+xAXQyqlgAxk2mqVN6lCl96oc6G4V0qi5eJCwwZhx42WbAcGh+ehPxL68To3/mJkJFMYLis0d+LCmGdFIB7QsNHOU4I4xrkWWlfMg045gVVVgs4X/SPCk71XL1slKqVeZ15MkBOSTHxCGnpEYuSJ00CCeaPJAn8mzdWY/Wi/U6W81Z85t98g3W2yd5l5Mf</latexit>qr
<latexit sha1_base64="jrFsEOSpfdeDtuoQbTn5i4m2HN0=">AAAB7nicdVDJSgNBEK2JW4xb1KOXwSB4GmZE1GPAi8cIZoFkCD2dmqRJT8/QXSOEkI/w4kERr36PN//GziLE7UHB470qqupFmRSGfP/DKaysrq1vFDdLW9s7u3vl/YOGSXPNsc5TmepWxAxKobBOgiS2Mo0siSQ2o+H11G/eozYiVXc0yjBMWF+JWHBGVmp2olxKpG65Enj+DK7/i3xZFVig1i2/d3opzxNUxCUzph34GYVjpklwiZNSJzeYMT5kfWxbqliCJhzPzp24J1bpuXGqbSlyZ+ryxJglxoySyHYmjAbmpzcV//LaOcVX4VioLCdUfL4ozqVLqTv93e0JjZzkyBLGtbC3unzANONkEyoth/A/aZx5wYV3fnteqXqLOIpwBMdwCgFcQhVuoAZ14DCEB3iCZydzHp0X53XeWnAWM4fwDc7bJ3Z7j5o=</latexit>•

<latexit sha1_base64="Ud1XSIXE8nDfPU2KljjH90chhHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2A9oStlsN+3SzSbsTsQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+55FrI2L1gNOE9yM6UiIUjKKVfB/5EwZhZmYDMShX3Kq7AFknXk4qkKM5KH/5w5ilEVfIJDWm57kJ9jOqUTDJZyU/NTyhbEJHvGepohE3/Wxx84xcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw5t+JlSSIldsuShMJcGYzAMgQ6E5Qzm1hDIt7K2EjammDG1MJRuCt/ryOmlfVb16tX5fqzRqeRxFOINzuAQPrqEBd9CEFjBI4Ble4c1JnRfn3flYthacfOYU/sD5/AGgw5IL</latexit>si

<latexit sha1_base64="lwS469LeXnyr7qpAdh+m+PN2Eis=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8LbshxBwDXjxGMA9IltA7mSRjZneWmVkhLPkHLx4U8er/ePNvnLxAjQUNRVU33V1hIrg2nvflbGxube/s5vby+weHR8eFk9OmlqmirEGlkKodomaCx6xhuBGsnSiGUShYKxzfzPzWI1Oay/jeTBIWRDiM+YBTNFZqdlEkI+wVip7rzUE8t1SulvwK8VfKihRhiXqv8NntS5pGLDZUoNYd30tMkKEynAo2zXdTzRKkYxyyjqUxRkwH2fzaKbm0Sp8MpLIVGzJXf05kGGk9iULbGaEZ6b/eTPzP66RmUA0yHiepYTFdLBqkghhJZq+TPleMGjGxBKni9lZCR6iQGhtQ3oaw9vI6aZZcv+JW7srFmruMIwfncAFX4MM11OAW6tAACg/wBC/w6kjn2Xlz3hetG85y5gx+wfn4BqvEjyc=</latexit>

↵

<latexit sha1_base64="0/Ib7r6WgMFLawQRnpYygSZeHlk=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyGEHMMePEYwTwwCWF2MpsMmZ1dZnrFsOQvvHhQxKt/482/cfICNRY0FFXddHf5sRQGXffLyWxsbm3vZHdze/sHh0f545OmiRLNeINFMtJtnxouheINFCh5O9achr7kLX98PfNbD1wbEak7nMS8F9KhEoFgFK1030X+iH6Q+tN+vuAW3TmIWyyVqyWvQryVsiIFWKLez392BxFLQq6QSWpMx3Nj7KVUo2CST3PdxPCYsjEd8o6liobc9NL5xVNyYZUBCSJtSyGZqz8nUhoaMwl92xlSHJm/3kz8z+skGFR7qVBxglyxxaIgkQQjMnufDITmDOXEEsq0sLcSNqKaMrQh5WwIay+vk2ap6FWKldtyoVZexpGFMziHS/DgCmpwA3VoAAMFT/ACr45xnp03533RmnGWM6fwC87HNyd/kTY=</latexit>

b

c

<latexit sha1_base64="Ud1XSIXE8nDfPU2KljjH90chhHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2A9oStlsN+3SzSbsTsQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+55FrI2L1gNOE9yM6UiIUjKKVfB/5EwZhZmYDMShX3Kq7AFknXk4qkKM5KH/5w5ilEVfIJDWm57kJ9jOqUTDJZyU/NTyhbEJHvGepohE3/Wxx84xcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw5t+JlSSIldsuShMJcGYzAMgQ6E5Qzm1hDIt7K2EjammDG1MJRuCt/ryOmlfVb16tX5fqzRqeRxFOINzuAQPrqEBd9CEFjBI4Ble4c1JnRfn3flYthacfOYU/sD5/AGgw5IL</latexit>si

<latexit sha1_base64="rVSmQ50eIpTM3+DXy6PBx1YxnB4=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mkVI8FLx4r2FZoQ9lsJ+3azSbsTsQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqObR4LGN9HzADUihooUAJ94kGFgUSOsH4euZ3HkEbEas7nCTgR2yoRCg4Qyv1eghPGISZmfYf+uWKW3XnoKvEy0mF5Gj2y1+9QczTCBRyyYzpem6CfsY0Ci5hWuqlBhLGx2wIXUsVi8D42fzmKT2zyoCGsbalkM7V3xMZi4yZRIHtjBiOzLI3E//zuimGV34mVJIiKL5YFKaSYkxnAdCB0MBRTixhXAt7K+UjphlHG1PJhuAtv7xK2hdVr16t39YqjVoeR5GckFNyTjxySRrkhjRJi3CSkGfySt6c1Hlx3p2PRWvByWeOyR84nz+iR5IM</latexit>sj

<latexit sha1_base64="TPtS2tlporPP2Kj0QdBDMgVunw4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPBi8cK9gPaUDbbSbt0swm7E6GU/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqkSYpBzIZKRIIzslK7F2ZSIvXLFa/qLeCuEz8nFcjR6Je/eoOEZzEq4pIZ0/W9lIIp0yS4xFmplxlMGR+zIXYtVSxGE0wX587cC6sM3CjRthS5C/X3xJTFxkzi0HbGjEZm1ZuL/3ndjKLbYCpUmhEqvlwUZdKlxJ3/7g6ERk5yYgnjWthbXT5imnGyCZVsCP7qy+ukdVX1a9Xaw3Wlfp3HUYQzOIdL8OEG6nAPDWgChzE8wyu8Oanz4rw7H8vWgpPPnMIfOJ8/d22PoQ==</latexit>•

<latexit sha1_base64="TPtS2tlporPP2Kj0QdBDMgVunw4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPBi8cK9gPaUDbbSbt0swm7E6GU/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqkSYpBzIZKRIIzslK7F2ZSIvXLFa/qLeCuEz8nFcjR6Je/eoOEZzEq4pIZ0/W9lIIp0yS4xFmplxlMGR+zIXYtVSxGE0wX587cC6sM3CjRthS5C/X3xJTFxkzi0HbGjEZm1ZuL/3ndjKLbYCpUmhEqvlwUZdKlxJ3/7g6ERk5yYgnjWthbXT5imnGyCZVsCP7qy+ukdVX1a9Xaw3Wlfp3HUYQzOIdL8OEG6nAPDWgChzE8wyu8Oanz4rw7H8vWgpPPnMIfOJ8/d22PoQ==</latexit>•

