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Foreword: Shape and topology optimization‘

Shape optimization aims to minimize a function of the domain.

Such problems can be traced back to the early human history...

... The needs to realize energy savings and get free from fossile

L7
-, .
fuels have aroused much enthusiasm for the discipline. -~ —

Hooke's principle: “As hangs
the flexible chain, so but

.. . . . . . inverted stands the rigid arch”.
It heralds promising applications in varied physical contexts. fnverted stands the ngid are

This presentation broaches a few of its specific issues:

- Modeling: Choice of adequate design variables, of a relevant
physical model.

- Theory: Calculation of derivatives with respect to the design.

- Numerical implementation:  Efficient  design  updates
(remeshing), large scale solution of physical equations.

Optimized design of a landing
gear (courtesy of Ansys).
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Disclaimer

e This presentation is by no means exhaustive, and it is strongly biased by the
knowledge and experience of the author.

e See the References for more elaborate discussions.
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A shape and topology optimization problem reads:

hEnan J(h) s.t. G(h)=0. (7)

In this formulation:
e The design variable h is sought within a set U,q of admissible designs.
e J(h) is an objective function.
e G(h) = (Gu(h),...,Gp(h)) is a collection of p (equality) constraints.

e J(h) or some of the G;(h) depend on h via a state up, solution in a functional
space V to a physical boundary value problem:

Search for u, € V s.t. F(h,up) =0. ( )

This generic formulation encompasses multiple frameworks.
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Let D C RY be a thermal cavity;

e The temperature is fixed to 0 on I'p C 9D.
e The remaining boundary dD \ Tp is insulated.
e A source f : D — R is acting in the medium.

e The design variable h : D — [0,1] is related to I'p
the distribution of conducting material inside D:

Yh(x) = a+(B—a)h(x), for some 0 < a < p. D

The temperature up : D — R is the solution to the conductivity equation:

—div(y4Vup) = f in D,
up = O on I'D,
h ok =0 on 9D\ Tp.

We minimize the mean temperature in D for a given amount V1 of material:

J(h) = |1?|/DUI1 dx, and G(h) :/thxf Vr.
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e Concrete manufacturing processes cannot assemble
arbitrary conductivities .

e Realistic patterns include distributions of two ma-
terials with conductivities «, 8 within D. Q

e The design variable h is now the shape Q C D of

T
the phase 3, and the induced conductivity is: Y
[ B ifxeqQ,
¥x €D, 1alx)= { o otherwise. D

The temperature ugq inside D is the solution to the two-phase conductivity equation:

—div(veVug) =f in D
ug = 0 on rD,
o2 = on OD\ Tp.

The considered objective and constraint functions read:
= ﬁ/ ug dx, and G(Q) = Vol(Q) — Vr, Vol(Q) := / dx.
b Q

7/74



A shape and topology optimization problem in

structure mechanics (I)‘

In structure mechanics, the shape is a bounded do-
main Q C R?, which is:
e Fixed on a part I'p of its boundary,
e Submitted to surface loads g, applied on an-
other region Ty C 9Q, FTp NIy = 0.

The displacement ug : © — R is the vector field
governed by the linear elasticity system:

—div(Ae(ug)) = 0 inQ,
uq = 0 on I'D,
Ae(uq)n = g onfly,

Ae(ug)n = 0 onfT,

where e(u) = (Vu" + Vu) is the strain tensor,
and A is the Hooke's law of the material:

Ve € S4(R), Ae = 2ue+ Atr(e)l.

The linear elasticity model

b4
S adie . g

A

Optimized design of a pylon
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In this context, the objective function J(Q2) could be:

e The work of the external loads g or compliance C() of Q:
c(Q) = / Ae(uq) : e(uq) dx :/ g.ugds
Q Y

e A least-square error between ug and a target displacement ur € H*(Q)?
(useful when designing micro-mechanisms):

o~ ([ k(x)|unuradx)°l‘,

where « is a fixed parameter, and k(x) is a weight factor.

