A level-set based mesh evolution method for shape optimization

Grégoire Allaire¹, Charles Dapogny², Florian Feppon¹, Pascal Frey³

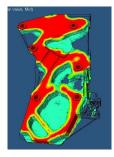
¹ CMAP, UMR 7641 École Polytechnique, Palaiseau, France
 ² Laboratoire Jean Kuntzmann, Université Joseph Fourier, Grenoble, France
 ³ Laboratoire J.-L. Lions, UPMC, Paris, France

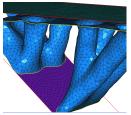
1st June, 2018

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ……

Shape optimization and industrial applications

- The increase in the cost of raw materials urges to optimize the shape of mechanical parts from the early stages of design.
- The numerical resolution of shape optimization problems is plagued by a major difficulty:
 - The evaluation of the objective criterion and its derivative involve mechanical computations, using the Finite Element method on a mesh of the shape.
 - The shape is (dramatically!) changing in the course of the iterative optimization process
 - \Rightarrow Need to update this computational mesh.
- This difficulty arises in many inverse problems: shape detection or reconstruction, image segmentation, etc.





- shape optimization of linear elastic structures
- Differentiation with respect to the domain: Hadamard's method
- Numerical implementation of shape optimization algorithms
- The proposed method

2 From meshed domains to a level set description,... and conversely

- Initializing level set functions with the signed distance function
- Meshing the negative subdomain of a level set function: local remeshing
- Application to shape optimization
 - Numerical implementation
 - The algorithm in motion
 - Numerical results

Mathematical modeling of shape optimization problems shape optimization of linear elastic structures

- Differentiation with respect to the domain: Hadamard's method
- Numerical implementation of shape optimization algorithms
- The proposed method

Prom meshed domains to a level set description,... and conversely

- Initializing level set functions with the signed distance function
- Meshing the negative subdomain of a level set function: local remeshing

イロト イヨト イヨト イヨト

4/51

- Numerical implementation
- The algorithm in motion
- Numerical results

A model problem in linear elasticity

A shape is a bounded domain $\Omega \subset \mathbb{R}^d$, which is

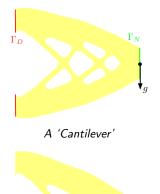
- fixed on a part Γ_D of its boundary,
- submitted to surface loads g, applied on $\Gamma_N \subset \partial\Omega$, $\Gamma_D \cap \Gamma_N = \emptyset$.

The displacement vector field $u_{\Omega} : \Omega \to \mathbb{R}^d$ is governed by the linear elasticity system:

$$\begin{cases} -\operatorname{div}(Ae(u_{\Omega})) = 0 & \text{in } \Omega \\ u_{\Omega} = 0 & \text{on } \Gamma_{D} \\ Ae(u_{\Omega})n = g & \text{on } \Gamma_{N} \\ Ae(u_{\Omega})n = 0 & \text{on } \Gamma \end{cases}$$

where $e(u) = \frac{1}{2}(\nabla u^T + \nabla u)$ is the strain tensor, and A is the Hooke's law of the material:

$$\forall e \in \mathcal{S}_d(\mathbb{R}), \ Ae = 2\mu e + \lambda tr(e)I.$$



The deformed cantilever

・ロット (四) ・ (田) ・ (日)

5/51

A model problem in linear elasticity

Goal: Starting from an initial structure Ω_0 , find a new one Ω that minimizes a certain functional of the domain $J(\Omega)$.

Examples:

• The work of the external loads g or compliance $C(\Omega)$ of domain Ω :

$$C(\Omega) = \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx = \int_{\Gamma_N} g . u_{\Omega} dx$$

 A least-square error between u_Ω and a target displacement u₀ ∈ H¹(Ω)^d (useful when designing micro-mechanisms):

$$D(\Omega) = \left(\int_{\Omega} k(x) |u_{\Omega} - u_0|^{lpha} dx\right)^{rac{1}{lpha}},$$

where α is a fixed parameter, and k(x) is a weight factor.

