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Abstract

Metallic bowtie-shaped nanostructures are very interesting objects in optics, due to their capability of
localizing and enhancing electromagnetic fields in the vicinity of their central neck. In this article, we
investigate the electrostatic plasmonic resonances of two-dimensional bowtie-shaped domains by looking
at the spectrum of their Poincaré variational operator. In particular, we show that the latter only
consists of essential spectrum and fills the whole interval [0, 1]. This behavior is very different from what
occurs in the counterpart situation of a bowtie domain with only close-to-touching wings, a case where
the essential spectrum of the Poincaré variational operator is reduced to an interval strictly contained
in [0, 1]. We provide an explanation for this difference by showing that the spectrum of the Poincaré
variational operator of bowtie-shaped domains with close-to-touching wings has eigenvalues which densify
and eventually fill the remaining intervals as the distance between the two wings tends to zero.

1 Introduction

Surface plasmons are strongly localized electromagnetic fields that result from electron oscillations on the
surface of metallic particles. Typically, this resonant behavior occurs when the real parts of the dielectric
coefficients of the particles are negative, and when their size is comparable to or smaller than the wavelength
of the excitation. For instance, this is the case of gold or silver nanoparticles, 20-50 nm in diameter, when
they are illuminated in the frequency range of visible light.

The ability to confine, enhance and control electromagnetic fields in regions of space smaller than or of the
order of the excitation wavelength has stirred considerable interest in surface plasmons over the last decade,
as it opens the door to a large number of applications in the domains of nanophysics, near-field microscopy,
bio-sensing, nanolithography, and quantum computing, to name a few.

A great deal of the mathematical work about plasmons has focused on the so-called electrostatic case, where
the Maxwell system is reduced to a Helmholtz equation, and in the asymptotic limit when the particle
diameter is small compared to the frequency ω of the incident wave. After proper rescaling, the study
amounts to that of a conduction equation of the form

div
(
ε(ω)−1(x)∇u(x))

)
= 0, (1.1)

complemented with appropriate boundary or radiation conditions; see [6, 7] for a mathematical justification.
The electric permittivity ε(ω) in (1.1) takes different forms in the dielectric ambient medium, and inside the
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particle; in the latter situation, it is usually modeled by a Drude-Lorentz law of the form:

ε(ω) = ε0

(
1−

ω2
p

ω2 + iωγ

)
.

where ε0 is the electric permittivity of the vacuum, and where ωp and γ respectively denote the plasma
frequency and the conductivity of the medium; see [39, 38, 27, 6, 7, 8]. In the case of metals such as gold
and silver, experimental data show that, for frequencies in the range 200− 700 µm, Re(ε(ω)) < 0, while the
rate Im(ε(ω)) of dissipation of electrostatic energy is small. In this context, (1.1) gets close to a two-phase
conduction equation with sign-changing coefficients, and it loses its elliptic character.

In the above electrostatic approximation, the plasmonic resonances of a particle D embedded in a homoge-
neous medium of permittivity ε0 are precisely associated with values of the permittivity ε inside the particle
for which (1.1) ceases to be well-posed. If the shape of the particle is sufficiently smooth, one may represent
the solution u to (1.1) via layer potentials, and then characterize plasmon resonances as values of the contrast
ε+ε0

2(ε−ε0) which are eigenvalues of the associated Neumann-Poincaré integral operator K∗D; see [38, 6].

Due to their key role in various physical contexts, the spectral properties of the Neumann-Poincaré operator
have been the focus of numerous investigations [2, 4, 13, 15, 16]. When the inclusion D is smooth (say with
C1,α boundary), K∗D is a compact operator, and so its spectrum σ(K∗D) consists in a sequence of eigenvalues
that accumulates to 0 [34]. When D is merely Lipschitz, K∗D may no longer be compact and σ(K∗D) may
contain essential spectrum - a fact that has motivated several analytical and numerical studies [42, 30, 31, 33].
This behavior has been understood quite precisely in the particular case where D is a planar domain with
corners: in their recent work [43], K.-M. Perfekt and M. Putinar have characterized this essential spectrum
to be

σess(K∗D) = [λ−, λ+], λ+ = −λ− =
1

2
(1− α

π
),

where α is the most acute angle of D. In [18], an alternative proof of this result is given and a connection
between σess(K∗D) and the elliptic corner singularity functions that describe the field u around the corners is
established.

The main purpose of the present work is to study the spectrum of bowtie-shaped domains in 2d (see Figure
1 below). Metallic bowtie antennas have been the subject of extensive experimental studies, as they can
produce remarkably large enhancement of electric fields near their corners, and particularly in the area of their
central neck, which makes them quite interesting in various applications, see for instance [9, 19, 20, 24, 25, 37].

In utter rigor, a bowtie-shaped domain D is not Lipschitz regular, since ∂D does not behave as the graph
of a Lipschitz function in the neighborhood of the central point. To avoid the tedious issue of introducing
a proper definition of the Poincaré-Neumann operator in this context, we take another point of view for
characterizing the well-posedness of (1.1) and thereby the plasmonic resonances of D: following the seminal
work [34], we work at the level of the so-called Poincaré variational operator TD; see Section 2.3.2. For a
Lipschitz domain, a simple transformation relates the spectra of K∗D and TD:

σ(K∗D) = 1/2− σ(TD) and σess(K∗D) = 1/2− σess(TD),

see for instance [18]. In the context of a bowtie-shaped domain D, we prove that the spectrum σ(TD) consists
only of essential spectrum, and fills the whole interval [0, 1]:

σ(TD) = σess(TD) = [0, 1];

see Theorem 1.

It is also interesting to compare the spectrum of the Poincaré variational operator TD of a ‘true’ (non
Lipschitz) bowtie-shaped antenna D with that of ‘quasi’ (Lipschitz) bowtie-shaped inclusion Dδ - a version
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of D where the two wings of the bowtie are separated by a small distance δ > 0 (see Figure 2 below).
The theory about the essential spectrum of the Neumann-Poincaré operator of planar domains with corners
devised in [43] applies in the latter case, with the conclusion that the essential spectrum of the Neumann-
Poincaré operator K∗Dδ of Dδ is an interval [−λ+, λ+] b [−1/2, 1/2], where λ+ only depends on the value
of the angle(s) of each sector and is independent of δ. We show that as δ → 0, σ(K∗Dδ) cannot reduce to
its essential spectrum and must contain eigenvalues in the range ] − 1/2, λ−[∪]λ+, 1/2[. These eigenvalues
become denser and denser in that set as δ → 0. This phenomenon was already observed in [32] (see also [41]
pp. 378-379) for the related problem of finding the spectrum of the effective permittivity of a composite made
of square inclusions of a metamaterial embedded in a dielectric background medium. See in particular the
computations reported in [32], and the associated movies [29] which show how eigenvalues become denser as
the distance between the corners of the square inclusions tends to 0. The spectrum considered in [32] is closely
related to ours: see [13] that studies the homogenization limit of the spectrum of the Neumann-Poincaré
operator.