Such problems usually features a constraint on the volume (&~ mass) of the shape:

G(Q) = Vol(Q2) — V7, where V7 is a target.
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\A wide variety of applications beyond

Optimal design has recently aroused burning issues in such diverse fields as:

e Fluid mechanics: external aerodynamics, fluid transport, mixing devices, etc.
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Optimized 2d section of a heat exchanger Optimized shape of a solid obstacle to a fluid flow.

e Quantum chemistry, with the theory of Maximum Probability Domains:

.

Maximum probability domain for the C;H, molecule.

Maximum probability domain for the HO molecule.
e Electromagnetism: electric machines, current sensors, photonic crystals, etc.
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Parametric optimization (1)

The considered designs h are described by a collection of parameters {p;},_; .
typically thicknesses, curvature radii, etc...

@
C ’

AN

Description of a mechanical part via the control Parametrization of a plate with cross-section S via
points of a CAD model. the thickness function h: S — R.
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e The parameters describing shapes are the design variables, and the shape
optimization problem rewrites:

in J(p1,... t. G(p1,...,pn) =0
omin, (P1,-.spn) sit. G(p1,...,pn) =0,

where P.q is a set of admissible parameters.

e In this framework, it is straightforward to account for variations of a shape
{pitia,.
{Pi}i:1,A.A,N = {pi+ 5Pi};:1,m,N .

e However, the variety of possible designs is severely restricted, and the use of such
methods relies on an a priori knowledge about the sought optimized design.
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e The topology of shapes (i.e. their number of
holes in 2d) is fixed.

e The whole boundary 0 of shapes Q is the
optimization variable.

e This setting allows for greater freedom, since
no a priori knowledge about the relevant fea-
tures of the optimized shape is required.

Optimization of Q via “free” perturbations of
the boundary 9Q.
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| |

e The topology of the shape is often unknown, and also subject to optimization.

- OO
D a OO

e It is often preferred not to represent the boundaries of shapes, but to employ
different descriptions, allowing for a more natural account of topological changes.

The shape Q is replaced by a density function h: D — [0, 1].
QOD Gp QD QOQ

—>
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An optimal design framework is the combination of:
e A model (a boundary value problem) for the physical situation, which is

e Sufficiently elaborate to be physically relevant, ...

e ... yet simple enough to be tractable for optimization.
e A mathematical description of designs: h = a set of parameters, a “true” shape, ...7
e An efficient numerical representation of h: by a mesh, a density function, ...?
e Numerical algorithms dedicated to

e Geometric computations: e.g. the normal vector, the curvature of the shape;

e Mechanical computations: solution of boundary value problems
characterizing the physical performance of the shape;

e Algorithmic operations: update (deformation) of the shape throughout the
iterations of the process.

All these choices are intimately related!
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The solution of the optimal design problem (77) often hinges on the derivatives of
the functions J(h) and G(h).

When the design h belongs to a vector space H (e.g. in parametric optimization),
the sensitivity of a function J(h) is encoded in the derivative H > h+— J'(h)(h).

The knowledge of J/(h) allows to identify a descent direction h € H for J(h):
J(h)(h) <0 = For“small'r >0, J(h+7h)~ J(h)+7J(h)(h) < J(h),

and the new design h+ 7h is better than h with respect to J(h).
Most constrained optimization methods use descent directions for J(h) and G(h).

Differentiation w.r.t. the design is more subtle when the latter is a shape Q C RY.
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Differentiation with respect to the domain: Hadamard's method (1)

Hadamard's boundary variation method

features variations of a reference, Lipschitz
domain Q of the form:

Qo := (Id + 0)(Q),
for “small” § € Wt (Rd,Rd).

For all 6 € W> (R?,RY) with norm ||0||W1v°°(]Rd,Rd) <1, (Id +0) is a Lipschitz
diffeomorphism of RY, with Lipschitz inverse.

Mathematics Vol. 28, 2018.

5 A. Henrot and M. Pierre, Shape Variation and Optimization, EMS Tracts in

[m]
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Differentiation with respect to the domain: Hadamard’'s method (I1)

Definition 1.

Let Q C R? be a smooth domain. A function Q + J(Q) is shape differentiable at Q
if the mapping

W (R R) 3 0 — J(Q)
is Fréchet-differentiable at 0, i.e. the following expansion holds:

0(9) 0—0
161 wa,o0 (md o)

J(Q6) = J(Q) + I ()(0) + o (|0l w2 (ze ra)) , where

The mapping 0 — J'(2)(0) is the shape derivative of J(Q) at Q.