A volume constraint may be enforced with a fixed penalty parameter ℓ :

 $\text{Minimize } J(\Omega) := C(\Omega) + \ell \operatorname{Vol}(\Omega), \text{ or } D(\Omega) + \ell \operatorname{Vol}(\Omega).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- shape optimization of linear elastic structures
- Differentiation with respect to the domain: Hadamard's method
- Numerical implementation of shape optimization algorithms
- The proposed method

Prom meshed domains to a level set description,... and conversely

- Initializing level set functions with the signed distance function
- Meshing the negative subdomain of a level set function: local remeshing

<ロ> (四) (四) (三) (三) (三) 三

7/51

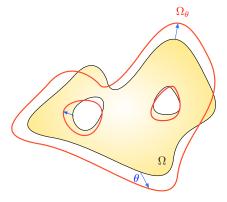
- Numerical implementation
- The algorithm in motion
- Numerical results

Differentiation with respect to the domain: Hadamard's method (I)

Hadamard's boundary variation method describes variations of a reference, Lipschitz domain Ω of the form:

$$\Omega_{\theta} := (I + \theta)(\Omega),$$

for 'small' $\theta \in W^{1,\infty}\left(\mathbb{R}^d,\mathbb{R}^d\right)$.



Lemma 1.

For all $\theta \in W^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d)$ with norm $||\theta||_{W^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d)} < 1$, $(I + \theta)$ is a Lipschitz diffeomorphism of \mathbb{R}^d , with Lipschitz inverse.

Differentiation with respect to the domain: Hadamard's method (II)

Definition 1.

Given a smooth domain Ω , a (scalar) function $\Omega \mapsto F(\Omega)$ is shape differentiable at Ω if the function

$$W^{1,\infty}(\mathbb{R}^d,\mathbb{R}^d) \ni heta\mapsto F(\Omega_{ heta})$$

is Fréchet-differentiable at 0, i.e. the following expansion holds in the vicinity of 0:

$${\sf F}(\Omega_{ heta})={\sf F}(\Omega)+{\sf F}'(\Omega)(heta)+o\left(|| heta||_{W^{\mathbf{1},\infty}\left(\mathbb{R}^d,\mathbb{R}^d
ight)}
ight).$$

Differentiation with respect to the domain: Hadamard's method (III)

• Techniques from optimal control make it possible to compute shape gradients; in the case of 'many' shape functionals $J(\Omega)$, the shape derivative has the structure:

$$J'(\Omega)(heta) = \int_{\Gamma} \mathsf{v}_{\Omega} \ heta \cdot \mathsf{n} \ \mathsf{ds},$$

where v_{Ω} is a scalar field depending on u_{Ω} , and possibly on an adjoint state p_{Ω} .

• This shape gradient provides a natural descent direction for $J(\Omega)$: for instance, defining θ as

$$\theta = -v_{\Omega}n$$

yields, for t > 0 sufficiently small (to be found numerically):

$$J(\Omega_{t heta}) = J(\Omega) - t \int_{\Gamma} v_{\Omega}^2 ds + o(t) < J(\Omega)$$

Example: If $J(\Omega) = C(\Omega) = \int_{\Gamma_N} g \cdot u_\Omega \, ds$ is the compliance, $v_\Omega = -Ae(u_\Omega) : e(u_\Omega)$.

- shape optimization of linear elastic structures
- Differentiation with respect to the domain: Hadamard's method
- Numerical implementation of shape optimization algorithms
- The proposed method

From meshed domains to a level set description,... and conversely

- Initializing level set functions with the signed distance function
- Meshing the negative subdomain of a level set function: local remeshing

・ロト ・ ア・ ・ ア・ ・ ア・・

11/51

- Numerical implementation
- The algorithm in motion
- Numerical results

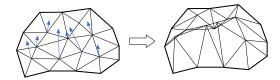
The generic numerical algorithm

Gradient algorithm: For n = 0, ... convergence,

- 1. Compute the solution u_{Ω^n} (and p_{Ω^n}) of the elasticity system on Ω^n .
- 2. Compute the shape gradient $J'(\Omega^n)$ thanks to the previous formula, and infer a descent direction θ^n for the cost functional.
- 3. Advect the shape Ω^n according to θ^n , so as to get $\Omega^{n+1} := (I + \theta^n)(\Omega^n)$.

Problem: We need to

- efficiently advect the shape Ω^n at each step
- get a mesh of each shape Ω^n , for finite element computations.

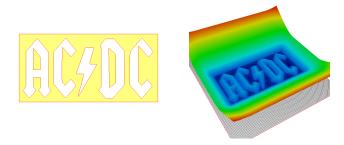


Pushing nodes according to the velocity field may result in an invalid configuration.