The present article is organized as follows. The setting and notations are described in Section 2, where some
background material about plasmonic resonances and the Poincaré variational operator is briefly recalled. In
Section 3, we construct corner singularity functions that describe the behavior of solution to the transmission
problem (1.1) near the central neck of a bowtie-shaped domain D when the permittivity inside D is negative.
Contrarily to the case of connected planar domains with corners (see [11, 12, 18]) these functions always lie
outside the energy space H1. In Section 4, we use these singular functions to prove that the spectrum of TD
is composed only of essential spectrum and occupies the whole interval [0, 1]. In Sections 5 and 6, we relate
this behavior to that of the spectrum of a near-bowtie shaped domain Dδ, as δ → 0. This article ends with
the short Appendix A recalling some material about Weyl sequences.

2 The Poincaré variational operator of a bowtie-shaped plasmonic
antenna

2.1 Generalities about plasmonic resonances

Let Ω ⊂ R2 denote a bounded open set with smooth boundary, containing the origin. Throughout the
article, a point x ∈ R2 shall be indifferently represented in terms of its Cartesian coordinates x = (x1, x2)
or its polar coordinates with origin 0, as x = (r, θ). Also, for ρ > 0, we denote by Bρ (resp. Bρ(x)) the open
ball with center 0 (resp. x) and radius ρ.

Let D b Ω be an open set, representing an inclusion in Ω; for the moment, no particular assumption is
made about the regularity of D. As we have hinted at in the introduction, the plasmonic resonances of the
inclusion D are described in terms of the conduction equation for the voltage potential u:{

−div(a(x)∇u(x)) = f in Ω,
u(x) = 0 on ∂Ω,

(2.1)

where f is a source in H−1(Ω), and the conductivity a(x) is piecewise constant:

a(x) =

{
k ∈ C x ∈ D,

1 x ∈ Ω \D. (2.2)

Classical results from the theory of elliptic PDE’s show that when k ∈ C \ R−, the equation (2.1) has a
unique solution u ∈ H1

0 (Ω), which satisfies:

||u||H1
0 (Ω) ≤ C(k) ||f ||H−1(Ω),

where the constant C(k) > 0 depends on k. In the above relation, and throughout this article, the space
H1

0 (Ω) is equipped with the following inner product and associated norm

< u, v >H1
0 (Ω) =

∫
Ω

∇u · ∇v dx, and ||u||H1
0 (Ω) =

(∫
Ω

|∇u|2 dx
)1/2

.
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Our main purpose is to describe the quasistatic plasmonic resonances of D; these are defined as the values
k ∈ C of the conductivity inside D such that there exists a bounded sequence fn of sources in H−1(Ω) -
say ||fn||H−1(Ω)= 1 - such that there exists a sequence un of associated voltage potentials, solution to (2.1),
which blows up: ||un||H1

0 (Ω)→∞ as n→∞.

Remark 1. In our setting, the considered inclusion D is embedded in a large (yet bounded) ‘hold-all’ domain
Ω, and not in the free space R2 as is customary in the study of the Neumann-Poincaré operator (see e.g.
[16, 34]). This is only a matter of simplicity, since we intend to focus on the properties of D and not on
those of its surrounding environment. The present study could easily be adapted to the case where Ω = R2,
by using weighted Sobolev spaces instead of H1

0 (Ω) as energy space.

2.2 The Poincaré variational operator, and its connection with the Neumann-
Poincaré operator in the case of a Lipschitz inclusion

2.2.1 The Poincaré variational operator and the conduction equation

Following the lead of the seminal work [34], a convenient tool in our study of the plasmonic resonances of
D is the Poincaré variational operator TD : H1

0 (Ω)→ H1
0 (Ω), defined as follows: for u ∈ H1

0 (Ω), TDu is the
unique function in H1

0 (Ω) such that:

∀ v ∈ H1
0 (Ω),

∫
Ω

∇(TDu) · ∇v dx =

∫
D

∇u · ∇v dx. (2.3)

The link between TD and the conduction equation (2.1) is the following: a simple calculations shows that
u ∈ H1

0 (Ω) satisfies (2.1) if and only if:

(βId− TD)u = βg, where β :=
1

1− k
(2.4)

and where g is obtained from f via the Riesz representation theorem

∀v ∈ H1
0 (Ω),

∫
Ω

∇g · ∇v dx = 〈f, v〉H−1(Ω),H1
0 (Ω).

In the same spirit, the Poincaré variational operator offers a convenient characterization of the plasmonic
resonances of D:

Proposition 1. Let k ∈ C, k 6= 1, and let the conductivity a(x) ∈ L∞(Ω) be defined as (2.2). The following
statements are equivalent:

1. There exists a sequence un ∈ H1
0 (Ω) such that

|| div(a∇un) ||H−1(Ω) = 1 and ||un||H1
0 (Ω) →∞. (2.5)

2. The conductivity k inside D is such that β := 1
1−k belongs to the spectrum σ(TD) of TD.

Proof. Let us first assume that β = 1
k−1 is in σ(TD). By the Weyl criterion - see Theorem 4 in Appendix A

- there exists a sequence un ∈ H1
0 (Ω) such that:

||un||H1
0 (Ω)= 1 and ||TDun − βun||H1

0 (Ω)
n→∞−−−−→ 0.
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Up to making a small perturbation of the un, one may additionnally assume that ||TDun − βun||H1
0 (Ω) 6= 0

for all n. Now, let vn := 1
(k−1)||TDun−βun||H1

0(Ω)
un; obviously, ||vn||H1

0 (Ω)→∞ as n→∞, while the definition

of TD implies:

||div(a∇vn)||H−1(Ω) = sup
w∈H1

0(Ω),

||w||
H1

0(Ω)
=1

∫
Ω

a(x)∇vn · ∇w dx

= (k − 1) sup
w∈H1

0(Ω),

||w||
H1

0(Ω)
=1

∫
Ω

∇(TDvn − βvn) · ∇w dx,

= 1.

Hence, the sequence vn satisfies (2.5).

Conversely, if there exists a sequence un ∈ H1
0 (Ω) such that (2.5) holds, a similar argument allows to

construct a Weyl sequence for TD and the value β = 1
1−k , so that β belongs to σ(TD). This concludes the

proof.