<latexit sha1_base64="HWZ1cBx9Lrn3aNWwWGKxlbnvS7E=">AAAB8XicdVDJSgNBEO2JW4xb1KOXxiB4CjMi0WPAi8cIZsFkCD2dmqRJT8/YXSOGIX/hxYMiXv0bb/6NnUWI24OCx3tVVNULEikMuu6Hk1taXlldy68XNja3tneKu3sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOLid+8A21ErK5xlIAfsb4SoeAMrXTTQbjHIMxux91iySu7U1D3F/mySmSOWrf43unFPI1AIZfMmLbnJuhnTKPgEsaFTmogYXzI+tC2VLEIjJ9NLx7TI6v0aBhrWwrpVF2cyFhkzCgKbGfEcGB+ehPxL6+dYnjuZ0IlKYLis0VhKinGdPI+7QkNHOXIEsa1sLdSPmCacbQhFRZD+J80TspepVy5Oi1VT+dx5MkBOSTHxCNnpEouSY3UCSeKPJAn8uwY59F5cV5nrTlnPrNPvsF5+wQdFZEu</latexit>q
<latexit sha1_base64="YHGjDjkg1NOXUr8yuXp734frxMY=">AAAB7nicdVDJSgNBEK2JW4xb1KOXwSB4ChMJ0WPAi8cIZoFkCD2dmqRJT8/QXSOEIR/hxYMiXv0eb/6NnUWI24OCx3tVVNULEikMed6Hk1tb39jcym8Xdnb39g+Kh0ctE6eaY5PHMtadgBmUQmGTBEnsJBpZFEhsB+Prmd++R21ErO5okqAfsaESoeCMrNTuBamUSP1iqVL25nC9X+TLKsESjX7xvTeIeRqhIi6ZMd2Kl5CfMU2CS5wWeqnBhPExG2LXUsUiNH42P3fqnlll4IaxtqXInaurExmLjJlEge2MGI3MT28m/uV1Uwqv/EyoJCVUfLEoTKVLsTv73R0IjZzkxBLGtbC3unzENONkEyqshvA/aV2UK7Vy7bZaqleXceThBE7hHCpwCXW4gQY0gcMYHuAJnp3EeXRenNdFa85ZzhzDNzhvn3jtj6I=</latexit>•

<latexit sha1_base64="Rn0lk+hv/amPqY1SsWycuZutxRY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDevCYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmd+6wmV5rF8MOME/YgOJA85o8ZK9bteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwoe1fly3qlVK1kceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB5ZzjMQ=</latexit>

D

<latexit sha1_base64="MSr6pJA9yw/xxzRRn2AoXnXvJpQ=">AAAB/3icdVDLSsNAFL3xWesrKrhxM1iEuimplOqy4MZlBfuANpTJdNIOnUzizEQoMQt/xY0LRdz6G+78Gyd9QH0duHA4517u4XgRZ0o7zqe1tLyyurae28hvbm3v7Np7+00VxpLQBgl5KNseVpQzQRuaaU7bkaQ48DhteaPLzG/dUalYKG70OKJugAeC+YxgbaSefdgNsB56fiLS4pzepqc9u1AuORMg5xeZWwWYod6zP7r9kMQBFZpwrFSn7ETaTbDUjHCa5ruxohEmIzygHUMFDqhyk0n+FJ0YpY/8UJoRGk3UxYsEB0qNA89sZhHVTy8T//I6sfYv3ISJKNZUkOkjP+ZIhygrA/WZpETzsSGYSGayIjLEEhNtKssvlvA/aZ6VytVS9bpSqFVmdeTgCI6hCGU4hxpcQR0aQOAeHuEZXqwH68l6td6mq0vW7OYAvsF6/wJMvpZB</latexit>

n(q)

d

<latexit sha1_base64="Rn0lk+hv/amPqY1SsWycuZutxRY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwDevCYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmd+6wmV5rF8MOME/YgOJA85o8ZK9bteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwoe1fly3qlVK1kceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB5ZzjMQ=</latexit>

D

<latexit sha1_base64="7v/ZZrxkczpKi4HJo8Msr/n/yjE=">AAAB/3icdVDLSsNAFL3xWesrKrhxM1iEuimJSO2y4MZlBfuANpTJdNIOnUzizEQosQt/xY0LRdz6G+78Gyd9QH0duHA4517u4fgxZ0o7zqe1tLyyurae28hvbm3v7Np7+w0VJZLQOol4JFs+VpQzQeuaaU5bsaQ49Dlt+sPLzG/eUalYJG70KKZeiPuCBYxgbaSufdgJsR74QSrGxTm9HZ927YJbciZAzi8ytwowQ61rf3R6EUlCKjThWKm268TaS7HUjHA6zncSRWNMhrhP24YKHFLlpZP8Y3RilB4KImlGaDRRFy9SHCo1Cn2zmUVUP71M/MtrJzqoeCkTcaKpINNHQcKRjlBWBuoxSYnmI0MwkcxkRWSAJSbaVJZfLOF/0jgrueVS+fq8UK3M6sjBERxDEVy4gCpcQQ3qQOAeHuEZXqwH68l6td6mq0vW7OYAvsF6/wJN8pZF</latexit>

n(q)

<latexit sha1_base64="HWZ1cBx9Lrn3aNWwWGKxlbnvS7E=">AAAB8XicdVDJSgNBEO2JW4xb1KOXxiB4CjMi0WPAi8cIZsFkCD2dmqRJT8/YXSOGIX/hxYMiXv0bb/6NnUWI24OCx3tVVNULEikMuu6Hk1taXlldy68XNja3tneKu3sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOLid+8A21ErK5xlIAfsb4SoeAMrXTTQbjHIMxux91iySu7U1D3F/mySmSOWrf43unFPI1AIZfMmLbnJuhnTKPgEsaFTmogYXzI+tC2VLEIjJ9NLx7TI6v0aBhrWwrpVF2cyFhkzCgKbGfEcGB+ehPxL6+dYnjuZ0IlKYLis0VhKinGdPI+7QkNHOXIEsa1sLdSPmCacbQhFRZD+J80TspepVy5Oi1VT+dx5MkBOSTHxCNnpEouSY3UCSeKPJAn8uwY59F5cV5nrTlnPrNPvsF5+wQdFZEu</latexit>q

<latexit sha1_base64="TPtS2tlporPP2Kj0QdBDMgVunw4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi1WPBi8cK9gPaUDbbSbt0swm7E6GU/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw5HnfTmFjc2t7p7hb2ts/ODwqH5+0TJJpjk2eyER3QmZQCoVNEiSxk2pkcSixHY7v5n77CbURiXqkSYpBzIZKRIIzslK7F2ZSIvXLFa/qLeCuEz8nFcjR6Je/eoOEZzEq4pIZ0/W9lIIp0yS4xFmplxlMGR+zIXYtVSxGE0wX587cC6sM3CjRthS5C/X3xJTFxkzi0HbGjEZm1ZuL/3ndjKLbYCpUmhEqvlwUZdKlxJ3/7g6ERk5yYgnjWthbXT5imnGyCZVsCP7qy+ukdVX1a9Xaw3Wlfp3HUYQzOIdL8OEG6nAPDWgChzE8wyu8Oanz4rw7H8vWgpPPnMIfOJ8/d22PoQ==</latexit>•
<latexit sha1_base64="Ud1XSIXE8nDfPU2KljjH90chhHs=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2A9oStlsN+3SzSbsTsQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+55FrI2L1gNOE9yM6UiIUjKKVfB/5EwZhZmYDMShX3Kq7AFknXk4qkKM5KH/5w5ilEVfIJDWm57kJ9jOqUTDJZyU/NTyhbEJHvGepohE3/Wxx84xcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw5t+JlSSIldsuShMJcGYzAMgQ6E5Qzm1hDIt7K2EjammDG1MJRuCt/ryOmlfVb16tX5fqzRqeRxFOINzuAQPrqEBd9CEFjBI4Ble4c1JnRfn3flYthacfOYU/sD5/AGgw5IL</latexit>si

<latexit sha1_base64="YHGjDjkg1NOXUr8yuXp734frxMY=">AAAB7nicdVDJSgNBEK2JW4xb1KOXwSB4ChMJ0WPAi8cIZoFkCD2dmqRJT8/QXSOEIR/hxYMiXv0eb/6NnUWI24OCx3tVVNULEikMed6Hk1tb39jcym8Xdnb39g+Kh0ctE6eaY5PHMtadgBmUQmGTBEnsJBpZFEhsB+Prmd++R21ErO5okqAfsaESoeCMrNTuBamUSP1iqVL25nC9X+TLKsESjX7xvTeIeRqhIi6ZMd2Kl5CfMU2CS5wWeqnBhPExG2LXUsUiNH42P3fqnlll4IaxtqXInaurExmLjJlEge2MGI3MT28m/uV1Uwqv/EyoJCVUfLEoTKVLsTv73R0IjZzkxBLGtbC3unzENONkEyqshvA/aV2UK7Vy7bZaqleXceThBE7hHCpwCXW4gQY0gcMYHuAJnp3EeXRenNdFa85ZzhzDNzhvn3jtj6I=</latexit>•

e

Figure 23. Different categories of vertices in a diagram V(s,ψ): (a) Case of a vertex q at
the intersection between 3 cells; (b) Case of a vertex between 2 cells and the void phase; (c)
Case of a vertex resulting from the discretization of an exterior circle; (d) Case of a vertex
at the intersection between 2 cells and the boundary ∂D of the computational domain D; (e)
Case of a vertex at the intersection between one cell, the void phase, and ∂D.