=} (=) = E El= DAl
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Differentiation with respect to the domain: Hadamard's method (III)‘

e The shape derivative of “most” functions of the domain has the surface form:

J(Q)(0) = / va 0 - nds, for some scalar field v : 9 — R.
o9

A tangential vector field 0, (i.e. § - n = 0) only accounts for a convection of the shape Q and J'(Q)(6) = 0.

e A descent direction for J(€2) is readily revealed from this expression:
0=—von = J'(Q)(¥) <O0.
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The notion of topological derivative features varia-
tions of a shape Q C RY of the form

Qe :=Q\ B(x,¢),

where x € €, and ¢ < 1.

The function J(Q) has a topological derivative at Q and at the point x € Q if there
exists dJ7(2)(x) € R such that:

J(Qxc) = J(Q) + /A7 (Q)(x) + o(e?).

Intuition: If dJ7(2)(x) < 0, it is beneficial to drill a tiny hole around x.

A. A. Novotny and J. Sokotowski, Topological derivatives in shape optimization,
Springer Science & Business Media, 2012.

22/74



© Foreword

© General overview

o General statement and application examples
@ Various paradigms for optimal design

© A few basic notions

o Differentiation with respect to the design
@ The adjoint method
@ A worked example

O A generic algorithm, and a few popular numerical strategies
@ The historic “Lagrangian” approaches
@ Density-based topology optimization
@ The level set method for geometric optimization

© Two applications in the field of electromagnetism

@ Optimization of the section of an electric motor
@ Optimization nanophotonic devices

40> «F»r <

it
i
i

ul
S
o
?



e "Many"” useful functionals in shape and topology optimization are of the form:
J(h) = j(un),
where

- The design h belongs to a Hilbert space (H, (-, )#x).

The state up, belongs to another Hilbert space (V, (-, -)v).

- It is the solution to a boundary value problem

Search for up € V s.t. F(h,us) =0, ( )

where F: H x V — V is a suitable operator.
- The observable j : V — R is smooth enough.

e We aim to calculate the derivative J’(h)(ﬁ) and to find a descent direction for J(h).

e We present the adjoint method in an abstract setting, agnostic of the nature of h.

R.-E. Plessix, A review of the adjoint-state method for computing the gradient of a
functional with geophysical applications, Geophysical Journal International, 167 (2006), pp.
495-503.
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The implicit function theorem ensures that the mapping h — uy, is differentiable.

Differentiation in ( ) yields a characterization of the derivative uj(h) € V:

|5 B+ [ 2 )] i) =

Likewise, by applying the chain rule, we calculate the derivative of J(h):

S (0)(R) = (J'(un), ()

This expression does not lend itself to identification of a descent direction.

=> One would have to try multiple i € H, calculate u;(F), ... until finding one such that J/(h)(h) < 0.
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e To overcome this issue, we introduce the adjoint state py € V as the solution to:
OF - y
—(h,u, = —j (un).
%2 )] n =)

e An elementary calculation yields:

SH = () um),
= ([Ztuw)] B,
= (%] wi(B),pn)

where we have used the definitions of p, and of the adjoint operator [%—f(h, uh)} *

e Using now the problem satisfied by uj,(h), we obtain:

SR = ( [%{(h, u(h))} R

26/74



e Introducing the adjoint [2(h, uh)} V — H of [ZZ(h,up)] H— V, we end up
with: .
s w@ = (|5 )| pnh)
H

e Now, a descent direction h for J(h) is immediately revealed:

2

>)

Oh

[af(huh)]*ph;u )() = 'H huh]ph

H

e The evaluation of h demands:

- The calculation of up ( );
- The calculation of pj ( )i
- The calculation of the operator [ (h, uh)]* (

27/74
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The adjoint method: worked example (I)

Let D C RY be a fixed domain.

T
The temperature is set to 0 on 9D. P
A source f : D — R is acting in the medium.

The considered designs are conductivity coefficients:

h € Una := L¥(D, [0, 1]).

We consider the functional:
Jk) = [ st ax,
D
where uj, is the temperature.