A paradigm: [OSe] the motion of an evolving domain is best described in an implicit way.

A bounded domain $\Omega \subset \mathbb{R}^d$ is equivalently defined by a function $\phi : \mathbb{R}^d \to \mathbb{R}$ such that:

 $\phi(x) < 0$ if $x \in \Omega$; $\phi(x) = 0$ if $x \in \partial \Omega$; $\phi(x) > 0$ if $x \in {}^c\overline{\Omega}$



A bounded domain $\Omega \subset \mathbb{R}^2$ (left); graph of an associated level set function (right).

Surface evolution equations in the level set framework

The motion of an evolving domain $\Omega(t) \subset \mathbb{R}^d$ along a velocity field $v(t,x) \in \mathbb{R}^d$ translates in terms of an associated 'level set function' $\phi(t,.)$ into the level set advection equation:

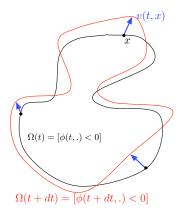
$$\forall t, \ \forall x \in \mathbb{R}^d, \ \frac{\partial \phi}{\partial t}(t,x) + v(t,x) \cdot \nabla \phi(t,x) = 0$$

In many applications, the velocity v(t,x) is normal to the boundary $\partial \Omega(t)$:

$$v(t,x) := V(t,x) \frac{\nabla \phi(t,x)}{|\nabla \phi(t,x)|}.$$

Then the evolution equation rewrites as a Hamilton-Jacobi equation:

$$orall t, \ orall x \in \mathbb{R}^d, \ rac{\partial \phi}{\partial t}(t,x) + V(t,x) |
abla \phi(t,x)| = 0$$

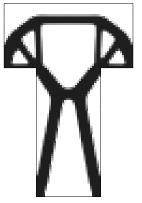


<ロ> (四) (四) (三) (三) (三) 三

14/51

The level set method of Allaire-Jouve-Toader [AlJouToa]

- The shapes Ωⁿ are embedded in a working domain *D* equipped with a fixed mesh.
- The successive shapes Ωⁿ are accounted for in the level set framework, i.e. via a function φⁿ : D → ℝ which implicitly defines them.
- At each step n, the exact linear elasticity system on Ωⁿ is approximated by the Ersatz material approach: the void D \ Ωⁿ is filled with a very 'soft' material, which leads to an approximate system posed on D.
- This approach is very versatile and does not require a mesh of the shapes at each iteration.



Shape accounted for with a level set description

- shape optimization of linear elastic structures
- Differentiation with respect to the domain: Hadamard's method
- Numerical implementation of shape optimization algorithms
- The proposed method

From meshed domains to a level set description,... and conversely

- Initializing level set functions with the signed distance function
- Meshing the negative subdomain of a level set function: local remeshing

イロト イヨト イヨト イヨト

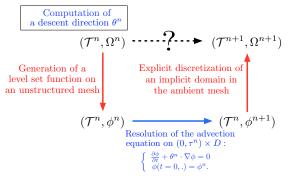
16/51

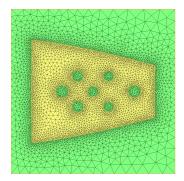
- Numerical implementation
- The algorithm in motion
- Numerical results

The proposed method for handling mesh evolution

The mesh \mathcal{T}^n of D is unstructured and changes at each iteration n, so that Ω^n is explicitly discretized in \mathcal{T}^n .

- Finite element analyses are held on Ωⁿ by 'forgetting' the part of Tⁿ for the void D \ Ωⁿ.
- The advection step $\Omega^n \to \Omega^{n+1}$ is carried out on the whole mesh \mathcal{T}^n , using a level set description ϕ^n of Ω^n .





Shape equipped with a mesh, conformally embedded in a mesh of the computational box.

- shape optimization of linear elastic structures
- Differentiation with respect to the domain: Hadamard's method
- Numerical implementation of shape optimization algorithms
- The proposed method

From meshed domains to a level set description,... and conversely

- Initializing level set functions with the signed distance function
- Meshing the negative subdomain of a level set function: local remeshing

イロト イヨト イヨト イヨト

18/51

- Numerical implementation
- The algorithm in motion
- Numerical results

Initializing level-set functions with the signed distance function (I)

Definition 2.