that all the vertices of this diagram behave as differentiable functions in a neighborhood of (s,ψ). We may

then define m(ŝ, ψ̂) as an affine function in restriction to every edge of the cells Vi(s,ψ), and then extend
the latter into D as a whole by barycentric coordinates extension. This induces a W 1,∞(Rd,Rd) mapping

m(ŝ, ψ̂) which is a differentiable of the variables (s,ψ) in the neighborhood of (0,0) ∈ RdN × RN . �

We provide the missing ingredients of the above proof by showing that the vertices of the diagram V(s,ψ)
are smooth functions of the seed points s and weights ψ when they are slight perturbations of reference values
satisfying (G1) to (G7). Meanwhile, we provide explicit characterizations of their derivatives, which are useful
in particular in the numerical implementation of the methods presented in Section 6. We proceed in the
case d = 2 for simplicity, but a similar analysis could be conducted when d = 3, up to an increased level of
tediousness. We distinguish between several types of vertices, which are illustrated on Fig. 23.

Case 1: Vertices at the intersection of three cells. Let q ∈ R2 be the vertex at the intersection between
three given cells Vi(s,ψ), Vj(s,ψ) and Vk(s,ψ), for some distinct indices i, j, k ∈ {1, . . . , N}. This vertex is
characterized by the following relations:{

|q− si|2 − ψi = |q− sj |2 − ψj
|q− si|2 − ψi = |q− sk|2 − ψk,

which rewrites: {
〈q, sj − si〉 = 1

2 (|sj |2 − |si|2 − (ψj − ψi))
〈q, sk − si〉 = 1

2 (|sk|2 − |si|2 − (ψk − ψi)).
55



Invoking Assumptions (G2) and (G3), this system uniquely determines q as a smooth function of si, sj ,
sk and ψi, ψj , ψk, a dependence which is not made explicit for notational simplicity. Taking derivatives in
the previous system then leads to the following 2× 2 linear systems for the sensitivities [∇siq] ∈ R2×2 and
∂q
∂ψi
∈ R2: (

sj − si
sk − si

)
[∇siq] =

(
q− si
q− si

)
, and

(
sj − si
sk − si

)
∂q

∂ψi
=

( 1
2
1
2

)
,

which are invertible on account of Assumption (G2). Similar expressions hold true for the derivatives
[
∇sjq

]
,

[∇skq] and ∂q
∂ψj

, ∂q
∂ψk

.

Case 2: Vertices at the intersection of two cells and void. Let now q ∈ R2 be one vertex at the intersection
between the cells Vi(s,ψ), Vj(s,ψ) (i 6= j) and the void phase V0(s,ψ). Then, q satisfies the following
system of equations: {

〈q, sj − si〉 = 1
2 (|sj |2 − |si|2 − (ψj − ψi))

|q− si|2 = ψi.

Note that there may be several such vertices, and so the above system may accordingly have multiple
solutions. Assumption (G3) and the implicit function theorem together imply that q behaves as a smooth
function of si, sj , ψi and ψj – actually, any solution to this system induces a smooth branch of solutions for
small perturbations of these parameters. Taking derivatives, it follows:(

sj − si
q− si

)
[∇siq] =

(
q− si
q− si

)
, and

(
sj − si
q− si

)
∂q

∂ψi
=

( 1
2
1
2

)
.

These systems are invertible on account of Assumption (G3). Again, similar expressions hold for the deriva-

tives
[
∇sjq

]
and ∂q

∂ψj
.

Case 3: Vertices corresponding to the discretization of a circular arc. Consider a circular arc pertaining to
the boundary of the cell Vi(s,ψ), and let qr, r = 0, . . . , narc be the vertices corresponding to its discretization,
enumerated counterclockwise, see Section 4. Let α ∈ (0, 2π) be the angle from siq0 to siqnarc

, which is a
smooth function of si, q0 and qnarc

, and, in turn, as revealed by the previous item, a smooth function of the
seed points s and weights ψ. More precisely, it holds:

cosα =

〈
siq0

|siq0|
,

siqnarc

|siqnarc
|

〉
, sinα = det

(
siq0

|siq0|
,

siqnarc

|siqnarc
|

)
,

whence we infer α ∈ (0, 2π) via the formula

α = 2acot

(
1 + cosα

sinα

)
= π − 2atan

(
1 + cosα

sinα

)
.

Then, let us introduce the vector b = siq
⊥
0 := (−(si,2− q0,2), si,1− q0,1), where u⊥ := (−u2, u1) denotes the

90◦ counterclockwise rotate of a vector u = (u1, u2) ∈ R2. Each vertex qr (r = 1, . . . , narc−1) is determined
by the following relation:

siqr = cos(trα)siq0 + sin(trα)b, where tr =
r

narc
.

The differentiability of qr and the closed form expressions of its derivatives with respect to s and ψ are
straightforward consequences of this formula.

Since the cells of the diagram V(s,ψ) are restricted to the bounded computational domain D ⊂ R2, two
additional situations should be considered, which are depicted on Fig. 23 (e) (f). To address them, it is
convenient to introduce a level set function φ : R2 → R for D, that is

∀x ∈ R2,

 φ(x) < 0 if x ∈ D,
φ(x) = 0 if x ∈ ∂D,
φ(x) > 0 otherwise.

Then, the unit normal vector n(x) to ∂D pointing outward D is given by n(x) = ∇φ(x)
|∇φ(x)| for ds a.e. x ∈ ∂D,

see e.g. [95, 110] about general features of such a level set representation of domains.
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Case 2b: Vertices corresponding to the intersection between two cells and ∂D. Let q ∈ R2 be one vertex at
the intersection between the cells Vi(s,ψ), Vj(s,ψ) and ∂D. Then the following system of equations holds:{

|q− si|2−ψi = |q− sj |2−ψj
φ(q) = 0.

As in the previous items, the combination of Assumptions (G5) and (G6) with the implicit function theorem
shows that this q behaves as a smooth function of the parameters s and ψ when the latter are slightly
perturbed from reference values satisfying (G1) to (G7). In the meantime, taking derivatives in the above
equations yields immediately the following systems:(

sj − si
n(q)

)
[∇siq] =

(
q− si

0

)
, and

(
sj − si
n(q)

)
∂q

∂ψi
=

(
1
2
0

)
,

which are invertible on account of (G5) and (G6). Similar relations allow to characterize the derivatives[
∇sjq

]
and ∂q

∂ψj
.

Case 3b: Vertices at the intersection between one exterior circle and ∂D. Let q ∈ R2 be one vertex lying at
the intersection between the cell Vi(s,ψ) (i = 1, . . . , N), the void phase V0(s,ψ) and ∂D. Then,{

|q− si|2 − ψi = 0
φ(q) = 0,

Using (G1) to (G7) and the implicit function theorem, we see that this system characterizes a smooth
function of s and ψ. In the meantime, taking derivatives into these equations, we obtain the following
invertible systems: (

q− si
n(q)

)
[∇siq] =

(
q− si

0

)
, and

(
q− si
n(q)

)
∂qr
∂ψi

=

(
1
2
0

)
.

Appendix B. Second order derivatives of the Kantorovic functional with respect to
seeds and weights

Let s ∈ RdN , ψ ∈ RN be generic seed points and weights, in the sense that (G1) to (G7) hold true. Let
also ν = {ν1, . . . , νN} be a vector of prescribed measures. Restricting to the case of two space dimensions
d = 2 for simplicity, this section details the calculation of the partial derivatives of the derivative F :
RdNs × RNν × RNψ → RN of the Kantorovic functional introduced in Theorem 3.1:

F(s,ν,ψ) =
(
νi − |Vi(s,ψ)|

)
i=1,...,N

.

