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Foreword (I)

e Shape and topology optimization techniques are
ubiquitous in industry and academics.
e Usually in practice,

- A domain Q C R? is optimized, representing
e.g. a mechanical structure, a fluid device.

- The performance of Q is evaluated by an ob-
jective function J(Q).

- J(RQ) is expressed in terms of the solution uq  Optimization O; a sfai)rcase (courtesy
of Ansys).
to a boundary value problem posed on Q. Y

- The regions of 9Q supporting specific bound-
ary conditions are not subject to optimization.

e We investigate a variant of this setting, where not
only the shape Q, but also the subsets of 99 bearing
boundary conditions are optimized.

National Convention Center.
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Foreword (II)

Examples:
e In thermal conduction,

- The temperature ug : Q — R inside Q is the
solution to the conductivity equation;

- Dirichlet b.c. account for a known profile,
Optimization of the screws of a

- Neumann b.c. represent an imposed heat flux. mandibular prosthesis
o When Q is a mechanical structure,
- The displacement ug : Q — RY of Q is solution
to the linear elasticity system;

- Q is attached at the regions equipped with ho-
mogeneous Dirichlet b.c.

- Neumann b.c. represent applied surface loads.

e Other applications arise in acoustics, in fluid me- s2.40

Chanics etc. Optimized cooling process for a structure
! produced by molding
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e The considered shapes Q are smooth,
bounded domains in R, with boundaries:

00 =TpuUlyuUT.
e We assume that Tp NTy = 0 and denote
ZD = BFD7 and ZN = 8|—N-

e The behavior of Q is encoded in the solution
uq € H'(Q) to the conductivity equation:

—div(yVug) =f in Q,

ug =0 on [p,
Qug __

78‘9" = on'l,
ug __

VoL =8 on Ny,

e ~ is the conductivity of the medium
where o f c [3(Q) is a source (or a sink),

o g€ [*(Ty)is a heat flux.
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e We consider a shape optimization problem of the form

msgn J(Q)st. C(Q) <0,

where J(Q2) and C(f2) are objective and constraint functions of the domain.

e The treatment of this task usually relies on the derivatives of J(2) and G(Q2) with
respect to the domain, which can be accounted for in two different ways:

- Shape derivatives account for “small” perturbations of the boundary of Q;

- Topological derivatives consider the nucleation of “small” holes inside Q.
e We focus on a typical function of the domain, of the form
@)= [ (un) dx,
Q
where j : R — R is smooth and satisfies suitable growth conditions.
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© Presentation of the problem and background material

@ Basic notions about shape and topological derivatives
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Shape derivatives (l): definition

The method of Hadamard relies on varia-
tions of a shape Q C R? of the form

Qp = (Id + 6)(Q),

where 0 € W>°(RY, R?) is a “small” vec-
tor field.

Definition 1.

The shape derivative of a function J(Q) at a particular domain Q is the Fréchet
derivative at @ = 0 of the underlying mapping

Wh=(R?,RY) 3 6 — J(Q) € R.

The following expansion holds:
|o(0)] 650
110]l w00 (o ey

J(Q) = J(Q) + S (Q)(0) + o(#), where 0.

= = —
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Most often, only the free region ' C 9N is optimized, i.e. deformations 6 satisfy:

0=0onTpUly.

Typical calculation of the derivative J'(Q)(0) of J(Q) = [, j(uq) dx:

Using the implicit function theorem, one proves that the transported function
W (R RY) 3 6 Tq(h) := uq, o (Id +6) € H'(Q)

is differentiable. Its derivative () € H*(Q) — the Lagrangian derivative of
uq — is characterized as the solution to a variational problem.

Direct differentiation in the definition of J(2) then yields:

7(@)(0) = / (Av(6)i(ua) + ' (un)in(6) ) dx.
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Thanks to the adjoint method, the “difficult” contribution of iq(0) is
eliminated from the expression of J'(€2)(#), and a volume form is obtained:

J'(Q)(e):/ﬂ(swg,pﬂ):ve+R(uQ,pQ).e) dx,
where:

e The adjoint state pq satisfies a boundary value problem similar to that for ug;

o R(ug,pa): Q2 —RY S(ua,pa): Q— RY*? are vector and matrix fields.