We may therefore look for the plasmonic resonances of the inclusion D b Ω by searching for the values of the
conductivity k ∈ C inside D such that β = 1

1−k ∈ σ(TD). This remark motivates the study of the spectrum
σ(TD).

2.2.2 Structure of the spectrum of the Poincaré variational operator of a Lipschitz regular
inclusion

In this section, we assume D to be Lipschitz regular; for further purpose, we also allow D to consist of several
connected components: D =

⋃N
i=1Di, i = 1, ..., N . The following proposition outlines the general structure

of the spectrum σ(TD); see [13] for a proof.

Proposition 2. The operator TD is bounded, self-adjoint, with operator norm ||TD|| = 1. Moreover,

(i) Its spectrum σ(TD) is contained in the interval [0, 1].

(ii) The eigenspace associated to the eigenvalue 0 is:

Ker(TD) = {u ∈ H1
0 (Ω), ∃ci ∈ R, u = ci in Di, i = 1, ..., N}.

(iii) The value 1 belongs to σ(TD) and the associated eigenspace is:

Ker(Id− TD) = {u ∈ H1
0 (Ω), u = 0 in Ω \Dδ};

and Ker(Id− TD) can be identified with H1
0 (D).

(iv) The space H1
0 (Ω) has the orthogonal decomposition:

H1
0 (Ω) = Ker(TD)⊕Ker(Id− TD)⊕HD, (2.6)

where HD, the ‘non trivial’ part of σ(TD), is the closed subspace of H1
0 (Ω) defined by

HD =

{
u ∈ H1

0 (Ω), ∆u = 0 in D ∪ (Ω \D) and

∫
∂Di

∂u+

∂ν
ds = 0, i = 1, ..., N

}
. (2.7)

In the above proposition, we have denoted by ν the unit normal vector to the Lipschitz boundary ∂D pointing
outward D; for a.e. x ∈ ∂D and for any smooth enough function w, the traces w± and normal derivatives
∂w±

∂ν of w are respectively defined by:

w±(x) = lim
t→0
t>0

w(x± tν(x)), and
∂w±

∂ν
(x) = lim

t→0
t>0

∇w(x± tν(x)) · ν(x).

Note that these identities have to be considered in the weaker sense of traces - in H1/2(∂D) and H−1/2(∂D)
respectively - if less regularity is assumed on w, as is the case in (2.7).
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2.2.3 Connection with the Neumann-Poincaré operator when D is Lipschitz

In this section again, we assume D to be Lipschitz regular. As we have mentionned in the introduction,
the operator TD has then close connections with the Neumann-Poincaré operator K∗D : H−1/2(∂D) →
H−1/2(∂D) of the inclusion D, which we now briefly recall.

Let P (x, y) denote the Poisson kernel associated to Ω, defined by

P (x, y) = G(x, y) +Rx(y), x, y ∈ Ω, x 6= y,

where G(x, y) is the Green function in the two-dimensional free space:

G(x, y) =
1

2π
log |x− y|,

and for a given x ∈ Ω, Rx(y) is the smooth solution to{
∆yRx(y) = 0 y ∈ Ω,
Rx(y) = −G(x, y) y ∈ ∂Ω,

see for instance [5]. Thence ,the single layer potential SDϕ of a function ϕ ∈ L2(∂D) is defined by

SDϕ(x) =

∫
∂D

P (x, y)ϕ(y) ds(y), x ∈ D ∪ (Ω \D).

It is well-known [26, 45] that SDϕ belongs to the space hD defined by

hD :=
{
u ∈ H1

0 (Ω), ∆u = 0 in D ∪ (Ω \D)
}

;

notice that hD is slightly larger than its subspace HD defined in (2.7) (they differ by a finite-dimensional
space). Additionally, the definition of SD extends to potentials ϕ ∈ H−1/2(∂D) [40], and the induced
mapping SD : H−1/2(∂D)→ hD is an isomorphism [16].
The normal derivatives of the single layer potential across ∂D satisfy the Plemelj jump conditions

∂SDϕ

∂ν

±
=

(
±1

2
Id +K∗D

)
ϕ, (2.8)

where K∗D : L2(∂D)→ L2(∂D) is the Neumann-Poincaré operator of D, defined by

K∗Dϕ(x) =

∫
∂D

∂P

∂νx
(x, y)ϕ(y) ds(y),

whose definition makes sense for Lipschitz domains [21, 45]. In turn, K∗D extends as an operatorH−1/2(∂D)→
H−1/2(∂D); see [40].

Eventually, the Poincaré variational operator TD : hD → hD and the Neumann-Poincaré operator K∗D :
H−1/2(∂D)→ H−1/2(∂D) are related as:

RD = −SD ◦ K∗D ◦ S−1
D , where RD := TD −

1

2
Id;

see [16, 34]. In particular, the spectra of TD and K∗D are equal, up to a constant shift:

σ(K∗D) = 1/2− σ(TD) and σess(K∗D) = 1/2− σess(TD),

and the plasmonic resonances of D may be equivalently studied from the vantage of TD or K∗D.
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2.3 The case of a bowtie-shaped antenna

2.3.1 Presentation of the physical setting

From now on and in the remaining of this article, we assume that D is shaped as a bowtie (and hence is not
Lipschitz) : D = D1 ∪D2 is the reunion of two connected domains whose boundaries are smooth except at
0, and there exist r0 > 0 and 0 < α < π such that:

D1 ∩Br0 = {(r cos θ, r sin θ), 0 < r < r0, −α/2 ≤ θ ≤ α/2},
D2 ∩Br0 = {(r cos θ, r sin θ), 0 < r < r0, π − α/2 ≤ θ ≤ π + α/2};

see Figure 1. We refer to D1 and D2 as the ‘wings’ of the bowtie (after all, ’bowtie’ translates as ‘nœud
papillon’ in French).

↵

2

D1D2

⌦

r0

0

Figure 1: Setting of the bowtie-shaped domain presented in Section 2.3.

Remark 2. We have assumed D to be smooth except at the contact point 0 between the wings D1 and
D2. Our analysis remains valid if D1 and D2 have additionnal corners (for instance if they are shaped as
triangles, as is often the case in actual physical devices). Indeed, as we show below, it is the contact point
between the two wings that carries the worst singularity and determines the width of the essential spectrum
of the Poincaré variational operator of D.