Let $\Omega \subset \mathbb{R}^d$ a bounded domain. The signed distance function to Ω is the function $\mathbb{R}^d \ni x \mapsto d_{\Omega}(x)$ defined by:

$$d_\Omega(x) = \left\{ egin{array}{cc} -d(x,\partial\Omega) & ext{if}\, x\in\Omega \ 0 & ext{if}\, x\in\partial\Omega \ d(x,\partial\Omega) & ext{if}\, x\in\overline{c\Omega} \end{array}
ight.,$$

イロト イロト イヨト イヨト 三日

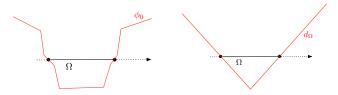
19/51

where $d(\cdot, \partial \Omega)$ is the usual Euclidean distance function.

Initializing level-set functions with the signed distance function (II)

 The signed distance function to a domain Ω ⊂ ℝ^d is the 'canonical' way to initialize a level set function, owing to its unit gradient property:

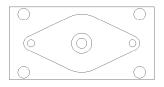
$$|
abla d_{\Omega}(x)| = 1$$
, p.p. $x \in \mathbb{R}^d$.

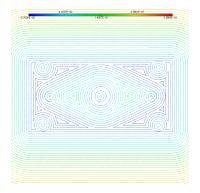


(Left) any level set function for $\Omega = (0, 1) \subset \mathbb{R}$; (right) signed distance function to Ω .

• Many existing approaches: Fast Marching Method [Se], Fast Sweeping method [Zha], mostly on Cartesian grids, or particular unstructured meshes.

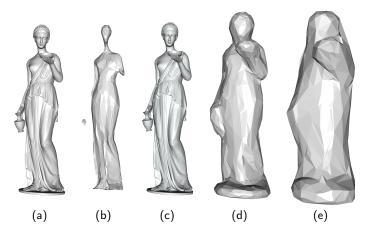
A 2d computational example





Computation of the signed distance function to a discrete contour (left), on a fine background mesh (\approx 250000 vertices).

A 3d example... the 'Aphrodite'.



Isosurfaces of the signed distance function to the 'Aphrodite' (a): (b): isosurface -0.01, (c): isosurface 0, (d): isosurface 0.02, (e): isosurface 0.05.

- shape optimization of linear elastic structures
- Differentiation with respect to the domain: Hadamard's method
- Numerical implementation of shape optimization algorithms
- The proposed method

From meshed domains to a level set description,... and conversely

- Initializing level set functions with the signed distance function
- Meshing the negative subdomain of a level set function: local remeshing

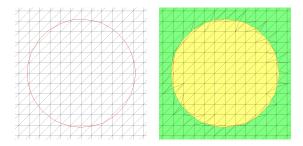
イロト イヨト イヨト イヨト

23/51

- Numerical implementation
- The algorithm in motion
- Numerical results

Meshing the negative subdomain of a level set function

Discretizing explicitely the 0 level set of a function $\phi: D \to \mathbb{R}$ defined at the vertices of a simplicial mesh \mathcal{T} of a computational box D is fairly easy, using patterns.



(left) 0 level set of a scalar function defined over a mesh; (right) explicit discretization in the mesh.

However, doing so is bound to produce a very low-quality mesh, on which finite element computations will prove slow, inaccurate, not to say impossible.

 \Rightarrow Need to improve the quality of a mesh, while retaining its geometric features.

Local remeshing in 3d

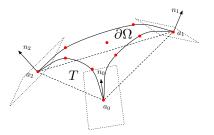
- Let \mathcal{T} be an initial valid, yet potentially ill-shaped tetrahedral mesh. \mathcal{T} carries a surface mesh $S_{\mathcal{T}}$, whose triangles are faces of tetrahedra of \mathcal{T} .
- \mathcal{T} is intended as an approximation of an ideal domain $\Omega \subset \mathbb{R}^3$, and $\mathcal{S}_{\mathcal{T}}$ as an approximation of its boundary $\partial \Omega$.

Poor geometric approximation (left) of a domain with smooth boundary (right)

Thanks to local mesh operations, we aim at getting a new, well-shaped mesh $\widetilde{\mathcal{T}}$, whose corresponding surface mesh $\mathcal{S}_{\widetilde{\mathcal{T}}}$ is a good approximation of $\partial\Omega$.