It is the solution in Hg (D) to:

—div(~v,Vu = f inD,
{ (LZ;h " 0 ondD, where v4(x) := a4 h(x)(8 — a).
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For a fixed design h € Uaa,

e The variational formulation characterizing up reads:

Search for u, € Hy(D) s.t. Vv € Hy(D), / YWVup - Vvdx = / fv dx.
D D

e This problem has a unique solution vy € H(D), which satisfies:
lunllrz o) < ClIflliz(p),

for some constant C > 0, owing to the Lax-Milgram theorem.
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The adjoint method: worked example (I11)

Theorem 2.

The objective function
J(h) = / () dx
D

is differentiable at any h € U,q4, and its derivative reads
vh e L=(D), J(h)(h) = (8 — a)/ (Vun - Vpa)hdx,
D

where the adjoint state p, € Hy(D) is the solution to the boundary value problem:

—div(ysVpn) = —j'(us) in D,
pn=20 on dD.

=} (=) = E El= DAl
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Proof: The proof is divided into three steps:

We use the implicit function theorem to prove that the state mapping
Uaa D h—> up € Hy(D)
is Fréchet differentiable, with derivative h s uj(h).

We calculate the derivative of J(h) by using the chain rule.

We give a more convenient structure to this derivative, by introducing an
adjoint state pj to eliminate the occurrence of uj(h).

Step 1: Differentiability of h — up:

For any h € Uaa, up is the unique solution in Hg (D) to the variational problem:

Yo Vup - Vv dx = / fv dx.
D

Vv € Hy(D), /

D

32/74



Let
F : Uaa x Hy(D) = H (D)

be the mapping defined by:
F(hyu):v— / YaVu-Vvdx — / fv dx.
D D

One verifies that
e F is a mapping of class C*.

o For given h € Uaq, up is the unique solution u to the equation
F(h,u)=0.
e The derivative of the partial mapping u — F(h, u) reads:
Hy(D) > G +— {v — /D%W' Vvdx} € H (D).
It is an isomorphism, owing to the Lax-Milgram theorem:
For all g € H™'(D), there exists a unique u € Hy(D) s.t.

Vv € Hy(D), / Y Vu - Vvdx = (g, V)n-1(p) n2(D)-
D
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The implicit function theorem guarantees that the mapping h — uy, is of class C*.
To calculate the derivative h — uj,(h), we return to the variational formulation for uj:
Vv € Hy(D), / Y Vup - Vvdx = / fv dx.

D D
Taking derivatives with respect to h in a direction h € L>°(D) yields:
(8- a)/ hVup - Vvdx + / hVuh(h) - Vvdx =0,
D D

and so, for all h € L>°(D), u;,(ir\) is the unique solution in H3(D) to:

Vv € H}(D), / AV up(h) - Vvdx = —(8 — a)/ hVup - Vv dx.
D D
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Step 2: Calculation of the derivative of J(h):

Since h — up is of class C*, the chain rule yields immediately:

VEGUWDLJXm@yzﬂwaw“de

e This expression is awkward: the dependence h s J'(h)(h) is not explicit and it
is difficult to find a descent direction, i.e. a h € L*°(D) such that:

J(h)(h) < 0.

e Fortunately, the expression of J'(h) can be simplified thanks to the introduction
of the adjoint state pp.
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Step 3: Reformulation of J'(h) using an adjoint state:
The adjoint state py is the unique solution in H3(D) to the variational problem:

Vv € Hy(D), /fthph-Vvdx: —/j/(uh)vdx7
D D

to be compared with the variational formulation for uj,(h) € H3(D):
Vv € Hy(D), / WV up(h) - Vvdx = —(8 — a) / hVup - Vv dx.
D D
Then, we calculate:

SR = / 7 (un) (B dx,

—/ ’thph . Vu/:(//’;) ClX7

D

= —/ fy;,Vuf,(ﬁ) - Vpp dx,
D

= (B- a)/ EVuh - Vpn dx.
D

where the last line uses the variational formulation of uj,(h) with py as test function.
o
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e The adjoint state p, can be interpreted as the Lagrange multiplier associated to
the PDE constraint if we formulate the minimization problem of J(h) as:

o —~div(hVu) = f in D,
{RIS/DJ(U) dx s.t. { u=0 on OD.

e This general methodology allows to deal with

- Different physical situations,

- Other optimal design frameworks, including “true” geometric optimization.

e Another method allows to calculate shape
derivatives: Céa's method.