Let us recall that this result is useful for a variety of purposes in our framework: on the one hand, it is the
key ingredient of the Newton-Raphson algorithm implemented for the resolution of (3.11), see Section 4.1.
On the other hand, it is needed in the procedure of Section 6 for expressing the derivative of a quantity with
respect to the vertices q of the diagram in terms of the defining seed points s and weights ψ. Again, the
results of this appendix are not completely new, see e.g. [42, 84, 93] where fairly similar calculations are
conducted in a formal fashion. The calculation of the derivatives of F with respect to the weights ψ is also
achieved in [84], and in [45] in a more general context. Here, we present an elementary mixture of arguments
used in the aforementioned references.

Let us introduce a few additional notations, which are illustrated on Fig. 24:

• For any index i = 1, . . . , N and any neighbor j ∈ Ni of i, we recall that eij is the line segment
Vi(s,ψ) ∩ Vj(s,ψ), and we denote by mij the midpoint of eij .

• For i = 1, . . . , N , we denote by Ci,r, r = 1, . . . , nc,i the circular arcs composing the boundary of the
cell Vi(s,ψ); the value nc,i = 0 indicates that the cell is not on the boundary of the associated shape
Ω. We also let Ci :=

⋃nc,i

r=1 Ci,r.
• For i = 1, . . . , N and r = 1, . . . , nc,i, the endpoints of the circular arc Ci,r are denoted by q0

i,r, q1
i,r

when the latter is oriented counterclockwise, and θi,r ∈ (0, 2π) is its angular aperture.
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Figure 24. Deformation of (a) An interior cell; (b) A cell containing at least one circular
arc in the diagram V(s,ψ), induced by a small perturbation of the corresponding seed point,
as considered in Appendix B.

• For i = 1, . . . , N , we denote by ni the unit normal vector field to ∂Vi(s,ψ), pointing outward Vi(s,ψ).
This latter is given for ds-almost every point x ∈ ∂Vi(s,ψ) by the following expressions:

n(x) =

{
sj−si
|sj−si| if x ∈ eij for some j ∈ Ni,
x−si
|x−si| if x ∈ Ci.

The result of interest in this appendix is the following.

Proposition B.1. Let s = {si}i=1,...,N ∈ RdN and ψ = {ψi}i=1,...,N ∈ RN be sets of seed points and

weights satisfying the genericity Assumptions (G1) to (G7). Then, for all i = 1, . . . , N , the function F is
differentiable at (s,ν,ψ). It holds, for i = 1, . . . , N :

∇siFi(s,ν,ψ) = −
∑
j∈Ni

|eij |
|sj − si|

(mij−si)−
nc,i∑
r=1

(q0
i,r−q1

i,r)
⊥, and for j 6= i ∇sjFi(s,ν,ψ) =

|eij |
|sj − si|

(mij−si),

where u⊥ := (−u2, u1) is the 90◦ counterclockwise rotate of a vector u = (u1, u2) ∈ R2. Besides,

∂Fi
∂ψi

(s,ν,ψ) = −1

2

∑
j∈Ni

|eij |
|sj − si|

− nc,i∑
r=1

θi,r, and for j 6= i
∂Fi
∂ψj

(s,ν,ψ) =
1

2

|eij |
|sj − si|

.

Proof. Judging from the definition (3.14) of the function F(s,ν, ·), the proof boils down to the calculation
of the derivatives of the measures

Ai(s,ψ) := |Vi(s,ψ)|, i = 1, . . . , N

with respect to the seed points s ∈ RdN and weights ψ ∈ RN of the diagram V(s,ψ). The main idea
builds on the conclusion of Proposition A.1, whereby their exists ε > 0 such that for any perturbation

(ŝ, ψ̂) ∈ RdNs × RNψ with |̂s|+|ψ̂|< ε, the diagram V(s + ŝ,ψ + ψ̂) is obtained from the reference diagram

V(s,ψ) by application of a “smooth” deformation

Id + m(ŝ, ψ̂), where m(ŝ, ψ̂) ∈W 1,∞(R2,R2).

The derivative of (ŝ, ψ̂) 7→ Ai(s + ŝ,ψ + ψ̂) thus results from the combination of the chain rule with the
formula (2.8) for the derivative of the volume of a domain with respect to arbitrary perturbations of its
boundary.
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We first apply this strategy to calculate the derivative of Ai(s,ψ) with respect to si, for a given index
i = 1, . . . , N . For any vector h ∈ R2, let s(h) := (s1, . . . , si−1, si + h, si+1, . . . , sN ) be the collection of seed
points resulting from a translation h of the ith element of s. As we have recalled, when |h|< ε, the cell
Vi(s(h),ψ) is of the form

(B.1) Vi(s(h),ψ) = (Id + m(h))
(
Vi(s,ψ)

)
,

for a certain differentiable mapping B(0, ε) 3 h 7→ m(h) ∈ W 1,∞(R2,R2). The combination of the chain
rule with formula (2.8) yields:
(B.2)

∂Ai
∂si

(s,ψ)(h) =

∫
∂Vi(s,ψ)

〈
∂m

∂h
(0)(h)(x),ni(x)

〉
ds(x)

=
∑
j∈Ni

∫
eij

〈
∂m

∂h
(0)(h)(x),ni(x)

〉
ds(x) +

nc,i∑
r=1

∫
Ci,r

〈
∂m

∂h
(0)(h)(x),ni(x)

〉
ds(x),

and we now proceed to glean information about the derivative R2 3 h 7→ ∂m
∂h (0)(h) ∈W 1,∞(R2,R2).

Let j ∈ Ni, and x be an arbitrary point on the edge eij . For any perturbation h ∈ B(0, ε), the point
m(h)(x) belongs to the intersection of the cells Vi(s(h),ψ) and Vj(s(h),ψ), which implies that:

|x + m(h)(x)− si − h|2−ψi = |x + m(h)(x)− sj |2−ψj .
A simple calculation then yields:

2〈m(h)(x), sj − si〉 = 2〈x− si,h〉+ |x− sj |2−|x− si|2−(ψj − ψi) + o(h),

and so: 〈
∂m

∂h
(0)(h)(x), sj − si

〉
= 〈x− si,h〉.

As a result, we have proved the expression

(B.3) ∀x ∈ eij ,

〈
∂m

∂h
(0)(h)(x),ni

〉
=

〈
x− si
|sj − si|

,h

〉
.

Let now x be a point on one of the circular arcs Ci,r, r = 1, . . . , nc,i. Again, the definition of Ci,r readily
implies that, for any perturbation vector |h|< ε, we have:

|x + m(h)(x)− si − h|2= ψi.

Hence, we obtain

〈m(h)(x),x− si〉 = 〈x− si,h〉 −
1

2
|x− si|2 +

1

2
ψi + o(h),

and so:

(B.4) ∀x ∈ Ci,r,
〈
∂m

∂h
(0)(h)(x),ni(x)

〉
=

〈
x− si
|x− si|

,h

〉
.

Eventually, combining (B.2) with (B.3) and (B.4), we obtain:

∂Ai
∂si

(s,ψ)(h) =

〈∑
j∈Ni

∫
eij

x− si
|sj − si|

ds(x),h

〉
+

〈
nc,i∑
r=1

∫
Ci,r

x− si
|x− si|

ds(x),h

〉

=

〈∑
j∈Ni

|eij |
|sj − si|

(mij − si),h

〉
+

〈
nc,i∑
r=1

(q0
i,r − si)

⊥ − (q1
i,r − si)

⊥,h

〉
,

where the second line follows from an elementary calculation. This yields the desired formula.

Let us now apply the same strategy to calculate the derivative of Ai(s,ψ) with respect to the weight ψi.
A perturbation of ψi of the form ψi + h for |h|< ε incurs a deformation of the ith cell of the diagram of the
form:

Vi(s,ψ + hei) = (Id + m(h))
(
Vi(s,ψ)

)
,
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for some differentiable mapping B(0, ε) 3 h 7→m(h) ∈W 1,∞(R2,R2). Again, the combination of (2.8) with
the chain rule yields:
(B.5)

∂Ai
∂ψi

(s,ψ)(h) =

∫
∂Vi(s,ψ)

〈
∂m

∂h
(0)(h)(x),ni(x)

〉
ds(x)

=
∑
j∈Ni

∫
eij

〈
∂m

∂h
(0)(h)(x),ni(x)

〉
ds(x) +

nc,i∑
r=1

∫
Ci,r

〈
∂m

∂h
(0)(h)(x),ni(x)

〉
ds(x),

and we now aim to characterize the derivative R 3 h 7→ ∂m
∂h (0)(h) ∈W 1,∞(R2,R2).