Local remeshing in 3d: definition of an ideal domain

- In realistic cases, the underlying ideal domain Ω of ${\mathcal T}$ is unknown.
- However, from the knowledge of *T* (and *S*_T), one can reconstruct geometric features of Ω or ∂Ω: normal vectors at regular points of ∂Ω,...
- These features allow to set rules for the creation of a local parametrization of $\partial\Omega$ around a surface triangle $T \in S_T$, e.g. as a Bézier surface.



Generation of a cubic Bézier parametrization for the piece of $\partial\Omega$ associated to triangle T, from the approximated geometrical features (normal vectors at nodes).

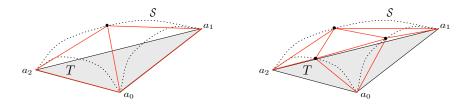
Local remeshing in 3*d*: remeshing strategy

- Four local remeshing operators are intertwined, to iteratively increase the quality of the mesh T: edge split, edge collapse, edge swap, and vertex relocation.
- Each one of them exists under two different forms, depending on whether it is applied to a surface configuration, or an internal one.
- A size map h is defined, to reach a good mesh sampling. It generally depends on the principal curvatures κ_1, κ_2 of $\partial\Omega$, but may also be user-defined (e.g. in a context of mesh adaptation).

Local mesh operators: edge splitting

If an edge pq is too long, insert its midpoint m, then split it into two.

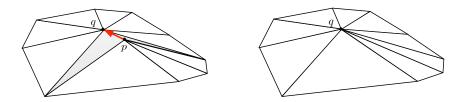
- If pq belongs to a surface triangle $T \in S_T$, the midpoint m is inserted as the midpoint on the local piece of $\partial \Omega$ computed from T. Else, it is merely inserted as the midpoint of p and q.
- An edge may be 'too long' because it is too long when compared to the prescribed size, or because it causes a bad geometric approximation of ∂Ω,...



Splitting of one (left) or three (right) edges of triangle T, positioning the three new points on the ideal surface S (dotted).

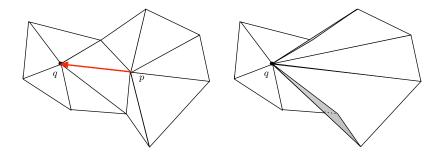
If an edge *pq* is too short, merge its two endpoints.

- This operation may deteriorate the geometric approximation of ∂Ω, and even invalidate some tetrahedra: some checks have to be performed to ensure the validity of the resulting configuration.
- An edge may be 'too short' because it is too long when compared to the prescribed size, or because it proves unnecessary to a nice geometric approximation of $\partial\Omega,...$



Collapse of point p over q.

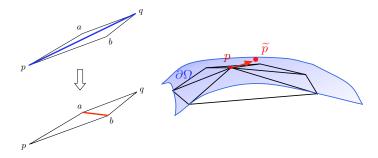
Local mesh operators: edge collapse



In two dimensions, collapsing p over q (left) invalidates the resulting mesh (right): both greyed triangles end up inverted.

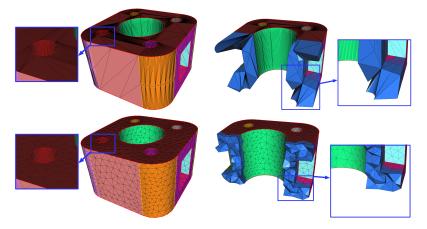
Local mesh operators: edge swap, node relocation

For the sake of enhancement of the global quality of the mesh (or the geometrical approximation of $\partial \Omega$), some connectivities can be swapped, and some nodes can be slightly moved.



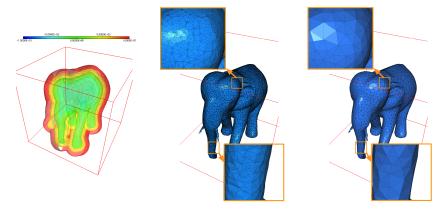
(left) 2d swap of edge pq, creating edge ab ; (right) relocation of node x to \tilde{x} , along the surface.

Local remeshing in 3*d*: numerical examples



Mechanical part before (left) and after (right) remeshing.

Local remeshing in 3*d*: numerical examples



(left) Some isosurfaces of an implicit function defined in a cube, (centre) result after rough discretization in the ambient mesh, (right) result after local remeshing.