J. Céa, Conception optimale ou identification de formes, calcul rapide de la dérivée
directionnelle de la fonction codt, ESAIM: M2AN, 20(3), (1986), pp--371-402.
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The numerical solution of (77) hinges on a constrained optimization algorithm:

Initialization: Start from an initial design he,

For n =0, ... convergence:
Calculate the derivatives J'(h") and G’(h") of J(h) and G(h) at h = h";
Identify descent directions h’} and hZ for J(h) and G(h) from h";
Infer a descent direction h” for the optimization problem (7Y
Select an appropriate time step 7" > 0;
Update the design as:

W = — 7

The main difficulty is to find a numerical discretization of shapes which lends itself to:
e Step ©: ;
e Step

39/74
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Each shape Q" is represented by a (triangular) mesh 7.
The Finite Element method is applied on 7" for computing uq» (and pan).

The descent direction 0" is obtained from the surface form of the shape derivative:

J(Q)(0) = /39 vobl-nds = 6" = —vgonon oQ".

The shape advection step Q" (Id»i>9 ) g is performed by pushing the nodes of

T along 76", to obtain the new mesh 77"

Vovertex x € T", x — x + 7"0"(x).

—>

Pushing nodes according to the velocity field may result in an invalid configuration.
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“Lagrangian” approaches: example

e In the context of linear elasticity, one aims at minimizing the compliance C(Q2) of
a cantilever beam:

cQ) = /QAE(UQ) s e(uq) dx.

e A volume constraint is imposed: G(2) = Vol(Q2) — V7.

SN

/]
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@ A generic algorithm, and a few popular numerical strategies

@ Density-based topology optimization
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Density-based topology optimization (I)

e The design variable h is a density function h: D — [0, 1] defined on a fixed
hold-all domain D.

e h = relaxed version of the characteristic function xq : D — {0,1} of a shape Q.

Q

h(z) = 0.37

e The cornerstone of these methods is to endow intermediate regions h(x) € (0,1)
with a physical meaning.

e We present this methodology in the context of the conductivity equation.

e It can be adapted to multiple physical contexts beyond.
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Density-based topology optimization (II)

e We consider an unconstrained shape optimization
problem in the two-phase conductivity setting:

min J(€2), where J(Q) = /D () dx.  (50)

Y7

e In here, the temperature ugq is the solution to: r, I’y “é
—div(yaVug) = f inD, 44
uq = 0 onlp, ‘;
{ fm%? = g only, ::
y D ==
where the conductivity vq reads: <\

Yo = a+xa(8 — ), TT\\\

and xq is the characteristic function of :

1 if xeq,

Vx €D, xa(x)= { 0 otherwise.
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The “black-and-white” characteristic function xa : D — {0, 1} of the shape Q, is
replaced by a “grayscale” density function h: D — [0, 1].

The properties of a region with intermediate density h(x) € (0, 1) are described via
an empirical interpolation law ¢(h) between « and g:

¢ is smooth and ¢(0) = «, and ¢(1) = 5.

The problem rewrites:

hg}/i{:d J(h), where Una = L(D,[0,1]), J(h) = /Dj(uh) dx, (T0)

and up € HY(D) is the solution to:

—div(¢(h)Vup) =f in D,
u,=0 onp,

g’(h)% =g on y.

The problem (T0) falls in the realm of parametric optimization!

a6 /74



The interpolation profile ((h) prescribes material properties (diffusion, etc.) to
regions with (fictitious) intermediate densities.

In the practice of the Solid Isotropic Method with Penalization (SIMP), a power
law of the form

((h) = a+h"(B—a)
is used (often, p = 3).

This has the effect to penalize the presence of “grayscale” intermediate regions,
and to steer the optimized density towards a “black-and white" function.