Assuming sufficient regularity from uq and pq (typically H*(S2)), integration by
parts in the volume form lead to a surface form for J'(Q)(9):

J(Q)(0) = /v(uQ, pa) 0 - nds,

r

for a certain scalar field v(ug, pa) : T — R.
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Shape derivatives (IV): structure

e (When available) The surface form highlights the fact that J'(Q)(6) depends on
the normal component of 6 on T.

A tangential vector field 0, (i.e. @ - n = 0) only accounts for a convection of the shape Q and J'(Q)(6) = 0.

e A descent direction for J(2) is readily supplied by the surface form of J'(Q)(6):
0 = —v(uq, pa)n = J'(Q)(0) < 0.
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Topological derivatives

The notion of topological derivative features varia-
tions of a shape  C RY of the form

®
Qe :=Q\ B(x, ),

where x € Q, and ¢ < 1.

Definition 2.

The function J(Q2) has a topological derivative at Q and at point x € Q if there
exists dJT(Q)(x) € R such that:

J(Qxc) = J(Q) + edUr(Q)(x) + o(e?)

Depending on the context, different rates may occur for J(€.c) as € — 0.

[m]

=

£ 9Dar
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\A representative shape and topology optimization workflow

A standard gradient strategy is used.

e At each iteration n = 0,..., the shape Q" is
equipped with a mesh 7.

e The finite element computations for ugs and pgn
are performed on 7.

e A descent direction " is obtained from J'(Q").

o The mesh updates 7" — 7" rely on a mesh
evolution algorithm

e At times, the topological derivative dJ7 () is cal-
culated to nucleate a small hole inside Q.
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Besides the shape 2, We aim to optimize the repartition of the regions I'p and 'y of
O where homogeneous Dirichlet and inhomogeneous Neumann b.c. are applied, in
two different ways:

We analyze the shape derivative of J(2) when deformations 6 that do not
vanish near Xp and ¥y are allowed.

We consider “topological derivatives”, accounting for singular changes in the
type of applied b.c.:

“How to account for the insertion of a “small” region w. bearing homogeneous
Dirichlet b.c. inside I ?”
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© Shape derivatives involving deformations of regions bearing boundary conditions
@ Setting and preliminaries
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Setting (1)

We consider again the model functional

J(Q) = / J(ue) dx,

where ug € H'(Q) is the solution to the con-
ductivity equation.

We aim to calculate the shape derivative -
J'(2)(0) when @ is either in

Oon = {9 € C>®(RY,R?), §=0on ﬁ} ,

orin

Oy = {0 c Cz’oo(Rd, Rd)7 9 =0 on G} , Tangential deformations leave the room for

modifications of I'p.

The notations ug, J(2), ... only reflect dependences with respect to €, but the
associated objects also depend on the repartition of ['p, 'y and [ on 0.

= (i = =
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e We focus on the most difficult situation where the Dirichlet — Neumann transition
¥ p is subject to optimization, i.e. deformations 6 belong to ©py.

e The analysis will often be simplified by the following assumptions:

- d=2;
- The conductivity ~ is constant in Q;
H
( ) - ZD = BFD = {50751};

- 0 is flat around sp and s;.
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Let Q C RY be a smooth bounded domain.

e For0 < s <1, H(99Q) is the space of L2(9Q) functions such that

2 }’)|2
s = d d d 00
HUHH (69) A Ll s /BQ /89 ‘X—y|d 1425 S(X) S(y) <

e For 0 <s <1, H*(09) is the topological dual of H*(9).

Let I be a proper open and Lipschitz subset of 0%;

e Forall -1 < s <1, H°(I) is the space of restrictions U|r to I' of functions of
H*(09), equipped with the quotient norm:

[ullisiryi= inf {1Ulliscomy, U € H(09), Ulr= u}.

e For —1 < s <1, H*() is the subspace of H*(T') defined as, equivalently:

- The space of elements u € H*(9R) with compact support inside T;
- The space of elements u € L?(I") whose extension i by 0 belongs to H*(99).

10/64



Fractional Sobolev spaces on the boundary of Q2 (II)

For all s > 0, H=5(I) (H *(T)) is the dual of H3(I') (H*(I")) for the duality:

H—s s = ] V > .
(V) -s(r ey < o~/ u-sea)me(02)

extension  any extension
of uby 0 of v to 80

Example: Let ug € H*(Q) be the variational solution to the conductivity equation:

—div(yVug) =f in Q,

ug =20 on p,
a
76;,‘77 =0 onTl,
TS =g on y.