- shape optimization of linear elastic structures
- Differentiation with respect to the domain: Hadamard's method
- Numerical implementation of shape optimization algorithms
- The proposed method

Prom meshed domains to a level set description,... and conversely

- Initializing level set functions with the signed distance function
- Meshing the negative subdomain of a level set function: local remeshing

イロト イヨト イヨト イヨト

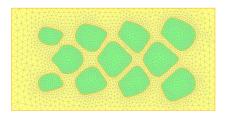
34 / 51

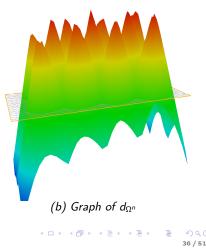
- Numerical implementation
- The algorithm in motion
- Numerical results

- At each iteration, the shape Ω^n is endowed with an unstructured mesh \mathcal{T}^n of a larger, fixed, bounding box D, in which a mesh of Ω^n explicitly appears as a submesh.
- When dealing with finite element computations on Ωⁿ, the part of Tⁿ, exterior to Ωⁿ is simply 'forgotten'.
- When dealing with the advection step, a level set function ϕ^n is generated on the whole mesh \mathcal{T}^n , and the level set advection equation is solved on this mesh, to get ϕ^{n+1} .
- From the knowledge of φⁿ⁺¹, a new unstructured mesh Tⁿ⁺¹, in which the new shape Ωⁿ⁺¹ explicitly appears, is recovered.

The algorithm in motion...

Step 1: Start with the actual shape Ω^n , and generate its signed distance function d_{Ω^n} over D, equipped with the mesh \mathcal{T}^n .



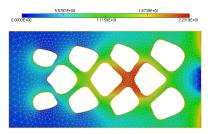


(a) The initial shape

The algorithm in motion...

Step 2: "Forget" the exterior of the shape $D \setminus \Omega^n$, and perform the computation of the shape gradient $J'(\Omega^n)$ on (the mesh of) Ω^n .

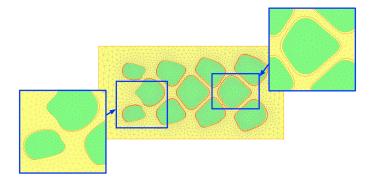
(a) The "interior mesh"



(b) Computation of $J'(\Omega^n)$

The algorithm in motion...

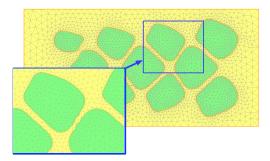
Step 3: "Remember" the whole mesh \mathcal{T}^n of D. Extend the velocity field $J'(\Omega^n)$ to the whole mesh, and advect d_{Ω^n} along $J'(\Omega^n)$ for a (small) time step τ^n . A new level set function ϕ^{n+1} is obtained on \mathcal{T}^n , corresponding to the new shape Ω^{n+1} .



The shape Ω^n , discretized in the mesh (in yellow), and the "new", advected 0-level set (in red).

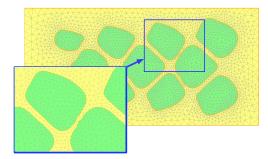
The algorithm in motion...

Step 4: To close the loop, the 0 level set of ϕ^{n+1} is explicitly discretized in mesh \mathcal{T}^n . As expected, roughly "breaking" this line generally yields a very ill-shaped mesh.



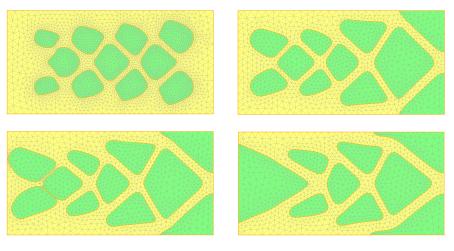
Rough discretization of the 0 level set of ϕ^{n+1} into \mathcal{T}^n ; the resulting mesh of D is ill-shaped.

The mesh modification step is then performed, so as to enhance the overall quality of the mesh according to the geometry of the shape. T^{n+1} is eventually obtained.



Quality-oriented remeshing of the previous mesh ends with the new, well-shaped mesh \mathcal{T}^{n+1} of D in which Ω^{n+1} is explicitly discretized.

Go on as before, until convergence (discretize the 0-level set in the computational mesh, clean the mesh,...).



Numerical results: 2*d* optimal mast

The 'benchmark' two-dimensional optimal mast test case.