This interpolation law is empirical: there is no guarantee that a material with such
properties does exist!
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Assets of density-based methods‘

e Simplicity of the mathematical analysis (calculation of derivatives, etc).
e They allow for the use of efficient mathematical programming routines.

e Simplicity and robustness of the implementation: everything takes place on a
fixed mesh, no mesh deformation is required.

e A reformulation and approximation of the physical equations are necessary.

e The geometry of shapes is lost, which may make it difficult to formulate, e.g.
geometric constraints.

a9 /74



@ A generic algorithm, and a few popular numerical strategies

@ The level set method for geometric optimization
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The level set method for geometric optimization (1)

e At the continuous level, the design variable h is a domain Q C R?, inside a fixed
‘hold-all" domain D.

e The sensitivity of a function J(Q) is captured by the notion of shape derivative.

e At the discrete level, Q is represented by a “level set " function

¢: D — R, on a fixed mesh T of D.

|

e The motion of Q along the descent direction 6 is translated by a partial differential
equation for ¢.
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A short detour by the Level Set Method
A paradigm: [OSe| the motion of an evolving domain is best described in an
implicit way.
One domain Q C R is equivalently defined by a function ¢ : RY — R such that
d(x)<0 ifxeQ ; ¢(x)=0 fxcdQ ; ¢x)>0 ifxeQ
/:\\\\ ) /\\;\ /’7 ‘\\ /. \\
) /5
NSV LA
O\ / N / N\

(Left) A bounded domain Q C R?; (right) Graph of an associated level set function.

[m]

=




Let Q(t) C R? be a domain moving according
to a velocity field v(t,x) € R?.

Let ¢(t, x) be a level set function for Q(t).

The motion of Q(t) translates in terms of ¢ as
the level set advection equation:

¢ B
E(t, x)+ v(t,x).Vé(t,x) =0

If v(t,x) is normal to the boundary 0(t), i.e.:

v(t,x) = V(t, x)%7

this rewrites as a Hamilton-Jacobi equation:

Q(t +dt) = [p(t + dt,.) < 0]

99 (t,x) + V(£ V6(t, 9l= 0
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The shapes Q" are embedded in a working
domain D equipped with a fixed mesh.

The successive shapes Q" are accounted for
in the level set framework, i.e. via a function
¢" : D — R which implicitly defines them.

At each step n, the exact linear elasticity system
for uqn, posed on Q", is approximated by the Er-
satz material approach: the void D \ Q" is filled
by a very “soft” material.

= Approximate system posed on D.

This approach is very versatile and does not re-
quire a mesh of the shapes at each iteration.

Shape accounted for by a level set
description
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The level set method for shape optimization: numerical examples

e In the context of linear elasticity, one aims to minimize the compliance C(2) of a
cantilever beam:

Q) = /Q Ae(ug) : e(ug) dx.

e A volume constraint is imposed.

I'p

N
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Assets of the level set method

e A clear representation of the shape Q is possible.
e Yet, the method is robust, and arbitrary deformations of Q are possible.

e Recent progress in remeshing techniques make it possible to additionally enjoy
an exact mesh of the shape throughout the process.

e The mathematical framework is more difficult.

e The implementation is slightly more subtle too.
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© Two applications in the field of electromagnetism
@ Optimization of the section of an electric motor
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Optimization of the shape of an electric motor (1)

Joint work with A. Cesarano & P. Gangl

e Electric machines convert electrical energy into mechanical work.
e The physics at play is magneto-quasi-static electromagnetism:

- An electric current is powered in the coils of the outermost stator part.
- It induces a magnetic field in the inner, rotor part, provoking its rotation.
- The resulting mechanical energy is collected by a central shaft.

e Electric motors are seen as promising answers to the environmental crisis and the
needs for energy savings.

(Left) Overview of a motor ; (right) Cross-section of a motor, by Hanning Elektro-Werke GmbH & Co KG.
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The cross-section D of a motor is made of the
stator, the rotor, separated by an air gap:

D = Dot U Dgap U Dsgat.
The stator Dsiat consists of:
- A region filled with ferromagnetic material;
- A region made of air;

- The coils, featuring copper wires.

At rest, the rotor Dyot is composed of:

- A ferromagnetic core, occupying the opti-
mized region ;

- Air, occupying the region Q,;

- Permanent magnets in Dpag.

The internal geometry of the rotor undergoes
a rotating motion ;:

Q) = ¢:(Q), Qa(t) = 9:(Q), ete.

