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Shape optimization and industrial applications

• The increase in the cost of raw materials urges to
optimize the shape of mechanical parts from the early
stages of design.

• The numerical resolution of shape optimization
problems is plagued by a major difficulty:

• The evaluation of the objective criterion and its
derivative involve mechanical computations, using
the Finite Element method on a mesh of the shape.

• The shape is (dramatically!) changing in the course
of the iterative optimization process

⇒ Need to update this computational mesh.

• This difficulty arises in many inverse problems: shape
detection or reconstruction, image segmentation, etc.
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A model problem in linear elasticity

A shape is a bounded domain Ω ⊂ Rd , which is

• fixed on a part ΓD of its boundary,
• submitted to surface loads g , applied on

ΓN ⊂ ∂Ω, ΓD ∩ ΓN = ∅.

The displacement vector field uΩ : Ω → Rd is gov-
erned by the linear elasticity system:

−div(Ae(uΩ)) = 0 in Ω
uΩ = 0 on ΓD

Ae(uΩ)n = g on ΓN

Ae(uΩ)n = 0 on Γ

,

where e(u) = 1
2 (∇uT + ∇u) is the strain tensor,

and A is the Hooke’s law of the material:

∀e ∈ Sd(R), Ae = 2µe + λtr(e)I .

�D
�N

•

g

A ‘Cantilever’

The deformed cantilever
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A model problem in linear elasticity

Goal: Starting from an initial structure Ω0, find a new one Ω that minimizes a
certain functional of the domain J(Ω).

Examples:

• The work of the external loads g or compliance C(Ω) of domain Ω:

C(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ)dx =

∫
ΓN

g .uΩ ds

• A least-square error between uΩ and a target displacement u0 ∈ H1(Ω)d

(useful when designing micro-mechanisms):

D(Ω) =

(∫
Ω

k(x)|uΩ − u0|αdx
) 1
α

,

where α is a fixed parameter, and k(x) is a weight factor.

A volume constraint may be enforced with a fixed penalty parameter `:

Minimize J(Ω) := C(Ω) + `Vol(Ω), or D(Ω) + `Vol(Ω).
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Differentiation with respect to the domain: Hadamard’s method (I)

Hadamard’s boundary variation
method describes variations of a
reference, Lipschitz domain Ω of the
form:

Ωθ := (I + θ)(Ω),

for ‘small’ θ ∈W 1,∞ (Rd ,Rd
)
.

⌦

⌦✓

✓

Lemma 1.

For all θ ∈W 1,∞ (Rd ,Rd
)
with norm ||θ||W 1,∞(Rd ,Rd) < 1, (I + θ) is a Lipschitz

diffeomorphism of Rd , with Lipschitz inverse.
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Differentiation with respect to the domain: Hadamard’s method (II)

Definition 1.
Given a smooth domain Ω, a (scalar) function Ω 7→ F (Ω) is shape differentiable at Ω
if the function

W 1,∞(Rd ,Rd) 3 θ 7→ F (Ωθ)

is Fréchet-differentiable at 0, i.e. the following expansion holds in the vicinity of 0:

F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o
(
||θ||W 1,∞(Rd ,Rd)

)
.
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Differentiation with respect to the domain: Hadamard’s method (III)

• Techniques from optimal control make it possible to compute shape gradients;
in the case of ‘many’ shape functionals J(Ω), the shape derivative has the
structure:

J ′(Ω)(θ) =

∫
Γ

vΩ θ · n ds,

where vΩ is a scalar field depending on uΩ, and possibly on an adjoint state pΩ.

• This shape gradient provides a natural descent direction for J(Ω): for instance,
defining θ as

θ = −vΩn

yields, for t > 0 sufficiently small (to be found numerically):

J(Ωtθ) = J(Ω)− t

∫
Γ

v2
Ωds + o(t) < J(Ω)

Example: If J(Ω) = C(Ω) =
∫

ΓN
g · uΩ ds is the compliance, vΩ = −Ae(uΩ) : e(uΩ).
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The generic numerical algorithm

Gradient algorithm: For n = 0, ... convergence,
1. Compute the solution uΩn (and pΩn ) of the elasticity system on Ωn.

2. Compute the shape gradient J ′(Ωn) thanks to the previous formula, and infer a
descent direction θn for the cost functional.

3. Advect the shape Ωn according to θn, so as to get Ωn+1 := (I + θn)(Ωn).

Problem: We need to

• efficiently advect the shape Ωn at each step
• get a mesh of each shape Ωn, for finite element computations.

Pushing nodes according to the velocity field may result in an invalid configuration.
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A short detour by the Level Set Method

A paradigm: [OSe] the motion of an evolving domain is best described in an implicit
way.