• Minimization of the compliance

$$C(\Omega) = \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx.$$

42/51

• A volume constraint is enforced.

Numerical results: 3*d* cantilever

The 'benchmark' three-dimensional cantilever test case.

• Minimization of the compliance

$$C(\Omega) = \int_{\Omega} Ae(u_{\Omega}) : e(u_{\Omega}) dx.$$

• A volume constraint is enforced by means of a fixed Lagrange multiplier.

Numerical results: 3*d* L-Beam

Optimal design of a 3*d* L-shaped beam.

• Minimization of a stress-based criterion

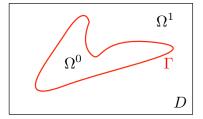
$$S(\Omega) = \int_{\Omega} k(x) ||\sigma(u_{\Omega})||^2 dx,$$

where k is a weight factor, and $\sigma(u) = Ae(u)$ is the stress tensor.

• A volume constraint is enforced by means of a fixed Lagrange multiplier.

Another example in multiphase optimization

Optimal repartition of two materials A_0, A_1 occupying subdomains Ω^0 and $\Omega^1 := D \setminus \Omega^0$ of a fixed working domain D, with total (discontinuous) Hooke's law $A_{\Omega^0} :=$ $A_0 \chi_{\Omega^0} + A_1 \chi_{\Omega^1}$.



- Minimization of the compliance $C(\Omega^0) = \int_D A_{\Omega^0} e(u_{\Omega^0}) : e(u_{\Omega^0}) dx$ of D
- Shape derivative (see [Allaire, Jouve, Van Goethem]):

$$C'(\Omega^0)(\theta) = \int_{\Gamma} \mathcal{D}(u, u) \ \theta \cdot n \ ds.$$

 Evaluating D(u, u) is awkward in a fixed mesh context, for it involves jumps of the (discontinuous) strain and stress tensors e(u) and σ(u) at the interface Γ.

Numerical results: a multiphase beam

- Minimization of the compliance of a beam *D*, with respect to the repartition of the constituent materials A_0 , A_1 ($E^1 = E^0/3$).
- A constraint on the volume of the stiffer material is enforced by means of a fixed Lagrange multiplier.

An advanced example in fluid-structure interaction (I)

- A solid obstacle Ω_s := Ω is placed inside a fixed cavity D where a fluid is flowing, occupying the phase Ω_f := D \ Ω_s.
- The fluid obeys the Navier-Stokes equations (Re = 60), and the solid is governed by the linearized elasticity system.
- Weak coupling between Ω_f and Ω_s : the fluid exerts a traction on the interface Γ .
- We optimize the shape of Ω_s with respect to the solid compliance

$$J(\Omega) = \int_{\Omega_s} Ae(u_{\Omega_s}) : e(u_{\Omega_s}) dx,$$

under a volume constraint.

An advanced example in fluid-structure interaction (II)

Thank you !

References I

- [AdDaFre] G. Allaire, C. Dapogny, and P. Frey, Shape optimization with a level set based mesh evolution method, Comput Methods Appl Mech Eng, 282 (2014), pp. 22–53.
- [AlJouToa] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of computational physics, 194 (2004), pp. 363–393.
- **[**FepAlBorCorDa] F. Feppon, G. Allaire, F. Bordeu, J. Cortial and C. Dapogny, Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework, submitted, (2018).
- [Cho] D. Chopp, Computing minimal surfaces via level-set curvature flow, J. Comput. Phys., 106, pp. 77-91 (1993).
- [DaFre] C. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on adapted triangulation, Calcolo, 49 (2012), pp. 193–219.

References II

- [DaDobFre] C. Dapogny, C. Dobrzinsky and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys., 262, (2014), pp. 358–378.
- FreGeo] P.J. Frey and P.L. George, *Mesh Generation : Application to Finite Elements*, Wiley, 2nd Edition, (2008).
- [MuSi] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Technical Report RR-76015, Laboratoire d'Analyse Numérique (1976).
- [OSe] S.J. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed : Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49.
- [Se] J.A. Sethian, A Fast Marching Method for Monotonically Advancing Fronts, Proc. Nat. Acad. Sci., 93 (1996), pp. 1591–1595.
- [Zha] H. Zhao, A Fast Sweeping Method for Eikonal Equations, Math. Comp., 74 (2005), pp. 603–627.