€
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Due to the cylindrical structure of the motor, the problem amounts to a 2d
evolution problem for the transverse component uq of the vector potential:

O'Q(t)dde —div (vo((x, [Vua|)Vue) = £ in (0, T) x D,
ug(t,x) =0 fort€(0,T), x€dD, ( )
ua(0,x) = ua(T,x) for x € Dmag,

where o and v are the conductivity and reluctivity coefficients.
This problem is non linear, because of the behavior of the ferromagnetic material.
It is of mixed parabolic — elliptic type:

. Om for x S Dmag(t)7
oq(e)(x) = { 0 otherwise.

It is posed on a moving geometry:

ooty and vo()(x, |Vuga|) depend on the motion of the rotor.

The mechanical torque is maximized:

-
max J(Q), where J(Q) = / /j(VUQ) dx dt, for a function j : R* — R.
QCDrot 0 D
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Optimization of the shape of an electric motor (1V)

e Since “small” deformations of Q are expected, a Lagrangian mesh deformation
method is used.

e The solution of ( ) is tackled by a space-time finite element method:

“The whole space-time cylinder D x (0, T') is meshed by a tetrahedral (2 4 1)
dimensional mesh”.

- This practice naturally incorporates time periodic boundary conditions.

- It allows to handle moving in time geometries.

- It leaves the room for mesh adaptation and domain decomposition in
space-time.

e A Newton-Raphson method is used to treat the non linear term.
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Optimization of the shape of an electric motor (V)

(Left) Initial, (right) Optimized design of the rotor part; the torque is increased by 12% during the process.
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© Two applications in the field of electromagnetism

@ Optimization nanophotonic devices
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Optimization of nanophotonic devices (I)

Joint work with A. Gliere, K. Hassan, N. Lebbe & E. Oudet

Nanophotonic devices are the basic components
of photonic integrated circuits.

In these, light is transported by wave guides.

The electric and magnetic fields are governed by
the time-harmonic Maxwell’s equations.

The shape Q of air inclusions in the Si core is
optimized to achieve particular effects.

e 200 M

One nanophotonic component inside a complete photonic circuit.
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Duplexers steer incoming waves to different out- put channels, depending on their
wavelength.

Optimization of the shape of a nanophotonic duplexer.
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\A word of advertisement

A webpage gathering lecture notes, slides, demonstration codes, etc.

@ https://membres-1jk.imag.fr/Charles.Dapogny/tutosto.html

Shape and topology optimization: online resources

The discipt hysicists and
fostered industrial ach Nowadays, problems.

el  with
numerica implementations Jar, you il find:

« Lecture notes and review artictes.

« Open , rangl pl, educationa toy codes,
with challenging personal test cass.
sefl lnks t simiar resources, emantin from other researchers.

Pedagogical articles and presentations
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Technical appendix
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In a Hilbert space H, let a: H x H — R be a bilinear form and ¢: H — R be a linear
form such that:

e ais continuous, i.e. there exists M > 0 such that:
Vu,v € H, |a(u,v)| < Ml[ullul| v~
e ais coercive, i.e. there exists o > 0 such that:
Yu € H, allull} < a(u, u).
e [ is continuous (i.e. £ belongs to the dual space H*):

[

vert ||v[n
v#0

< 00

Under the above hypotheses, the variational problem
Search for u € H s.t. for all v e H, a(u,v)=£(v)

has a unique solution u € H, which depends continuously on (:

M
[lulln < —[l€]|n=.
o
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The implicit function theorem ensures the existence and smoothness of a solution
u = up to a parametrized, non linear equation of the form:

F(0,u) =0,

where v is the unknown and 0 is a “parameter”.

Let ©, E, F be Banach spaces, V C ©, U C E be open sets. and F : V x U — F be a
function of class CP for p > 1. Let (6o, uo) € V x U be such that F(6o, uo) = 0 and:

The derivative (9%7:(907 uo) : E — F is a linear isomorphism.

u

Then there exist open subsets V' CV of 6 in © and U’ C U of up in E, and a
mapping g : V' — U’ of class C? satisfying the properties:

g(0o) = wo,

For all § € V', the equation F(0,u) = 0 has unique solution u = g(0) € U'.
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