2.3.2 The Poincaré variational operator of a bowtie-shaped antenna

The bowtie-shaped domain D of Section 2.3 fails to be Lipschitz regular, since it does not arise as the
subgraph of a Lipschitz function in the vicinity of the point 0. Rather than defining and studying an
adapted Neumann-Poincaré operator (see [3] however for a related construction), we base our study of the
well-posedness of (2.1) on the Poincaré variational operator, whose definition (2.3) naturally makes sense in
the case of domains like D.

Since the set D is not Lipschitz regular, some care is in order about the definition of the attached functional
spaces. We denote by H1(D) is the set of functions on D which are restrictions to D of functions in H1(R2)

and by H1
0 (D) the closure of C∞c (D) in H1

0 (Ω). Also, H̃1(D) is the set of functions u ∈ H1(D) whose
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extension to Ω by 0 is in H1
0 (Ω). Let us recall that, if O b Ω is a Lipschitz domain H̃1(O) = H1

0 (O); see
[28]. Unfortunately, the bowtie-shaped domain D is not Lipschitz, but this property nevertheless holds, as
we now prove:

Lemma 1. Let D be a bowtie as described in Section 2.3.1. Then H̃1(D) = H1
0 (D).

Proof. On the one hand, any smooth function in C∞c (D) can be extended by 0 to a function in H1
0 (Ω), so

that by density, H1
0 (D) ⊂ H̃1(D) (this inclusion actually holds true in the case of a general domain D).

On the other hand, to show the reverse inclusion, let u ∈ H̃1(D); given the particular shape of D, one
may write u = u1 + u2, for some u1, u2 ∈ H1(D) with Supp(u1) ⊂ D1 and Supp(u2) ⊂ D2. Since D1 is a

Lipschitz domain, u1 ∈ H̃1(D1) = H1
0 (D1) and u1 arises as the limit in H1

0 (Ω) of a sequence of functions

u1,n ∈ C∞c (D1); hence u1 ∈ H1
0 (D). Similarly, u2 ∈ H1

0 (D), so that H̃1(D) ⊂ H1
0 (D).

The main spectral properties of TD are described in the following proposition, which is an echo of Proposition
2 in the case of the bowtie-shaped domain D. The proof is essentially that of Proposition 3.2 in [13], except
for a technical point that we make precise.

Proposition 3. The operator TD is bounded, self-adjoint, with operator norm ||TD|| = 1. Moreover,

(i) Its spectrum σ(TD) is contained in the interval [0, 1].

(ii) The eigenspace associated to the eigenvalue 0 is:

Ker(TD) = {u ∈ H1
0 (Ω), ∃c ∈ R, u = c in D}.

(iii) The value 1 belongs to σ(TD) and the associated eigenspace is

Ker(Id− TD) = {u ∈ H1
0 (Ω), u = 0 in Ω \D};

therefore, in light of Lemma 1, Ker(Id− TD) is naturally identified with H1
0 (D).

(iv) The space H1
0 (Ω) decomposes as

H1
0 (Ω) = Ker(TD)⊕Ker(Id− TD)⊕HD,

where HD is the closed subspace of H1
0 (Ω) defined by

HD =

{
u ∈ H1

0 (Ω), ∆u = 0 in D ∪ (Ω \D) and

∫
∂D1∪∂D2

∂u+

∂ν
ds = 0

}
. (2.9)

Proof. (i): It is a straightforward consequence of the self-adjointness of TD and of the fact that ||TD||= 1.

(ii): By definition, a function u ∈ H1
0 (Ω) belongs to Ker(TD) if and only if

∀v ∈ H1
0 (Ω),

∫
D

∇u · ∇v dx = 0.

Let u ∈ Ker(TD); then
∫
D
|∇u|2 dx = 0, so that u is constant on D1 and on D2: there exist c1, c2 ∈ R such

that u = ci on Di, i = 1, 2. Moreover, since u ∈ H1
0 (Ω), the trace u|` of u on the one-dimensional subset

` := {x = (x1, x2) ∈ Ω, x2 = 0} belongs to H
1
2 (`). However, by the definition of u and D, there exists r0 > 0

such that:

u|`(x) = c1 if x = (x1, 0) with − r0 < x1 < 0 and u|`(x) = c2 if x = (x1, 0) with 0 < x1 < r0.

This implies that c1 = c2. Conversely, if u ∈ H1
0 (Ω) satisfies u = c on D for some c ∈ R, then u ∈ Ker(TD).
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(iii): This follows from a similar argument.

(iv): A function u ∈ H1
0 (Ω) is orthogonal to Ker(TD) if and only if

∀v ∈ Ker(TD),

∫
Ω

∇u · ∇v dx = 0. (2.10)

Using first test functions v ∈ C∞c (Ω \D), we obtain that ∆u = 0 in Ω \D. Now using arbitrary functions
v ∈ H1

0 (Ω) take a constant value inside D, and integrating by parts yields the subsequent condition:∫
∂D1∪∂D2

∂u+

∂n
ds = 0. (2.11)

Eventually, one proves in a similar way that u ∈ H1
0 (Ω) is orthogonal to Ker(Id − TD) if and only if

∆u = 0 in D.

Remark 3.

• Rigorously speaking, the definition of the normal derivative ∂u+

∂ν as an element in H−1/2(∂D) in (2.9)
is not so straightforward in the present context, since D fails to be Lipschitz. It is possible to define
this notion nevertheless, but we shall not require this in the present article; for our purpose, we may
understand (2.11) in the sense that (2.10) holds for any function v ∈ H1

0 (Ω) such that v ≡ 1 on D.

• Interestingly, from the vantage of the eigenspaces of TD, D behaves as if it were a connected domain
(compare Proposition 3 with its the counterpart Proposition 2 in the Lipschitz case). This peculiarity
highlights one specificity of bowtie-shaped domains.

3 Corner singularity functions for a bowtie

In this section we characterize the local behavior of solutions to the equation

div(a∇u) = 0, where a(x) is given by (2.2), (3.1)

in the vicinity of the contact point x = 0 of the two wings of the bowtie D.

When k takes a positive real value, this question pertains to the theory of elliptic corner singularity, to which
a great deal of literature is devoted, see e.g. [35, 28, 22, 23, 36]. In a nutshell, for a two-phase transmission
problem of the form (3.1) featuring a piecewise smooth inclusion with corners, u is expected to decompose
as the sum of a regular and of a singular part u = ureg +using, where ureg has at least H2 regularity, whereas
using is H1 but not H2 regular. Moreover, in the neighborhood of a corner, the latter function takes the
following form in polar coordinates:

using(r, θ) = Crηϕ(θ).

In this expression, C is a multiplicative constant, η ∈ (0, 1] and ϕ is a piecewise smooth function; both η
and ϕ depend on the geometry of the wedge and of the contrast in conductivities.