Then:
e ug € ﬁl/z(r Urln);

° ’yaainn S ﬁ*1/2(FD U r/\/).
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e For any point x € Q \ Xp U Zp, there exists a neighborhood W of x in R? such
that ug is in H*(Q N W) (smooth).

e ug is weakly singular near Xp: let (H) hold and, without loss of generality, let V
be a small enough neighborhood of s; such that:

si=0, QNV ={xeV, st. x2 >0}, and
MbNV={xeV, st x2=0,x <0}.

r /{/

I'p s; =0
Then, for any n > 0, ug € H3/2*”(V) and

ug = u+c'S" on QNV, where u} € H*(QNV), ¢ € R and S'(r,v) = r? cos (%) .

P. Grisvard, Elliptic problems in nonsmooth domains, SIAM,-(201L).
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© Shape derivatives involving deformations of regions bearing boundary conditions

@ Shape derivatives allowing for the deformation of Dirichlet regions
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The function J(Q) is shape differentiable and its shape derivative reads (volume
form): for all 6 € ©py,

J'(Q)(G):/m(j(UQ)—pr)G-nds—/Qj'(UQ)VUQ-9dx+/Q(V'y-9)VUQ-Vdex

+ / ~((dive)I — VO — V0T )Vuq - Vpg dx + / fVpq - 0 dx,
Q Q
where the adjoint state pq is the H*(Q) solution to the problem:

—div(yVpa) = —j'(ua) in £,
pa=0 onTlp,
'yfg’f = onlyUT.

Moreover, under the assumption (H), this rewrites (surface form):

I - [

rpur

(j(UQ) — fpg)@«ndsf g %L:%O»nds
D

dug 8pQ U i
et LY/ = E 6. ).
or or 0-nds+ 2 /.:Olcucp( ns,)(si)

L€
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[Remarks]

o A formal calculation of J'(Q)(6) (with Céa's method) ignoring the weak singularity
of uq and pq yields:
J(Q)O)=0if6-n=0,

i.e. J(Q2) does not depend on the repartition of boundary conditions!

= The sensitivities of ug and J(Q2) with respect to I'p are entirely encoded in the
weak singularity of ug (and pa).

e The dependence of J'(2)() on the singularities of uq and pg makes its numerical
evaluation awkward.

= Need to construct smooth approximations ug . and J:(Q2) of uq and J() .

o Different (simpler) situations could be considered:

- Transition homogeneous Neumann — inhomogeneous Neumann b.c.

- Transition homogeneous Neumann — homogeneous Robin b.c. (for models of
corrosion / Helmholtz)
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© Shape derivatives involving deformations of regions bearing boundary conditions

@ Approximate shape derivatives for Dirichlet — Neumann transitions
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Let Q C RY be a smooth bounded domain.

o The geodesic distance d?®(x, y) on dQ between two points x,y € R is:

d(x,y) = inf (), where {(7) = /0 ' (8)] dt.

~:[0,1]— 09,
~7(0)=x, v(1)=y

e The geodesic distance d??(x, K) of x € 99 to a compact subset K C 9 is:
d®¥(x, K) = inf d%(x, ).
(x, K) = inf d™"(x,y)

e When the minimizer is unique in the above definition, it is denoted by pk(x) and
called the projection of x onto K.

e The geodesic signed distance function d2% to an open region G C 9Q is:

—-d%(x,0G) if x€ G,
Vx € 0Q, d¥(x) = 0 if x€0G,
d%(x,0G) if x€dQ\G.

“Many’ basic properties of d2% are mere adaptations of those of the
“usual” signed distance function to a domain of RY.
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Let the approximate conductivity equation:

—div(yVug.)=f inQ, /e
0m£+hd@:—0 on U, \\
¥ Lgff =g on y. he
——7 -
) 420\
he(x) = . is made from a

smooth profile h: R — R such that:

h=1 on (—o0,—1],
0<h<1, { h0)>0,
h=0 on[1,00).

Intuitively,

- he=0 weII inside I' (= homogeneous Neumann b.c.),

- h. = 2 =~ oo well inside I'p (= homogeneous Dirichlet b.c.).