To this end, let us first consider an index j ∈ Ni, and let x ∈ eij be given. For any h ∈ B(0, ε), it holds:

|x + m(h)(x)− si|2 − ψi − h = |x + m(h)(x)− sj |2 − ψj ,
and so

〈m(h)(x), sj − si〉 =
h

2
+ |x− sj |2 − |x− si|2 − (ψj − ψi) + o(h).

We then obtain the following formula involving the derivative of the mapping m:

∀x ∈ eij ,

〈
∂m

∂h
(0)(h)(x), sj − si

〉
=
h

2
,

which rewrites:

(B.6) ∀x ∈ eij ,

〈
∂m

∂h
(0)(h)(x),ni(x)

〉
=
h

2

1

|sj − si|
.

Let us now consider a point x located on one of the circular arcs Ci,r, r = 1, . . . , nc,i. It holds, for all
h ∈ B(0, ε):

|x +m(h)(x)− si|2 = ψi + h,

and so:

(B.7)

〈
∂m

∂h
(0)(h),ni(x)

〉
=

1

2|x− si|
=

1

2
ψ
−1/2
i .

Eventually, combining (B.5) with (B.6) and (B.7), we arrive at:

∂Ai
∂ψi

(s,ψ)(h) =

〈∑
j∈Ni

∫
eij

1

2

1

|sj − si|
ds(x), h

〉
+

〈
nc,i∑
r=1

∫
Ci,r

1

2
ψ
−1/2
i ds(x), h

〉

=

〈
1

2

∑
j∈Ni

|eij |
|sj − si|

, h

〉
+

〈
1

2

nc,i∑
r=1

θi,r, h

〉
,

which yields the desired formula.

The expressions of the partial derivatives of the mapping (s,ψ) 7→ Ai(s,ψ) with respect to the position
sj and weight ψj of a neighboring index j ∈ Ni are obtained in a completely similar fashion, and we omit
the details for brevity. The proof of Proposition B.1 is therefore complete. �

Remark B.1. The differentiability of the mapping ψ 7→ K(s,ν,ψ) – which essentially involves the areas
|Vi(s,ψ)| of the cells of the diagram V(s,ψ) – holds true under weaker assumptions than the collection
(G1) to (G7), which implies the differentiability of all the individual vertices of the diagram, see for instance
[45, 84]. To keep the presentation elementary and self-contained, we limit ourselves with the presented results,
which are sufficient for our purpose.

Corollary B.1. Let s ∈ RdN and ψ ∈ RN be collections of seed points and weights satisfying (G1) to (G7).
Then, [∇ψF(s,ν,ψ)] is a negative definite N ×N matrix, which is therefore invertible.

Proof. The above assumptions imply in particular that the diagram V(s,ψ) contains no empty cell, so that
the weights ψi are positive for i = 1, . . . , N (see Step 2 in the next Appendix C where the same argument
is used). Then, the matrix [∇ψF(s,ν,ψ)] is strictly diagonal dominant, and by a classical argument, it is
invertible. Since its diagonal entries are negative, the claim follows. �
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Remark B.2. In the case where the void phase V0(s,ψ) is empty, [∇ψF(s,ν,ψ)] has a one-dimensional
kernel, which reflects the fact that the collection of weights ψ realizing a given measure constraint for each
cell is unique up to addition of a common real number to all the ψi.

Appendix C. Proof of Theorem 3.1

The proof is decomposed into four steps.

Step 1: We prove that the function RN 3 ψ 7→ K(s,ν,ψ) ∈ R defined by (3.13) is concave, differentiable,
and we calculate its derivative.

For x ∈ X, we denote for convenience s0 ≡ s0(x) = x. For a given weight vector ψ ∈ RN , let us define the
measurable mappings Iψ : X → {0, . . . , N} and Tψ : X → X by:

Iψ(x) = arg min
i=0,...,N

(
|x− si|2 − ψi

)
, and Tψ(x) = sIψ(x),

where we recall the convention ψ0 = 0. Note that the points x ∈ X where the above minimum is not uniquely
attained form a set of Lebesgue measure 0, so that Iψ and Tψ are well-defined a.e. on X. This definition
immediately implies that, for any measurable mapping I : X → {0, . . . , N}, it holds:

|x− sIψ(x)|2 − ψIψ(x) ≤ |x− sI(x)|2 − ψI(x) for a.e. x ∈ X.

It follows that, for any weight vectors ψ,ϕ ∈ RN :

(C.1)

K(s,ν,ϕ) =

∫
D

(
|x− sIϕ(x)(x)| − ϕIϕ(x)

)
dx +

N∑
i=1

νiϕi

≤
∫
D

(
|x− sIψ(x)(x)| − ϕIψ(x)

)
dx +

N∑
i=1

νiϕi

=

N∑
i=0

∫
Vi(s,ψ)

(
|x− si|2 − ϕi

)
dx +

N∑
i=1

νiϕi

= K(s,ν,ψ) + 〈F(s,ν,ψ),ϕ−ψ〉,

where we recall that the components of F(s,ν,ψ) ∈ RN are defined by:

(C.2) Fi(s,ν,ψ) := νi − |Vi(s,ψ)|, i = 1, . . . , N.

Hence, the superdifferential ∂ψK(s,ν,ψ) of the mapping ϕ 7→ K(s,ν,ϕ) at an arbitrary weight vector
ψ ∈ RN contains F(s,ν,ψ) ∈ RN , and it is in particular non empty. On the other hand, the inequality
(C.1) expresses K(s,ν, ·) as the minimum of a collection of affine functions:

K(s,ν,ϕ) = min
ψ∈RN

(
K(s,ν,ψ) + 〈F(s,ν,ψ),ϕ−ψ〉

)
, ϕ ∈ RN .

This discussion shows that the mapping ψ 7→ K(s,ν,ψ) is concave, and thus differentiable at a.e. ψ ∈ RN ;
besides, its gradient at any point ψ where it is differentiable equals ∇ψK(s,ν,ψ) = F(s,ν,ψ), see [105],
Th. 25.4.

The C1 character of ψ 7→ K(s,ν,ψ) follows from the same argument as in the proof of Th. 40 in [84].
At first, a simple application of the Lebesgue dominated convergence theorem shows that the mapping
ψ → F(s,ν,ψ) is continuous on RN . On the other hand, according to Th. 25.6 in [105] the superdifferential
∂ψK(s,ν,ψ) at any vector ψ ∈ RN reads:

∂ψK(s,ν,ψ) =
{

lim
n→∞

gn, gn = ∇ψK(s,ν,ψn), ψn
n→∞−−−−→ ψ and K(s,ν, ·) is differentiable at ψn

}
.

Now, the continuity of F(s,ν, ·) implies that, for any sequence ψn → ψ such that K(s,ν, ·) is differentiable
at ψn, the unique element F(s,ν,ψn) = ∇ψK(s,ν,ψn) in ∂ψK(s,ν,ψn) converges to F(s,ν,ψ) as n→∞.
The superdifferential ∂ψK(s,ν,ψ) is thus reduced to a single point, and so K(s,ν, ·) is differentiable on RN ,
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with continuous derivative F(s,ν, ·). This completes the first step in the proof of Theorem 3.1; in passing,
we have proved that the maximizers ψ ∈ RN in (3.12) are characterized by the equation

F(s,ν,ψ) = 0.

Step 2: We prove the existence of a weight vector ψ∗ satisfying (3.11).

To this end, we adapt the argument of the proof of Corollary 39 in [84]. This starts with a few remarks:

• For any ψ ∈ RN and i = 1, . . . , N , the mapping R 3 t 7→ |Vi(s,ψ + tei)| is non decreasing.
• For any ψ ∈ RN , and i, j = 1, . . . , N , i 6= j, the mapping R 3 t 7→ |Vj(s,ψ + tei)| is non increasing.
• If the cell Vi(s,ψ) is non empty, then the weight ψi must satisfy ψi ≥ 0, since any point x ∈ Vi(s,ψ)

satisfies in particular |x− si|2−ψi ≤ 0.
• In the same spirit, if Vi(s,ψ) has positive Lebesgue measure, one has ψi > 0.
• If the cell V0(s,ψ) in (3.8) is non empty, it holds:

∀i = 1, . . . , N, ψi ≤ diam(D)2.

Now, let ν ∈ RN be a vector satisfying (3.10), and let K ⊂ RN be the set defined by

K =
{
ψ ∈ RN s.t. |Vi(s,ψ)| ≤ νi for all i = 1, . . . , N

}
.