A bounded domain Ω ⊂ Rd is equivalently defined by a function φ : Rd → R such
that:

φ(x) < 0 if x ∈ Ω ; φ(x) = 0 if x ∈ ∂Ω ; φ(x) > 0 if x ∈ cΩ

A bounded domain Ω ⊂ R2 (left); graph of an associated level set function (right).
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Surface evolution equations in the level set framework

The motion of an evolving domain Ω(t) ⊂ Rd along
a velocity field v(t, x) ∈ Rd translates in terms of
an associated ‘level set function’ φ(t, .) into the
level set advection equation:

∀t, ∀x ∈ Rd ,
∂φ

∂t
(t, x) + v(t, x).∇φ(t, x) = 0

In many applications, the velocity v(t, x) is
normal to the boundary ∂Ω(t):

v(t, x) := V (t, x)
∇φ(t, x)

|∇φ(t, x)| .

Then the evolution equation rewrites as a Hamilton-
Jacobi equation:

∀t, ∀x ∈ Rd ,
∂φ

∂t
(t, x) + V (t, x)|∇φ(t, x)| = 0

Ω(t) = [φ(t, .) < 0]

Ω(t + dt) = [φ(t + dt, .) < 0]

v(t, x)

x
•

•

•
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The level set method of Allaire-Jouve-Toader [AlJouToa]

• The shapes Ωn are embedded in a working
domain D equipped with a fixed mesh.

• The successive shapes Ωn are accounted for in
the level set framework, i.e. via a function
φn : D → R which implicitly defines them.

• At each step n, the exact linear elasticity system
on Ωn is approximated by the Ersatz material
approach: the void D \ Ωn is filled with a very
‘soft’ material, which leads to an approximate
system posed on D.

• This approach is very versatile and does not
require a mesh of the shapes at each iteration.

74 G. ALLAIRE, F. de GOURNAY, F. JOUVE, A.-M. TOADER

Figure 8. Optimal mast in 2-d: boundary conditions and iterations 6, 11, 16,
21 and 100

of a stiff material and excluded from optimization. In the formula for J2, the
localization coefficient k(x) is non-zero (equal to 1) only at the boundary and the
target displacement u0 is (0, 1) on the top boundary, (0, −1) on the bottom one
and (0, 0) on the lateral ones. The Lagrange multiplier is ! = 0. Starting from a
full domain initialization we perform 500 iterations with the coupling parameter
ntop = 15 (see Fig. 9). As usual, the convergence is slower than for compliance
minimization (see Fig. 10). Furthermore, the computed optimal design is very
sensitive to all parameters of the algorithm including the stiffness ratio between
the weak ersatz material and the true material (which is here equal to 10−2),
the coupling parameter ntop, and the initialization. Different choices of these
parameters lead to different topologies with similar performances.

Our second example is a gripping mechanism. Fig. 11 shows the boundary
conditions and the target displacement. A small force, parallel to the target
displacement in the opposite direction, is also applied on the jaws of the me-

Shape accounted for with a level set
description
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The proposed method for handling mesh evolution

The mesh T n of D is unstructured and changes at each iteration n, so that Ωn is
explicitly discretized in T n.
• Finite element analyses are held on Ωn by

‘forgetting’ the part of T n for the void D \ Ωn.
• The advection step Ωn → Ωn+1 is carried out on

the whole mesh T n, using a level set description
φn of Ωn.

(T n,Ωn) (T n+1,Ωn+1)

(T n, φn) (T n, φn+1)

Generation of a
level set function on

an unstructured mesh

Explicit discretization of
an implicit domain in

the ambient mesh

�
∂φ
∂t + θn · ∇φ = 0
φ(t = 0, .) = φn.

Computation of

?
a descent direction θn

Resolution of the advection
equation on (0, τn) × D :

Shape equipped with a mesh,
conformally embedded in a mesh of

the computational box.
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Initializing level-set functions with the signed distance function (I)

Definition 2.
Let Ω ⊂ Rd a bounded domain. The signed distance function to Ω is the function
Rd 3 x 7→ dΩ(x) defined by:

dΩ(x) =


−d(x , ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω

d(x , ∂Ω) if x ∈ cΩ
,

where d(·, ∂Ω) is the usual Euclidean distance function.
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Initializing level-set functions with the signed distance function (II)

• The signed distance function to a domain Ω ⊂ Rd is the ’canonical’ way to
initialize a level set function, owing to its unit gradient property:

|∇dΩ(x)| = 1, p.p x ∈ Rd .

• •
Ω

φ0

• •
Ω

dΩ

(Left) any level set function for Ω = (0, 1) ⊂ R; (right) signed distance function to Ω.