For a fixed £ > 0, standard elliptic regularity implies that ug . is smooth on Q.
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An approximate optimization problem (II)

The functional J-(R2) is shape differentiable, with shape derivative (surface form):
V0 € ©pn,  JL(Q)(0) =

. Ouq.e Opq.e ougq ¢
/ (_/(UQ,E) — fpa,e +vVoqua,: - Voapa,. — BQ, Pae _ KPa.c —— > 6-nds
rurp n 0On on

+ iz h’(dﬁ
€% Jrurp €

)( = 0(pz5 (X)) - mzp (Prp (X)) +

dr (x)
/ Moo (0x(2), 9(1)) (0 - n)(ox(t)) df) ug.<pa,c ds(x),
0
where
o o.(t) = exppzD(X)(tnzD (ps,(x))) is the geodesic curve between x and ps,(x),

e The adjoint state pa.c is the unique solution in H'(Q) to the equation:

—div(yVpa,e) = —j(ua,) in Q,

aPQ,E

T 5y + hepoe =0 onlTpuUrT,
’yagff =0 ony.
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Under Assumption (H),

e The function uq,. converges to uq strongly in H*(Q): forany 0 < s < 1,

lug,e — ual[n1 )< Ce®llfl2()-

e As a result, for any given shape Q, the approximate shape functional J.(2)
converges to its exact counterpart J(2).

e Going further, the approximate shape derivative J.(Q) converges to its exact
counterpart J'(Q), i.e.:

sup [L(Q)) - S (@)(6)] =o.

01l 1,00 (rd ey <1
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© Shape derivatives involving deformations of regions bearing boundary conditions

@ Numerical examples

30/64



An example in thermal conduction (1)
e During cooling,

the temperature uq
within a device Q C R? satisfies:

—div(yVug) = f

in Q,
ug = 0 on I_D,
Qug __
Y on =

on 9Q\Tp,

where I'p is the region of 9Q in contact
with cooling channels.

e We minimize the mean temperature:

min T(2) + ¢Per(lp), where

1
T(Q) = @ /ﬂ uq dx.

e Tangential deformations 0 are used: only
I'p C 8% is optimized (not Q).




example in thermal conduction (I

e
R
ORI
RN

AT

FRA)
SaNSE,
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During its construction, a mechanical structure Q C R? is stilled by a clamp-locator
system:

e Locators are regions of 9Q2 where the displacement is prevented;

e Clamps are regions where a surface load is applied to maintain the part.
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Let Q C R be a fixed structure.

A load giool is applied on '+ C 9Q
by the machine tool.

Q is located on I'p, and clamped on
In: aload g is applied.

The displacement ug of Q is solution
to the linear elasticity system.

We aim to minimize the displace-
ment of the structure,

JQ) = / lual? dx,
Q

under constraints on the perimeters
Of I'D and r/\/.

€3

€2

Gtool
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0000000 OC0OCCS
0000000 OGOGIOCGOS
00000000 OCGCS

0000000 OC0OCGOIOS
0000000 OCGOGIOSGIOS

Designs of (left column) clamps and (right column) locators at iterations 1, 20 and 100.
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Optimization of a fixture system (1V)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.05 0.1 0.15 0.2 0.25
Norm of the displacement Norm of the displacement

Deformed configurations of (left) the initial and (right) optimized designs.
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Concurrent optimization of shape and boundary conditions (I)

e The design of an elastic force inverter is op-
timized.

e We minimize the least-square functional
J(Q):a/ lug — ur|* ds — 8 uz ds,
rr Ty
where

e The displacement uq is expected to o1s]
match a target ur = (1,0) on I'r,

e The displacement u; of Q to the right
is penalized on y:

e We concurrently optimize the shape Q and
the fixation region I'p C 9.

e A constraint on the perimeter of I'p is added.

P 10.1.5 1
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Concurrent optimization of the shape and the fixation regions of the force inverter, with an initial configuration
for [p composed of 8 line segments.
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Concurrent optimization of the shape and the fixation regions of the force inverter, with an initial configuration
for ['p composed of 4 line segments.
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[Foreword]

e We inquire about the sensitivity of ug — and that of a related quantity of interest
J() — with respect to a “small” singular perturbation of the b.c. for uq.

e This study leverages techniques from the field of asymptotic analysis.

These issues raises questions of two sorts:

e At the theoretical level, what is the general structure of the perturbed field?

e For a particular geometry of the inclusion set w., what is the precise asymptotic
expansion of u. and a related quantity of interest?