In the present section, we investigate the local behavior of the non trivial solutions to (3.1) in the case of
a bowtie-shaped domain D, when k takes negative values. More precisely, let the conductivity a be defined
by:

a(θ) :=

{
k if |θ| < α

2 or |π − θ| < α
2

1 otherwise.

We search for a solution to (3.1) in the whole space R2. More specifically, we are interested in finding
some solutions to (3.1) in the sense of distributions which do not belong to the energy space H1

loc(R2).
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These solutions will be the key ingredient in the construction of generalized eigenfunctions of TD carried
out in Section 4. Considering the symmetry of the geometric configuration with respect to the horizontal
axis, it is enough to search for solutions u to one of the following two problems set on the upper half-space
Π+ :=

{
x = (x1, x2) ∈ R2, x2 > 0

}
:{

div(a∇u) = 0 in Π+

u(x) = 0 on ∂Π+,
(3.2){

div(a∇u) = 0 in Π+

∂u
∂n (x) = 0 on ∂Π+.

(3.3)

Indeed, assume that uD is a solution to (3.2) in the sense of distributions, and define

u(x1, x2) =

{
uD(x1, x2) if x2 ≥ 0,
−uD(x1,−x2) if x2 < 0,

a.e. x = (x1, x2) ∈ R2.

Then it is easily seen that u is a solution to (3.1) in the sense of distributions. Likewise, if uN is a solution
to (3.3), then

u(x1, x2) :=

{
uN (x1, x2) if x2 ≥ 0,
uN (x1,−x2) if x2 < 0.

solves (3.1).

Let us first search for a solution to (3.2) under the form u(r, θ) = riξϕ(θ) for some ξ > 0 and some function
ϕ(θ) which is 2π-periodic. Simple calculations show that (3.2) implies:

(a(θ)ϕ′(θ))′ − ξ2a(θ)ϕ(θ) = 0

and so ϕ has the form:

ϕ(θ) =

 a1 cosh(ξθ) + b1 sinh(ξθ) 0 < θ < α
2 ,

a2 cosh(ξθ) + b2 sinh(ξθ) α
2 < θ < π − α

2 ,
a3 cosh(ξθ) + b3 sinh(ξθ) π − α

2 < θ < π,

for some constants aj , bj , j = 1, 2, 3 to be determined. Now expressing the transmission and boundary
conditions in (3.2) yields a homogeneous linear system for the coefficients aj , bj . Existence of a non-trivial
solution to (3.2) requires that the determinant of this system should vanish. A straightforward calculation
shows that the latter determinant is the following polynomial of order 2 in k:

dD(k) = cosh2(ξα/2) sinh[ξ(π − α)]k2 + cosh2[ξ(π − α)] sinh(ξα)k + sinh2(ξα/2) sinh[ξ(π − α)], (3.4)

in which ξ acts as a parameter. The roots of dD(k) are:

kD,+(ξ) =
− (cosh[ξ(π − α)]− 1) sinh(ξα)

2 cosh2(ξα/2) sinh[ξ(π − α)]
and kD,−(ξ) =

− (cosh[ξ(π − α)] + 1) sinh(ξα)

2 cosh2(ξα/2) sinh[ξ(π − α)]
. (3.5)

Likewise, there exists a solution to (3.3) of the form u = riξϕ(θ) provided the following determinant vanishes:

dN (k) = sinh2(ξα/2) sinh[ξ(π − α)]k2 + cosh2[ξ(π − α)] sinh(ξα)k + cosh2(ξα/2) sinh[ξ(π − α)]. (3.6)

Its roots are:

kN,+(ξ) =
− (cosh[ξ(π − α)]− 1) sinh(ξα)

2 sinh2(ξα/2) sinh[ξ(π − α)]
and kN,−(ξ) =

− (cosh[ξ(π − α)] + 1) sinh(ξα)

2 sinh2(ξα/2) sinh[ξ(π − α)]
.

It is easy to check that kD,+ is a smooth function on R+, that limξ→0+ kD,+(ξ) = 0, while limξ→+∞ kD,+(ξ) =
−1. In addition, we may rewrite:

kD,+(ξ) =

(
−cosh[ξ(π − α)]− 1

sinh[ξ(π − a)]

)
tanh(ξα/2),
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and check that as functions of ξ > 0, the first term in the above right-hand side is negative and decreasing,
while the second is positive and increasing. We conclude that kD,+(ξ) is a decreasing function that maps
(0,∞) into (0,−1).

On the other hand, kN,− is a smooth function on R+, limξ→0+ kN,−(ξ) = −∞, limξ→+∞ kN,−(ξ) = −1, and
it holds:

kN,−(ξ) =

(
−cosh[ξ(π − α)] + 1

sinh[ξ(π − a)]

)
tanh−1(ξα/2),

As functions of ξ > 0, the first term in the above right-hand side is negative and increasing, while the second
is positive and decreasing. It follows that kN,− is a strictly increasing function of ξ that maps (0,∞) into
(−∞,−1).

Thus, for any −1 < k < 0 (resp. −∞ < k < −1) there exists a unique ξ such that k = kD,+(ξ) (resp.
k = kN,−(ξ)). We also note that kD,± and kN,± are even functions of ξ ∈ R, so that if u = riξϕ(θ) is a
singular solution, so is r−iξϕ(θ).

We summarize our findings in a technical lemma:

Lemma 2. For any k < 0, k 6= −1, there exists ξ > 0 and a 2π-periodic function ϕ ∈ H1
#(0, 2π) such that

the function u defined by
u(x1, x2) = Re(riξϕ(θ)) ∈ L∞(Ω) (3.7)

is a solution of (3.1) in the sense of distributions. In addition, the function ϕ in (3.7) solves

(a(θ)ϕ′(θ))′ − ξ2a(θ)ϕ(θ) = 0.

Remark 4.

• One can check that kN,−(ξ) < kN,+(ξ) < −1 < kD,−(ξ) < kD,+(ξ) < 0 for all ξ > 0.

• In the case where k > 0, the same procedure yields solutions of (3.1) of the form u(r, θ) = rξϕ(θ) for
some 0 < ξ < 1 and ϕ ∈ H1

#(0, 2π); such functions are in H1
loc(R2) \H2

loc(R2).

4 Characterization of the spectrum of TD

In this section, we now proceed to the identification of the spectrum of TD.

Theorem 1. The operator TD has only essential spectrum and

σ(TD) = [0, 1].