According to the previous observations, for all ψ ∈ K, it holds |V0(s,ψ)|≥ ν0 > 0, and so K ⊂ [0,diam(D)2]N .
Moreover, since the mapping F(s,ν, ·) is continuous, K is closed, and it is therefore compact. Let us then
consider one solution ψ∗ to the following maximization problem:

(C.3) max
ψ∈K

W (ψ), where W (ψ) =

N∑
i=1

ψi.

Assume that there exists i ∈ {1, . . . , N} such that |Vi(s,ψ∗)|< νi. Then by the continuity of F (s,ν, ·), there
exists t > 0 such that |Vi(s,ψ∗ + tei)|< νi, and by the foregoing observations, one also has:

|Vj(s,ψ∗ + tei)| ≤ |Vj(s,ψ∗)| ≤ νj for j = 1, . . . , N, j 6= i.

Hence, the vector (ψ∗ + tei) also belongs to K and W (ψ∗ + tei) > W (ψ∗), which contradicts the definition
of ψ∗. We have thus proved that any maximizer ψ∗ in (C.3) satisfies the desired property:

|Vi(s,ψ∗)|= νi, for i = 1, . . . , N.

Step 3: We prove the uniqueness of ψ∗ under the genericity assumptions (G1) to (G7).

We have seen in Corollary B.1 that under the assumptions (G1) to (G7), the mapping ψ 7→ F(s,ν,ψ) is
differentiable at ψ∗, and that the derivative [∇ψF(s,ν,ψ∗)] is an invertible N ×N matrix.

Let us assume that there exists another weight vector ϕ∗ satisfying (3.11). Then ψ∗ and ϕ∗ are both
maximizers of the concave Kantorovic functional K(s,ν, ·), and so, for any t ∈ (0, 1), it holds:

F(s,ν, (1− t)ψ∗ + tϕ∗) = F(s,ν,ψ∗) = 0.

Rearranging the above equality, dividing both sides by t, then letting t tend to 0, we obtain:

[∇ψF(s,ν,ψ∗)] (ϕ∗ −ψ∗) = 0,

which proves that ψ∗ = ϕ∗, as expected.

Step 4: We use duality to conclude that (3.15) is the optimal transport mapping between µ and ν.

Let us recall the well-known expression of the dual maximization problem attached to the Kantorovic mini-
mization problem (OT-K):

(OT-D) max
ψ∈C(X)

(∫
X

min
y∈X

(
c(x,y)− ψ(y)

)
dµ(y) + ν0

1

|D|

∫
X

ψ(y) dy +

N∑
i=1

νiψi

)
,

see e.g. [107]. The weak duality phenomenon reads, in the present situation:

(C.4) max (OT-D) ≤ min (OT-K).
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Note that actually, strong duality holds, i.e. max (OT-D) = min (OT-K), see Th. 1.39 in [107]. We shall
not need this fact, which will actually turn out to be a by-product of our analysis.

Let ψ ∈ RN be the weight vector supplied by the second step, guaranteeing the equality (3.11), and let
Tψ be the mapping defined in (3.15); we recall from Step 2 that ψi > 0 for all i = 1, . . . , N and we retain
the convention ψ0 = 0. By construction, (Tψ)#µ = ν, so that (Id, Tψ)#µ is an admissible transport plan in
the problem (OT-K); hence:

min (OT-K) ≤
∫
X

c(x, Tψ(x)) dµ(x).

On the other hand, let us define the (discontinuous) function ψ̃ : X → R by

∀y ∈ X, ψ̃(y) =

{
ψi if y = si, i = 1, . . . , N,

ψ0 = 0 otherwise.

It follows from the definition of Tψ that:

∀x ∈ X, c(x, Tψ(x))− ψ̃(Tψ(x)) = min
y∈X

(
c(x,y)− ψ̃(y)

)
.

Integrating this identity, we obtain:

(C.5)

∫
X

c(x, Tψ(x)) dµ(x)−
N∑
i=1

νiψi =

∫
X

min
y∈X

(
c(x,y)− ψ̃(y)

)
dµ(x).

We now approximate the discontinuous function ψ̃ in the last term in the above right-hand side. To this
end, let us first introduce the step function χε defined for ε > 0 small enough by

∀y ∈ X, χε(y) =

{
ψi if |y − si|< ε for some i = 1, . . . , N,
0 otherwise.

We also introduce one function ζε ∈ C(X) satisfying the properties: ζε(y) = ψi if |y − si|< ε
2 for i = 1, . . . , N,

0 ≤ ζε(y) ≤ ψi if ε
2 ≤ |y − si|< ε for i = 1, . . . , N,

0 otherwise,

i.e. ζε is a smoothed version of ψ̃, whose support is contained in a collection of balls of radius ε around the
si, i = 1, . . . , N ; the latter can easily be constructed thanks to mollifiers. Then, it holds:

min
y∈X

(
c(x,y)− χε(y)

)
≤ min

y∈X

(
c(x,y)− ζε(y)

)
≤ min

y∈X

(
c(x,y)− ψ̃(y)

)
.

On the other hand, the first term in the above left-hand side can be estimated as:

min
y∈X

(
c(x,y)− χε(y)

)
≥ min

(
0, min

i=1,...,N
h∈B(0,ε)

(
c(x, si + h)− ψi

))
= min

(
0, min

i=1,...,N
h∈B(0,ε)

(
c(x− h, si)− ψi

))
≥ min

(
0, min
i=1,...,N

(
c(x, si)− ψi

))
− Lε

= min
y∈X

(
c(x,y)− ψ̃(y)

)
− Lε,

where L is a Lipschitz constant for the cost c(x,y) = |x − y|2 on X ×X, and we have used the particular
difference structure of the latter when passing from the first to the second line. It follows that:

min
y∈X

(
c(x,y)− ψ̃(y)

)
≤ min

y∈X

(
c(x,y)− ζε(y)

)
+ Lε,

63



and so, returning to (C.5):∫
X

c(x, Tψ(x)) dµ(x) ≤
∫
X

min
y∈X

(
c(x,y)− ζε(y)

)
dµ(x) +

N∑
i=1

νiψi + Lε

≤
∫
X

min
y∈X

(
c(x,y)− ζε(y)

)
dµ(x) + ν0

1

|D|

∫
X

ζε(y) dy +

N∑
i=1

νiψi + Lε

≤ max (OT-D) + Lε.

Since ε is arbitrary, we may let ε tend to 0 in the above inequality; recalling the weak duality inequality
(C.4), we have thus proved that Tψ is indeed an optimal transport mapping.

The uniqueness of such an optimal transport mapping is a classical fact in optimal transport theory, see
e.g. Th. 1.17 in [107]. This concludes the proof of Theorem 3.1.

Appendix D. Implementation details of the Virtual Element Method

In this section, we describe the practical implementation of the Virtual Element Method for the solution of
the conductivity equation (Cond) and of the linear elasticity system (Elas).

D.1. The case of the conductivity equation

Slipping into the notation of Section 5.2 and closely following [120], we now provide a little details about the

computation of the entries of the local stiffness matrix KE ∈ RnE×nE

defined by

∀i, j = 1, . . . , n, KE
ij = ãE(ζi, ζj),

where the discrete bilinear form ãE(u, v) reads

∀u, v ∈ W(E), ãE(u, v) = aE(πCu, πCv) + s̃E(u− πPu, v − πPv),

and the basis {ζi}i=1,...,nE of W(E) is characterized by (5.10). As discussed in Section 5.2, this formula

induces a decomposition of KE as the sum of two contributions:

KE = PE + S̃E , where PEij := aE(πCζi, πCζj) and S̃Eij = s̃E(ζi − πPζi, ζj − πPζj).

The cornerstone of the calculation of both matrices is therefore the calculation of the matrix Π ∈ R3×nE

of the projection operator πP onto affine functions, expressed in the bases {ζi}i=1,...,nE of W(E) and

{mα}α=1,2,3 of P(E), i.e. the ith column of Π gathers the entries of πPζi in the basis mα:

πPζi(x) =

3∑
α=1

Παimα(x), i = 1, . . . , nE , x ∈ E.

By using the following characterization of πP ,

πPζi = ζi =
1

nE
and aE(πPζi,mα) = aE(ζi,mα), α = 2, 3,

we obtain the identity:

(D.1) G̃Π = B,

where

• The matrix G̃ ∈ R3×3 is defined by:

G̃11 = 1 and G̃12 = G̃13 = 0,

as well as:

G̃α,β =

∫
E

∇mα · ∇mβ dx for α = 2, 3 and β = 1, 2, 3.
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• The matrix B ∈ R3×nE

is given by:

B1i =
1

nE
, and Bαi =

∫
E

∇ζi · ∇mα dx for i = 1, . . . , nE and α = 2, 3.