• Many existing approaches: Fast Marching Method [Se], Fast Sweeping method
[Zha], mostly on Cartesian grids, or particular unstructured meshes.
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A 2d computational example

Computation of the signed distance function to a discrete contour (left), on a fine
background mesh (≈ 250000 vertices).
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A 3d example... the ‘Aphrodite’.

(a) (b) (c) (d) (e)

Isosurfaces of the signed distance function to the ’Aphrodite’ (a): (b):
isosurface −0.01, (c): isosurface 0, (d): isosurface 0.02, (e): isosurface
0.05.
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Meshing the negative subdomain of a level set function

Discretizing explicitely the 0 level set of a function φ : D → R defined at the vertices
of a simplicial mesh T of a computational box D is fairly easy, using patterns.

(left) 0 level set of a scalar function defined over a mesh; (right) explicit discretization in the
mesh.

However, doing so is bound to produce a very low-quality mesh,
on which finite element computations will prove slow, inaccurate, not to say impossible.

⇒ Need to improve the quality of a mesh, while retaining its geometric features.
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Local remeshing in 3d

• Let T be an initial - valid, yet potentially ill-shaped - tetrahedral mesh. T
carries a surface mesh ST , whose triangles are faces of tetrahedra of T .

• T is intended as an approximation of an ideal domain Ω ⊂ R3, and ST as an
approximation of its boundary ∂Ω.

Poor geometric approximation (left) of a domain with smooth boundary (right)

Thanks to local mesh operations, we aim at getting a new, well-shaped mesh T̃ ,
whose corresponding surface mesh ST̃ is a good approximation of ∂Ω.
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Local remeshing in 3d : definition of an ideal domain

• In realistic cases, the underlying ideal domain Ω of T is unknown.

• However, from the knowledge of T (and ST ), one can reconstruct geometric
features of Ω or ∂Ω: normal vectors at regular points of ∂Ω,...

• These features allow to set rules for the creation of a local parametrization of
∂Ω around a surface triangle T ∈ ST , e.g. as a Bézier surface.

T

a0

a1

a2
n0

n1

n2

•

•
•

•

•
•

•

•

•

•

∂Ω

Generation of a cubic Bézier parametrization for the piece of ∂Ω associated to triangle T ,
from the approximated geometrical features (normal vectors at nodes).
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Local remeshing in 3d : remeshing strategy

• Four local remeshing operators are intertwined, to iteratively increase the quality
of the mesh T : edge split, edge collapse, edge swap, and vertex relocation.

• Each one of them exists under two different forms, depending on whether it is
applied to a surface configuration, or an internal one.

• A size map h is defined, to reach a good mesh sampling. It generally depends
on the principal curvatures κ1, κ2 of ∂Ω, but may also be user-defined (e.g. in
a context of mesh adaptation).
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Local mesh operators: edge splitting

If an edge pq is too long, insert its midpoint m, then split it into two.

• If pq belongs to a surface triangle T ∈ ST , the midpoint m is inserted as the
midpoint on the local piece of ∂Ω computed from T . Else, it is merely inserted
as the midpoint of p and q.

• An edge may be ‘too long’ because it is too long when compared to the
prescribed size, or because it causes a bad geometric approximation of ∂Ω,...

T

a0

a1

a2

S
•

T

a0

a1

a2

S

•
•

•

Splitting of one (left) or three (right) edges of triangle T , positioning the three new points
on the ideal surface S (dotted).

28 / 51



Local mesh operators: edge collapse

If an edge pq is too short, merge its two endpoints.

• This operation may deteriorate the geometric approximation of ∂Ω, and even
invalidate some tetrahedra: some checks have to be performed to ensure the
validity of the resulting configuration.

• An edge may be ‘too short’ because it is too long when compared to the
prescribed size, or because it proves unnecessary to a nice geometric
approximation of ∂Ω,...

•
•
p

q •
q

Collapse of point p over q.
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Local mesh operators: edge collapse

•
pq

•
q

In two dimensions, collapsing p over q (left) invalidates the resulting mesh (right): both
greyed triangles end up inverted.
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Local mesh operators: edge swap, node relocation

For the sake of enhancement of the global quality of the mesh (or the geometrical
approximation of ∂Ω), some connectivities can be swapped, and some nodes can be
slightly moved.

p

q

a

b

p

q

a

b

•
∂Ω

•p
�p

(left) 2d swap of edge pq, creating edge ab ; (right) relocation of node x to x̃ , along the
surface.
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Local remeshing in 3d : numerical examples

Mechanical part before (left) and after (right) remeshing.
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Local remeshing in 3d : numerical examples

(left) Some isosurfaces of an implicit function defined in a cube, (centre) result after rough
discretization in the ambient mesh, (right) result after local remeshing.
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Numerical implementation

• At each iteration, the shape Ωn is endowed with an unstructured mesh T n of a
larger, fixed, bounding box D, in which a mesh of Ωn explicitly appears as a
submesh.