We focus on the situation of the replacement of homogeneous Neumann b. c. by
homogeneous Dirichlet b. c.
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e Qisasmooth bounded domain in RY, d = 2, 3;

Its boundary is decomposed as

0N =TpuUly, froNTy=0.

e The w. are open, Lipschitz subsets of 99;

e They are contained in 'y, and stay well-
separated from X :=Tp NIy:

Fdmin > 0s.t. Ve >0, dist(ws,E) > dumin.

The background and perturbed potentials uop = ug and ue € H* () are solution to:

—div(yVug) =f in Q, —div(yVu:)=f inQ,
ug =20 onlp, and u.=0 on INp Uwe,
,Y%L;z =0 on My, 7% = on Iy \ w-.
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@ Singular perturbations of the boundary conditions of an elliptic problem
@ A few technical preliminaries
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For a fixed x € Q, the Green's function y — N(x,y) of the background problem is
the solution to:

—divy (v(y)VyN(x,y)) = dy=x in Q,
N(x,y)=0 fory € I'p,

'Y(}’)gTI,\;(X’y)ZO foryerN,

The solution to the boundary value problem

—div(yVu) =f inQ,
u=20 on p,
'y% =0 on My

reads:

() = [ Mexy)fly)dy.
Q
Physically, N(x,-) is the response of the medium to a point source at x.

N(x, y) is symmetric in its arguments: N(x,y) = N(y, x).

N(x, y) can be constructed from the fundamental solution of the Laplace operator.
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The relevant quantity to measure the “smallness” of w. in this context is the capacity

The capacity cap(E) of an arbitrary subset E C R? is defined by:

cap(E) = inf {HvHZHl(Rd), v(x) > 1 a.e. on an open neighborhood of E} .

Intuition: cap(E) is the energy of the function v : R — R such that:
e v equals1on E;
e v “tends to 0 at c0”;

e v is harmonic on R\ E.

A. Henrot and M. Pierre, Shape Variation and Optimization, EMS Tracts in
Mathematics, Vol. 28, (2018).
N. S. Landkof, Foundations of modern potential theory, Vol.. 180,:Springer, (1972).
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The capacity of a subset of RY (I1): example

Let D. C RY be defined by: ) Df

d €2 04 —————————————————————— >
]D)Sz{X:(Xl,...,Xd_l,O)G]R , |x|<€}, €
. €1

e D. is a segment with length 2¢ if d = 2;

e D, is a planar disk with radius ¢ if d = 3.

The capacity of D, satisfies: es
€
o If d =2, cap(D.) < “ngizE‘; ~ 261

e If d =3, cap(D:) < Gze.

De when d =3

a6 /64



@ Singular perturbations of the boundary conditions of an elliptic problem

@ A general representation formula
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Let w. be such that cap(w:) — 0 as e — 0. Then there exists a subsequence, still
denoted by ¢, and a Radon measure 1 on 99, such that for any point x € Q:

ue(x) = ug(x) — cap(w:) /a . ua(y)y(y)N(x, ) du(y) + o(cap(w:))-

In this formula,
e The measure p is non negative and non trivial; it depends only on the
subsequence we, Q, and I'y;
e The support of y lies inside any compact subset K C 9 containing the w. for
e > 0 small enough;

e The remainder o(cap(w.)) is uniform when x lies in compact subsets of Q.

a8 /64



@ Singular perturbations of the boundary conditions of an elliptic problem

@ An explicit asymptotic formula when w. is a surfacic disk
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A more specific situation about the nature nlao)
of we is considered:

e w, is a surfacic disk with center xo € 90 <&@ D
and radius ¢;

e |t is contained in My.

The background and perturbed potentials ug = ug and u. are the H'(Q2) solutions to:

—div(yVug) =f in Q, —div(yVu:) =f in Q,
ug=0 onlp, and u-=20 on MNpUw:,
,YB;;) = on I—Na 7% = on rN\u.TE.

We look for an explicit asymptotic expansion of u. as € — 0.
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Asymptotic formulas for the potential

The following asymptotic expansion holds, at any point x € Q, x ¢ ¥ U {0}:
™
0 = ) = o o) (o) N 0) o
and

L) ifd=2
floge ) " O
Us(x) = ua(x) — dey(x0)ua(x0)N(x, x0) ifd =3,

where N(x,y) is the Green's function of the background problem.

DA
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Sketch of proof:

For simplicity, we assume that P
e The space dimension is d = 3; OW m
e xo0 =0;

e 0% is completely flat near 0. oy

e -y is constant near 0.