The entries of B can be calculated in closed form by using the facts that ∇mα is constant on E and
that the basis functions ζi are affine on each edge of ∂E. Indeed, Green’s formula implies that, for
α = 2, 3:

Bα,i =

(∫
E

∇ζi dx

)
· ∇mα =

(∫
∂E

ζin d`

)
· ∇mα =

1

2
|êi|nêi

· ∇mα.

Hence, the system (D.1) features the explicit matrix G̃ and right-hand side B, and it can be solved for
the matrix Π. The practical implementation is further simplified thanks to the introduction of the matrix

D ∈ RnE×3 corresponding to the expression of the polynomials mα, α = 1, 2, 3 in the basis {ζi}i=1,...,nE of

W(E), that is:

mα(x) =

nE∑
i=1

Diαζi(x), x ∈ E.

The coefficients of this matrix read, by definition of the ζi:

Diα = mα(qEi ),

and so

Di1 = 1, , Di2 = qEi,1 − qE1 , and Di3 = qEi,2 − qE2 for i = 1, . . . , nE .

The definitions of the matrices G̃, B and D yield the following relation:

G̃ = BD.

Indeed, elementary calculations lead to:

G̃11 = 1 =

nE∑
i=1

B1iDi1, G̃1β = 0 =

nE∑
i=1

B1iDiβ for β = 2, 3,

and likewise, for α = 2, 3,

G̃αβ =

∫
E

∇mα · ∇mβ dx =

nE∑
i=1

Diβ

∫
E

∇mα · ∇ζi dx =

nE∑
i=1

DiβBαi.

Once the matrix Π is calculated, PE is inferred from the formula:

(D.2) PE = γΠTGΠ, where G is the matrix with entries Gαβ =

∫
E

∇mα · ∇mβ dx, α, β = 1, 2, 3.

Likewise, S̃E is obtained as:

(D.3) S̃E = αE
(

I−DΠ
)T(

I−DΠ
)
, where αE = 1,

and I is the identity matrix with size nE × nE .

Summarizing, the computations of the matrices PE and SE (and thus KE) proceed as follows:

(1) Assemble the matrices B and D;

(2) Calculate G̃ = BD ∈ R3×3;

(3) Compute Π ∈ R3×nE

as the solution to the matrix system

G̃Π = B.

(4) The matrice PE and S̃E are inferred from the formulas (D.2) and (D.3).

Eventually, the entries FEi of the local force vector FE ∈ RnE

are simply approximated as:

FEi =

∫
E

fζi dx ≈ f(qE)

∫
E

ζi dx ≈ f(qE)
|E|
nE

, i = 1, . . . , nE .
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Remark D.1. An important consequence of the above analysis is that the projection πPζ of a function
ζ ∈ WT onto affine functions depends only on the values ζ(qEi ) (i = 1, . . . , nE) of ζ at the vertices of the
considered element E

D.2. The case of the linear elasticity system

The present section deals with the linear elasticity system (Elas). Relying on [18, 57], we briefly describe its
numerical solution by the Virtual Element Method.

As emphasized in Section 5 and Appendix D.1, the most critical operation in this perspective is the

calculation of the local stiffness matrix KE ∈ R2nE×2nE

defined by

∀i, j = 1, . . . , 2nE , KE
ij = ãE(ζi, ζj),

where ãE is given by:

∀u, v ∈ W(E), ãE(u,v) = aE(πCu, πCv) + s̃E(u− πPu,v − πPv),

and the basis functions ζi, i = 1, . . . , 2nE are characterized by (5.14) and (5.15). Again, we decompose KE

as:

KE = PE + S̃E , where PE , S̃E ∈ R2nE×2nE

are the matrices

PEij := aE(πCζi, πCζj) and S̃Eij := s̃E(ζi − πPζi, ζj − πPζj).

Let WC ∈ R2nE×3 be the transpose of the matrix of πC in the bases {ζi}i=1,...,2nE and {cα}α=1,2,3, i.e. the

ith line of WC gathers the coordinates of the projection πCζi over the functions c1, c2, c3 in (5.17):

∀i = 1, . . . , 2nE , πCζi(x) =

3∑
β=1

(WC)iβcβ(x), x ∈ E.

Likewise, let WR ∈ R2nE×3 be the transpose of the matrix of πR in the bases {ζi}i=1,...,2n and {rα}α=1,2,3:

∀i = 1, . . . , 2nE , πRζi(x) =

3∑
β=1

(WR)iβrβ(x).

With these notations, the first block PE ∈ R2nE×2nE

of KE reads,

PEij = aE(πCζi, πCζj) =

3∑
α,β=1

(WC)iα(WC)jβ a
E(cα, cβ),

and so, in matrix form:

(D.4) PE = WCDW
T
C , where D ∈ R3×3 is defined by Dαβ = aE(cα, cβ) =

∫
E

Ae(cα) : e(cβ) dx.

An elementary calculation yields:

D = |E|

 2µ+ λ λ 0
λ 2µ+ λ 0
0 0 4µ

 ,

and we shall detail below how to calculate the matrices WC and WR in practice.

As far as the stabilizing block S̃E of KE is concerned, we need to calculate the matrices PC and PR ∈
R2nE×2nE

of the projections πC : W(E) → W(E) and πR : W(E) → W(E) in the basis {ζi}i=1,...,2nE . To

this end, let us introduce the matrix NC ∈ R2nE×3, whose αth column (α = 1, 2, 3) contains the coordinates
of cα over the basis {ζi}, that is:

∀α = 1, 2, 3, cα(x) =

2nE∑
i=1

(NC)iαζi(x), x ∈ E.

66



With these notations, it holds, for j = 1, . . . , 2nE :

πCζj =

3∑
α=1

(WC)jαcα

=

2nE∑
i=1

(
3∑

α=1

(NC)iα(WC)jα

)
ζi

and so, PC ∈ R2nE×2nE

reads:

PC = NCW
T
C .

Likewise, let NR ∈ R2nE×3 be the matrix whose αth column (α = 1, 2, 3) contains the coordinates of rα in
the basis ζi, that is:

∀α = 1, 2, 3, rα(x) =

2nE∑
i=1

(NR)iαζi(x), x ∈ E;

it holds:

(D.5) PR = NRW
T
R .

Finally, the matrix PP ∈ R2nE×2nE

of the projection πP over the space P(E) of affine functions reads:

(D.6) PP = PR + PC .

With these notations, S̃E can be computed via the following formula:

(D.7) SE = αE(I− PP )T (I− PP ),

where I is the 2nE × 2nE identity matrix.
It follows from the formulas (D.4) to (D.7) that the basic ingredients of the practical implementation of

the Virtual Element Method dedicated to the solution of the linear elasticity system (Elas) are the assembly
of the matrices NC , NR,WC ,WR, and the calculation of the coefficient αE ; we now detail these operations.

Assembly of the matrices WC ,WR

For i = 1, . . . , nE , let us introduce the vector ai ∈ R2 defined by

ai =
|êi|
2|E|nêi

,

where we recall the notation nêi
in (5.1).

Let us first consider the matrix WR ∈ R2nE×3; for i = 1, . . . , nE and x ∈ E, we have

πRζ2i−1(x) = ζ2i−1 + 〈ω(ζ2i−1)〉
(
−(x2 − qE2 )

x1 − qE1

)
,

where obviously, ζ2i−1 = 1
nE r1 and a simple calculation shows that:

〈ω(ζ2i−1)〉 = − 1

2|E|

∫
E

∂

∂x2
(ζ2i−1)1 dx

= − 1

2|E|

∫
∂E

(ζ2i−1)1n2 d`

= − 1

4|E| (|ei−1|nei−1 + |ei|nei)2

= − 1

|E|
|êi|
4

(nêi
)2

= −1

2
(ai)2.

Hence, it follows:

πRζ2i−1(x) =
1

nE
r1(x)− 1

2
(ai)2 r3(x).
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A similar calculation yields:

πRζ2i(x) =
1

nE
r2(x) +

1

2
(ai)1 r3(x).

Likewise, considering the entries of WC , we obtain:

πCζ2i−1(x) = (ai)1c1(x) +
1

2
(ai)2 c3(x), and πCζ2i(x) = (ai)2c2(x) +

1

2
(ai)1 c3(x).