Proof. Using Proposition 3 and the fact that σess(TD) is closed, it is enough to show that any number
β ∈ (0, 1), β 6= 1

2 lies in the essential spectrum of TD. The proof relies on the same ingredients as that of
Theorem 2 in [18] and we reproduce it for the sake of completeness.

Step 1: Using the singular solutions u to the transmission problem (3.1) (see Lemma 2) calculated in the
previous section, we aim at constructing a singular Weyl sequence for the operator TD and the value β,
namely, a sequence of functions uε ∈ H1

0 (Ω) satisfying the following properties (see Section A):
||uε||H1

0 (Ω) = 1,

(βId− TD)uε → 0 strongly in H1
0 (Ω),

uε → 0 weakly in H1
0 (Ω).

(4.1)
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To this end, let ρ < r0
2 ; we introduce two smooth cut-off functions χ1, χ2 : R+ → [0, 1] such that for some

constant C > 0, the following relations hold:

χ1(s) = 0 for |s| ≤ 1, χ1(s) = 1 for |s| ≥ 2, |χ′1(s)| ≤ C for s ≥ 0,
χ2(s) = 1 for |s| ≤ ρ, χ2(s) = 0 for |s| ≥ 2ρ, |χ′2(s)| ≤ C for s ≥ 0.

(4.2)

For ε > 0 small enough, we set χε1(r) = χ1( rε ), and define

uε(x) = sεχ
ε
1(r)χ2(r)u(x), x ∈ Ω, (4.3)

where the normalization constant sε is chosen so that ||uε||H1
0 (Ω)= 1.

Step 2: We estimate the constant sε. To this end, we decompose∫
Ω

|∇uε|2 dx = s2
ε(J1,ε +mε + J2), (4.4)

where

J1,ε =

∫
B2ε\Bε

|∇uε|2 dx =

∫
B2ε\Bε

|u∇χε1 + χε1∇u|2 dx,

mε =

∫
Bρ\B2ε

|∇uε|2 dx =

∫
Bρ\B2ε

|∇u|2 dx,

and

J2 =

∫
B2ρ\Bρ

|∇uε|2 dx =

∫
B2ρ\Bρ

|χ2∇u+ u∇χ2|2 dx.

Let us first estimate J1,ε, using the explicit form (3.7) for u and a change in polar coordinates:

J1,ε =

∫ 2ε

ε

∫ 2π

0

(∣∣∣∣1ε riξ + r−iξ

2
ϕ(θ)χ′1(

r

ε
) + iξ

riξ − r−iξ

2r
ϕ(θ)χ1(

r

ε
)

∣∣∣∣2 +

∣∣∣∣riξ + r−iξ

2r
ϕ′(θ)χ1(

r

ε
)

∣∣∣∣2
)
rdr dθ

≤ C

ε2

∫ 2ε

ε

∫ 2π

0

r dr dθ + C

∫ 2ε

ε

∫ 2π

0

1

r
dr dθ,

≤ C.

In the above equation, and throughout the proof, C is a generic constant independent of ε, which may change
from one line to the next.

The integral J2 does not depend on ε, and since u is smooth on B2ρ \ Bρ, it is bounded by some constant
C > 0.

Finally, since u does not belong to H1
0 (Ω) (recall from (3.7) that its gradient blows up like r−1 as r → 0), it

follows that
mε

ε→0−−−→∞. (4.5)

Let us note for further reference that the behavior of mε as ε→ 0 may be estimated more precisely:

mε =

∫ ρ

2ε

∫ 2π

0

(
ξ2

∣∣∣∣riξ − r−iξ2r
ϕ(θ)

∣∣∣∣2 +
1

r2

∣∣∣∣riξ + r−iξ

2
ϕ′(θ)

∣∣∣∣2
)
rdrdθ,

≤ C

∫ ρ

2ε

∫ 2π

0

1

r
drdθ,

and so there exists a constant C > 0 such that

mε ≤ C|log ε|. (4.6)
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Recalling (4.4), we obtain

1 = s2
εmε(1 +

J1,ε + J2

mε
),

so that there exists a constant C > 0 such that

1

C
m
− 1

2
ε ≤ sε ≤ Cm

− 1
2

ε . (4.7)

Step 3: We show that uε is a Weyl sequence for the operator TD and the value β. To this end, we estimate

||βuε − TDuε||H1
0 (Ω)= sup

v∈H1
0(Ω),

||v||
H1

0(Ω)
=1

J(v), where J(v) :=

∫
Ω

∇(βuε − TDuε) · ∇v dx.

Recall from (2.4) the alternative expression for J(v)

J(v) = β

∫
Ω\D
∇uε · ∇v dx+ (β − 1)

∫
D

∇uε · ∇v dx

= β

∫
Ω

a(x)∇uε · ∇v dx,

with

a(x) =

{
1 if x ∈ Ω \D,

1− 1
β if x ∈ D.

Inserting the expression (4.3) of uε in the definition of J(v) yields after elementary calculations:

J(v) = sεβ

∫
Ω\D
∇u · ∇(χε1χ2v) dx + sε(β − 1)

∫
D

∇u · ∇(χε1χ2v) dx

+ sεβ

∫
Ω\D

u∇(χε1χ2) · ∇v dx + sε(β − 1)

∫
D

u∇(χε1χ2) · ∇v dx

− sεβ
∫

Ω\D
v∇u · ∇(χε1χ2) dx − sε(β − 1)

∫
D

v∇u · ∇(χε1χ2) dx.

Since u satisfies (3.1) and since the test function χε1χ2v has compact support in Bρ \Bε, the sum of the first
two integrals in the right-hand side of the above identity vanishes, so that

J(v) = βsε(J3,ε(v) + J4,ε(v)), (4.8)

where we have defined:

J3,ε(v) =

∫
Ω

au∇(χε1χ2) · ∇v dx−
∫
B2ρ\Bρ

av∇u · ∇χ2 dx, and J4,ε(v) = −
∫
B2ε\Bε

av∇u · ∇χε1 dx. (4.9)

Similar calculations to those involved in the estimate (4.7) show that

|J3,ε(v)| ≤ C ||v||H1
0 (Ω)

(
1

ε2

∫ 2ε

0

∫ 2π

0

|u|2|χ′1|2 rdrdθ +

∫ 2ρ

ρ

∫ 2π

0

(
|u|2|χ′2|2 + |∇u|2|χ2|2

)
rdrdθ

)
, (4.10)

and so

J3,ε(v) ≤ C||v||H1
0 (Ω), (4.11)

To estimate the remaining term J4,ε(v), we further decompose

J4,ε(v) =

∫
B2ε\Bε

av∇u · ∇χε1 dx+

∫
B2ε\Bε

a(v − v)∇u · ∇χε1 dx, (4.12)
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where v := 1
|B2ε|