• When dealing with finite element computations on Ωn, the part of T n, exterior
to Ωn is simply ’forgotten’.

• When dealing with the advection step, a level set function φn is generated on
the whole mesh T n, and the level set advection equation is solved on this mesh,
to get φn+1.

• From the knowledge of φn+1, a new unstructured mesh T n+1, in which the new
shape Ωn+1 explicitly appears, is recovered.
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The algorithm in motion...

Step 1: Start with the actual shape Ωn, and generate its signed distance function
dΩn over D, equipped with the mesh T n.

(a) The initial shape (b) Graph of dΩn
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The algorithm in motion...

Step 2: "Forget" the exterior of the shape D \ Ωn, and perform the computation of
the shape gradient J ′(Ωn) on (the mesh of) Ωn.

(a) The "interior mesh" (b) Computation of J ′(Ωn)
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The algorithm in motion...

Step 3: "Remember" the whole mesh T n of D. Extend the velocity field J ′(Ωn) to
the whole mesh, and advect dΩn along J ′(Ωn) for a (small) time step τ n. A new level
set function φn+1 is obtained on T n, corresponding to the new shape Ωn+1.

The shape Ωn, discretized in the mesh (in yellow), and the "new", advected 0-level set (in
red).
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The algorithm in motion...

Step 4: To close the loop, the 0 level set of φn+1 is explicitly discretized in mesh
T n. As expected, roughly "breaking" this line generally yields a very ill-shaped mesh.

Rough discretization of the 0 level set of φn+1 into T n; the resulting mesh of D is ill-shaped.
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The algorithm in motion...

The mesh modification step is then performed, so as to enhance the overall quality of
the mesh according to the geometry of the shape. T n+1 is eventually obtained.

Quality-oriented remeshing of the previous mesh ends with the new, well-shaped mesh T n+1

of D in which Ωn+1 is explicitly discretized.
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The algorithm in motion...

Go on as before, until convergence (discretize the 0-level set in the computational
mesh, clean the mesh,...).
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Numerical results: 2d optimal mast

The ‘benchmark’ two-dimensional
optimal mast test case.

• Minimization of the
compliance

C(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx .

• A volume constraint is
enforced.
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Numerical results: 3d cantilever

The ‘benchmark’ three-dimensional cantilever test case.
• Minimization of the compliance

C(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx .

• A volume constraint is enforced by
means of a fixed Lagrange multiplier.
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Numerical results: 3d L-Beam

Optimal design of a 3d L-shaped beam.

• Minimization of a stress-based
criterion

S(Ω) =

∫
Ω

k(x)||σ(uΩ)||2 dx ,

where k is a weight factor, and
σ(u) = Ae(u) is the stress tensor.

• A volume constraint is enforced
by means of a fixed Lagrange multi-
plier.
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Another example in multiphase optimization

Optimal repartition of two materials A0,A1

occupying subdomains Ω0 and Ω1 := D\Ω0

of a fixed working domain D, with to-
tal (discontinuous) Hooke’s law AΩ0 :=
A0χΩ0 + A1χΩ1 .

D

Ω0

Ω1

Γ

• Minimization of the compliance C(Ω0) =

∫
D

AΩ0e(uΩ0) : e(uΩ0) dx of D

• Shape derivative (see [Allaire, Jouve, Van Goethem]):

C ′(Ω0)(θ) =

∫
Γ

D(u, u) θ · n ds.

• Evaluating D(u, u) is awkward in a fixed mesh context, for it involves jumps of
the (discontinuous) strain and stress tensors e(u) and σ(u) at the interface Γ.
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Numerical results: a multiphase beam

• Minimization of the compliance of a beam D, with respect to the repartition of
the constituent materials A0, A1 (E 1 = E 0/3).

• A constraint on the volume of the stiffer material is enforced by means of a
fixed Lagrange multiplier.
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An advanced example in fluid-structure interaction (I)

• A solid obstacle Ωs := Ω is placed inside a fixed cavity D where a fluid is flowing,
occupying the phase Ωf := D \ Ωs .

• The fluid obeys the Navier-Stokes equations (Re = 60), and the solid is governed
by the linearized elasticity system.

• Weak coupling between Ωf and Ωs : the fluid exerts a traction on the interface Γ.

• We optimize the shape of Ωs with respect to the solid compliance

J(Ω) =

∫
Ωs

Ae(uΩs ) : e(uΩs ) dx ,

under a volume constraint.

⌦f

⌦s
�

v0

n

D
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An advanced example in fluid-structure interaction (II)
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Thank you !
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