The error r. := u. — ug € H*(Q) is the solution to:

—div(yVr:) =0 in Q,
r-=0 onp,
re = —ugq on we,

fy%’j =0 on Iy \ we.
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|

Step 1: We represent r.(x) at x # 0 in terms of the values of r. inside w..

Using the Green's function N(x,y) of the background problem,

) = = [ A0V N ) dy
oN
= [ vy m) dsty)+ [ 49 Nxy) - Tl dy
aa 9Ny ~—— Q
~——~——"=0o0nTlp
=0on Iy
ore .
= [ 250 Neoy) dsty) — [ dvn)) N y) dy
(.92 n N—— Q N———
0 F\@s =0onTlp =0
=0 on Ny\we

/ 2 ()N, ) ds(y)

and introducing ¢.(z) == 77! (v%4=) (e2) € H=*/?(D;), we obtain:

re(x) :/D ve(z)N(x,ez) ds(z).
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Step 2: We characterize p. by an integral equation.

Letting x approach w. and replacing x with ex, x € D1, this becomes:

Vx € D1,  re(ex) :/ pe(z)N(ex,ez) ds(z).
N—— Dy

=—ug(ex)

Hence,
Vx € Dy, /}D we(z)N(ex,ez) ds(z) = —uq(0) + o(1).

Since 99 is flat near 0, we can replace N(ex,ez) with L(ex,ez), where

1

L) = 2 (G +6(x9). Glxy) = gy and 7= (.

is the Green's function of the lower half-space H. Eventually:

1 #wg(z) ds(z) = —eyuq(0) + o(e).

2 Dy X — 2|

v Yd—1, —)’d)
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Step 3: We solve this integral equation.

The solution to this equation is known as an equilibrium distribution:

_ 2eyug(0)

pe(2) = T E +o(e).

In particular,
/m) ve(2) ds(z) = —4~veuq(0) + o(e).

Step 4: We pass to the limit in the representation formula for r.(x).

The Lebesgue dominated convergence theorem yields:

re(x) = /Dl pe(2)N(x,e2)ds(z) = (/}D1 ve(2) ds(z)) N(x,0) + o(e)

= —4evyua(0)N(x,0) + o(e).

O
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Let us introduce the quantity of interest depending on wu.:

Je) = / J(ue) dx,

i.e. J(g) is a version of J(2) where the boundary conditions of uq are perturbed.

The function J(g) has the following asymptotic expansion at 0:

Ifd = 2, J((—:) = J(O) + “OLgsl’y(Xo)UQ(Xo)pQ(Xo) + o0 ( ! ) s

llog e
and
Ifd =3, J(e) = J(0)+ 4ey(x0) ua(xo0) pa(xo) + o(e),
where pq is the unique solution in H'(Q) to the boundary value problem:
{ —div(yVpa) = —j'(ua) inQ,

pa=0 onp,

9pq __
’YW = on rN.

— Sl
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Sketch of proof (in the case d = 3):

The Lebesgue dominated convergence theorem yields

M :/Qj(us)—j(un) dx 220 —4~(x0)to(xo0) /Qj'(UQ(X))N(X,Xo) dx.

3 3

Besides, by the definition of the Green's function and its symmetry,

pa(x0) = - / 7 (a())N(y, %) dy.
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Numerical example (1)

We revisit the example in cooling.

The temperature uq within € satisfies:
—div(yVug) =f in Q,

ug =0 on [p,
v =0 on 9Q\Tp.

The mean temperature is minimized:

min T(2) + ¢Per(Ip), where

1
T(Q) = al /Q uq dx.

Only tangential deformations 6 are con-
sidered in the use of shape derivatives.

Occasionally, a small Dirichlet region is
nucleated inside 99 \ I'p thanks to the
previous topological derivative.
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Numerical example (I1)
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BACK.mp4
Media File (video/mp4)


\A word of advertisement

e All the numerical realizations are based on open-source libraries.

e A webpage gathering lecture notes, slides, demonstration codes, etc.

P

@a https://membres-1jk.imag.fr/Charles.Dapogny/tutosto.html

Y) Shape and topology optimization: online resources

fostered by W industrial achievements. Nowadays, problems.

techniques, and raise new, challenging fssues.

, with
umerical implementations. In particular, you wil find:

« Lecture notes and review articles.
.l s of radus

g from simple, educational toy codes, to more nvolved framewarks allowing to deal

Pedagogical articles and presentations

I I | e ]
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Thank you for your attention!
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