∫
B2ε

v(x) dx. The first integral in the above right-hand side reduces to∫
B2ε\Bε

av∇u · ∇χε1 dx =
v

ε

∫ 2ε

ε

∫ 2π

0

a(θ)χ′1(
r

ε
) iξ

riξ − r−iξ

2r
ϕ(θ) rdrdθ,

=
v

ε

∫ 2π

0

a(θ)ϕ(θ) dθ

∫ 2ε

ε

iξ
riξ − r−iξ

2
χ′(

r

ε
) dr,

= 0,

where we have used the fact that ϕ ∈ H1
#(0, 2π) is a solution to the equation:

(a(θ)ϕ′(θ))′ − ξ2a(θ)ϕ(θ) = 0,

so that it satisfies
∫ 2π

0
a(θ)ϕ(θ) dθ = 0. Hence, returning to (4.12), it follows that

|J4,ε(v)| ≤

(∫
B2ε\Bε

a2|∇u · ∇χε|2 dx

) 1
2 (∫

B2ε

|v − v|2dx
) 1

2

.

The following Poincaré-Wirtinger inequality∫
B2ε

|v − v|2 dx ≤ Cε2

∫
B2ε

|∇v|2 dx,

where the constant C is independent of ε, yields

|J4,ε(v)| ≤ Cε||v||H1
0 (Ω)

(∫ 2π

0

a(θ)2|ϕ(θ)|2 dθ
)1/2

(∫ 2ε

ε

∣∣∣∣iξ riξ − r−iξ2r

∣∣∣∣2 1

ε2
χ′1(

r

ε
)2 rdr

)1/2

≤ C||v||H1
0 (Ω)

(∫ 2ε

ε

dr

r

)1/2

≤ C||v||H1
0 (Ω).

We conclude from (4.8), (4.10) and the above estimate that

|J(v)|≤ Csε||v||H1
0 (Ω).

Since sε → 0 (see (4.7) and (4.5)), this proves that

||βuε − TDuε||H1
0 (Ω)

ε→0−−−→ 0,

and so uε is a Weyl sequence for TD and the value β.

Step 4: Finally, we show that uε is a singular Weyl sequence for TD and the value β, namely that uε → 0
weakly in H1

0 (Ω). Since uε has unit norm in H1
0 (Ω), it is enough to prove that uε → 0 strongly in L2(Ω),

which follows easily from (4.3), from the boundedness of χε1, χ2 and u in L∞(Ω), and from the fact that
sε → 0 (viz. (4.7)).

5 Comparison with the bowtie with close-to-touching wings

It is interesting to compare the spectral properties of the Poincaré variational operator of D to that of a
(Lipschitz) domain Dδ = D1,δ ∪D2,δ with only close-to-touching wings. Let us introduce

D1,δ = (δ/2, 0) +D1, D2,δ = (−δ/2, 0) +D2,
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Figure 2: The bowtie with close-to-touching wings.

where the parameter δ > 0 is sufficiently small so that Dδ b Ω; see Figure 2.
The corresponding Poincaré variational operator TDδ : H1

0 (Ω) −→ H1
0 (Ω) is now defined by

∀ v ∈ H1
0 (Ω),

∫
Ω

∇(TDδu) · ∇v dx =

∫
Dδ

∇u · ∇v dx.

Since Dδ is Lipschitz regular, the study of the spectrum σ(TDδ) falls into the framework of Sections 2.2.2
and 2.2.3, and Proposition 2 holds in this case.
More precisely, both domains D1,δ and D2,δ have a piecewise smooth boundary with a finite number of
angles. Hence, the results of K.-M. Perfekt and M. Putinar [43] apply: the essential spectrum of the
associated Poincaré variational operator TDδ (and that of the Neumann-Poincaré operator K∗D) is completely
determined by the most acute angle α on the boundary of D1,δ and D2,δ. In our context, this takes the form:

σess(TDδ) =
[ α

2π
, 1− α

2π

]
; σess(K∗Dδ) =

[
−π − α

2π
,
π − α

2π

]
.

Hence, the close-to-touching corners of Dδ are qualitatively less singular than the bowtie feature of D, which
is associated to an essential spectrum σ(TD) = [0, 1]. A similar phenomenon was already noticed in the
article [17], investigating the regularity of solutions to (2.1) in the case of the domains D and Dδ for a value
k > 0 of the conductivity. In the close-to-touching case, the singular part of the solution uδ to (2.1) behaves
like rη at the vertices, with η ≥ 2/3 independently of the value of k and of the angle α. For the touching
case (i.e. in the case of D), u behaves also like rη at the contact point, but η can be made as close to 0 as
desired by choosing k sufficiently close to 0 or +∞.

Our aim is now to shpw that, as δ → 0, the spectrum σ(TDδ) converges to a limiting set which is exactly
the spectrum σ(TD) = [0, 1] of the limiting physical situation. To this end, we study the limit spectrum

lim
δ→0

σ(TDδ) :=
{
β ∈ R, ∃δn ↓ 0, βn ∈ σ(TDδn ), βn → β

}
(5.1)

of the sequence of operators TDδ .

Our analysis relies on the following abstract result for self-adjoint operators, which is part of the statement
of Lemma (2.8) in [1].
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Theorem 2. Let H be a Hilbert space and Sδ : H → H denote a sequence of self-adjoint operators, with
spectrum σ(Sδ). Assume that the operators Sδ converge pointwise to a limiting operator S, with spectrum
σ(S), in the sense that

∀ u ∈ H, lim
δ→0
||Sδu− Su|| → 0. (5.2)

Then,

lim
δ→0

σ(Sδ) ⊃ σ(S), (5.3)

where the left-hand set denotes the limit spectrum of the sequence of operators Sδ.

Remark 5. The statement in [1] is more general; in this reference, the result is proved under the additional
assumption that the operators Sδ and S are compact, but this hypothesis is not necessary for the version
presented in Theorem 2.

We now prove

Proposition 4. The operators TDδ converge pointwise to TD as δ → 0, in the sense that

∀ u ∈ H1
0 (Ω), lim

δ→0
||TDδu− TDu||H1

0 (Ω) = 0.

Proof: Fix u ∈ H1
0 (Ω) and consider

||TDδu− TDu||2H1
0 (Ω) =

∫
Ω

|∇TDδu−∇TDu|2 dx

=

∫
Dδ

∇u · ∇ (TDδu− TDu) dx−
∫
D

∇u · ∇ (TDδu− TDu) dx

=

∫
Ω

(1Dδ − 1D)∇u · ∇ (TDδu− TDu) dx

≤
(∫

Ω

(1Dδ − 1D)|∇u|2 dx
)1/2

||TDδu− TDu||H1
0 (Ω).