Summarizing, the matrices WR and WC read, in the respective bases {rα}α=1,2,3, {ζi}i=1,...,2nE and

{cα}j=1,2,3, {ζi}i=1,...,2nE :

WR =



...
...

...

1
nE 0 − 1

2 (ai)2

0 1
nE

1
2 (ai)1

...
...

...


, and WC =



...
...

...

(ai)1 0 1
2 (ai)2

0 (ai)2
1
2 (ai)1

...
...

...


.

Assembly of the matrices NC , NR

It follows from the definition (5.14) and (5.15) of the functions ζi that:

cα(x) =

nE∑
i=1

(cα(qEi ))1 ζ2i−1(x) +

nE∑
i=1

(cα(qEi ))2 ζ2i(x), x ∈ E.

Hence, a simple calculation based on the explicit form (5.17) of the basis functions cj reveals that:

NC =



...
...

...

(c1(qEi ))1 (c2(qEi ))1 (c3(qEi ))1

(c1(qEi ))2 (c2(qEi ))2 (c3(qEi ))2

...
...

...


=



...
...

...

qEi,1 − qE1 0 qEi,2 − qE2
0 qEi,2 − qE2 qEi,1 − qE1

...
...

...


.

Similarly, the following expression of NR is derived:

NR =



...
...

...

1 0 −qEi,2 − qE2
0 1 qEi,1 − qE1

...
...

...


.

Calculation of αE

As we have mentioned, the coefficient αE is chosen so as to ensure the stability of the method. The idea
consists in taking αE such that the block

{
sE(ck, cl)

}
k,l=1,2,3

, corresponding to the application of the

stabilizing form s̃E to constant strain fields, scale like
{
aE(ck, cl)

}
k,l=1,2,3

, which is exactly the matrix D,

when the mesh T is refined. Hence, we require that s̃E(ck, cl) = αE(NT
CNC)kl be comparable with Dkl,

which motivates the choice

αE =
tr(D)

tr(NT
CNC)

.
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Eventually, let us mention that the approximation of the local force vector FE ∈ R2nE

whose entries equal

FEi =

∫
E

f · ζi dx +

∫
∂E∩ΓN

g · ζi d`, i = 1, . . . , 2nE

is realized in a completely similar fashion as in the case of the conductivity equation, see Appendix D.1.

D.3. Addition of a term of order 0

For the sake of simplicity and without loss of generality, let us return to the setting of the conductivity
equation (Cond) of Section 2.2.1. In multiple applications, starting from the solution of eigenvalue problems
of the form (2.5) (see Section 7.2 for a numerical example), the numerical implementation requires to calculate
the mass matrix MT ∈ RM×M in addition to the stiffness matrix KT in (5.8). This matrix MT is defined
by:

∀k, l = 1, . . . ,M, MT ,kl =

∫
Ω

ϕkϕl dx,

where the basis {ϕk}k=1,...,M of the virtual element space WT is that characterized by (5.6). Arguing as

in Section 5.2.1, MT is assembled from the local contributions ME ∈ RnE×nE

attached to the individual
elements E ∈ T , defined by:

(D.8) ME
ij =

∫
E

ζiζj dx.

To achieve this computation, we introduce the L2 projector π0
P :W(E)→ P(E) over P(E), defined by

∀m ∈ P(E),

∫
E

(π0
Pζ)m dx =

∫
E

ζm dx.

Unfortunately, this operator cannot be expressed in closed form, as the last term in the above right-hand
side cannot be readily computed from the degrees of freedom of the function ζ.

To overcome this issue, we leverage an elegant observation from [1] whereby a slight modification of the
local spaceW(E) in Section 5.2.2, which is completely transparent in the numerical implementation, enables

this computation at no additional cost. Let us first define the larger space W̃(E) of local functions attached
to E by:

W̃(E) =
{
ζ : E → R, ζ is affine on each edge of ∂E, −∆ζ is an affine function on E

}
.

We note that the projection operator πP : W(E) → P(E) introduced in (5.12) can actually be extended

as πP : W̃(E) → P(E); actually, for a given function ζ ∈ W̃(E), the same calculations as in the previous
Appendix D.1 reveal that πPζ can still be calculated from the sole values of ζ at the vertices of E. We now

introduce the subspace Z(E) ⊂ W̃(E) defined by:

(D.9) Z(E) =
{
ζ : E → R, ζ is affine on each edge of ∂E, −∆ζ is affine on E, and

∀m ∈ P(E),

∫
E

ζm dx =

∫
E

(πPζ)m dx
}
.

The key remark about Z(E) is that its elements can be characterized by the exact same degrees of freedom
as those of the space W(E). Before proceeding, let us provide a simple technical fact:

Lemma D.1. The mapping L := π0
P ◦ ∆−1 : P(E) → P(E) is an isomorphism, where ∆ stands for the

Laplace operator on E with homogeneous Dirichlet boundary conditions.

Proof. Since P(E) is a finite-dimensional space, it is enough to prove that L is injective. Let then m ∈ P(E)
be such that Lm = 0, and let q = ∆−1m ∈ H1

0 (E) be the function defined by

∀w ∈ H1
0 (E),

∫
E

∇q · ∇w dx =

∫
E

mw dx.

It follows:

0 =

∫
E

Lmm dx =

∫
E

q m dx =

∫
E

|∇q|2 dx.

Hence, q = 0, and so m = 0, as expected. �
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The result of interest is now the following.

Lemma D.2. For all i = 1, . . . , nE, there exists a unique function ζi ∈ Z(E) such that

(D.10) ζi(q
E
j ) =

{
1 if i = j,
0 otherwise.

Proof. Let i ∈
{

1, . . . , nE
}

be an arbitrary index; we first assume that there exists one function ζ ∈ Z(E)
satisfying (D.10), and we prove that it is necessarily unique. To this end, let m := ∆ζ ∈ P(E), and let us

introduce the unique function ζ̃i ∈ W(E) such that ζ̃i(q
E
j ) = 1 if i = j and 0 otherwise, see Section 5.2.2.

As noted in Remark D.1, the functions πPζ and πP ζ̃i coincide. Then, introducing the basis {mα}α=1,2,3 of

P(E) defined in Section 5.2.2, the difference r = ζ − ζ̃i satisfies:

r = 0 on ∂E, ∆r = m, and for α = 1, 2, 3,

∫
E

rmα dx =

∫
E

ζmα dx−
∫
E

ζ̃imα dx,

=

∫
E

(πPζ − π0
P ζ̃i)mα dx

=

∫
E

(πP ζ̃i − π0
P ζ̃i)mα dx,

where the second line follows from the definition (D.9) of Z(E) and the final line is a consequence of the

equality between πPζ and πP ζ̃i. It follows from this discussion and the previous Lemma D.1 that:

∆ζ = L−1
(
πP ζ̃i − π0

P ζ̃i
)
.

Hence, ζ is the solution to the boundary value problem:{
−∆ζ = −L−1(πP ζ̃i − π0

P ζ̃i) in E,

ζ = ζ̃i on ∂E,

so that the function ζ satisfying (D.10) is necessarily unique.
Conversely, defining ζ by the above formula immediately yields one function ζ ∈ Z(E) satisfying (D.10),

which terminates the proof. �

Let us summarize the foregoing discussion:

• The functions pertaining to W(E) and in Z(E) can both be characterized by their values at the

vertices of E: for any collection of values {vi}i=1,...,nE ∈ RnE

, there exist unique functions w ∈ W(E)

and z ∈ Z(E) such that:

w(qEi ) = vi and z(qEi ) = vi.

Both functions w and z are different, but, as noted in Remark D.1, their projections onto affine
functions coincide:

πPz = πPw.

• By definition, the projectors πP and π0
P coincide on the space Z(E):

∀ζ ∈ Z(E), π0
Pζ = πPζ.

Introducing the basis {ζi}i=1,...,nE of the local space Z(E) defined in Lemma D.2, the local mass matrix

ME expressed in terms of this basis reads as in (D.8). Like in the previous sections, we may approximate
this matrix as:

∀i, j = 1, . . . , nE ME
ij =

∫
E

(π0
Pζi)(π

0
Pζj) dx +

∫
E

(ζi − π0
Pζi)(ζj − π0

Pζj) dx.

Here, the first contribution can be calculated exactly on account of the previous observations; as for the
second one, it can be replaced by a stabilization term, in the same spirit as in Section 5.2.2.
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[73] B. Lévy, Robustness and efficiency of geometric programs: The predicate construction kit (PCK), Computer-Aided

Design, 72 (2016), pp. 3–12.
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