The Lebesgue Dominated Convergence Theorem shows that the first integral on the right-hand side tends
to 0 as δ → 0, which proves the Proposition.

Combining Proposition 4, Theorem 2 and the fact that the spectrum of each TDδ is contained in [0, 1] (see
Proposition 2), we obtain:

Corollary 1. The limiting spectrum (5.1) of the operators TDδ is exactly that of the Poincaré variational
operator of the bowtie antenna D:

lim
δ→0

σ(TDδ) = σ(TD) = [0, 1].

This result deserves a few additionnal comments. As we have mentionned, the essential spectrum of TDδ
is exactly the interval [ α2π , 1 −

α
2π ] independently of δ, whereas the above corollary shows that in the limit

δ → 0, the spectrum σ(TDδ) must densify so as to occupy the whole interval [0, 1]. The only possible way
for this to happen is that for δ sufficiently small TDδ must develop eigenvalues in the intervals [0, α2π ) and
(1− α

2π , 1], which become denser as δ → 0. Let us point out that such a densification phenomenon has been
observed in different physical contexts; see [31, 32] and [14].
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6 Another approach to the limit spectrum of bowties with close-
to-touching wings

The purpose of this section is to provide an alternative proof of the fact that σ(TDδ) contains eigenvalues
if the distance between the wings is sufficiently small. This fact is indeed contained in Corollary 1, but the
forthcoming proof is more direct, and sheds light on the behavior of the eigenfunctions of TDδ . The main
result of this section is the following:

Theorem 3. For δ > 0 small enough, the operator TDδ has eigenvalues in the range
(
1− α

2π , 1
)

and in the

range
(
0, α2π

)
, i.e., outside the essential spectrum σess(TDδ).

Proof. Recalling the orthogonal decomposition (2.6), let us denote by β−δ and β+
δ the lower and upper bounds

of the spectrum of TDδ deprived of the trivial eigenvalues 0 and 1, i.e.

β−δ = inf
σ(TDδ )\{0,1}

and β+
δ = sup

σ(TDδ )\{0,1}

Relying on a spectral representation for the operator TDδ : HDδ → HDδ (see e.g. [44]), these bounds are
given by the Rayleigh quotients:

β−δ = min
w∈H1

0(Ω)

w⊥Ker(TDδ
)

∫
Dδ

|∇w|2 dx∫
Ω

|∇w|2 dx
and β+

δ = max
w∈H1

0(Ω)

w⊥Ker(Id−TDδ
)

∫
Dδ

|∇w|2 dx∫
Ω

|∇w|2 dx
. (6.1)

Let us now pick a value β /∈ [απ , 1−
α
π ], so that β lies outside the essential spectrum σess(TDδ) for any δ > 0.

Our aim is to prove that there exists a sequence of functions Zδ ∈ H1
0 (Ω) which is orthogonal to Ker(TDδ)

(resp. to Ker(Id− TDδ)) such that:

β = lim
δ→0

∫
Dδ

|∇Zδ|2 dx∫
Ω

|∇Zδ|2 dx
.

Let k = 1 − 1
β be the conductivity associated to β (see Section 2.3.2). We take on the construction of uε

carried out in Section 4: let u denote the function supplied by Lemma 2:

u(x) = Re(riξ)ϕ(θ), (6.2)

where ξ satisfies

dD(ξ) = 0 or dN (ξ) = 0,

according to (3.4) and (3.6).

Let 0 < ρ be sufficiently small, and let χ1, χ2 be the cut-off functions defined as in (4.2); for 0 < ε < ρ, we
define:

uε(x) = sεχ1(
r

ε
)χ2(r)u(x).

As in (4.3), the normalization constant sε is chosen so that ||uε||H1
0 (Ω) = 1. Recall from (4.6) that there

exists a constant C > 0 such that:

sε ≤ C
1

| log(ε)| 12
. (6.3)
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The calculations performed in Section 4 have revealed that the sequence uε satisfies

lim
ε→0
||(βI − TD)uε||H1

0 (Ω) = 0. (6.4)

Recalling (2.3), this implies in particular that

β = lim
ε→0

∫
D

|∇uε|2 dx∫
Ω

|∇uε|2 dx
= lim

ε→0

∫
D

|∇uε|2 dx. (6.5)

Let us next turn to the configuration Dδ; for a small parameter ε > 0 to be specified later, we define a
function vδ,ε by:

vδ,ε(x1, x2) =

 uε(x1 + δ
2 , x2) if x1 < − δ2 ,

uε(x1 − δ
2 , x2) if x1 >

δ
2 ,

uε(0, x2) otherwise.
(6.6)

Note that, by construction, vδ,ε ∈ H1
0 (Ω) and:∫
Dδ

|∇vδ,ε|2 dx =

∫
D

|∇uε|2 dx. (6.7)

Additionnally, in view of (6.2), we have

∫
Ω

|∇vδ,ε|2 dx =

∫
x1<− δ2

|∇uε(x1 +
δ

2
, x2)|2dx+

∫
x1>

δ
2

|∇uε(x1 −
δ

2
, x2)|2 dx+

∫
|x1|< δ

2

|∂x2
uε(0, x2)|2 dx

=

∫
Ω

|∇uε|2 dx + s2
ε

∫
|x1|< δ

2

|∂x2

[
χ1(

x2

ε
)χ2(x2)u(0, x2)

]
|2 dx.

(6.8)
We now estimate the last integral in the above expression; to this end,

∫
|x1|< δ

2

∣∣∣∂x2
(χ1(

x2

ε
)χ2(x2)u(0, x2))

∣∣∣2 dx ≤ δ

ε2

∫ 2ε

ε

∣∣∣χ′1(
x2

ε
)χ2(x2) cos(ξ log|x2|)

∣∣∣2 dx2

+δ

∫ 2ρ

ρ

∣∣∣χ1(
x2

ε
)χ′2(x2) cos(ξ log|x2|)

∣∣∣2 dx2

+δ

∫ 2ρ

ε

ξ2

x2
2

∣∣∣χ1(
x2

ε
)χ2(x2) sin(ξ log|x2|)

∣∣∣2 dx2.

≤ C
δ

ε
,

(6.9)

where the constant C > 0 is independent of δ and ε. Combining (6.7), (6.8) and (6.9), we find that∫
Dδ

|∇vδ,ε|2 dx∫
Ω

|∇vδ,ε|2 dx
=

∫
D

|∇uε|2 dx∫
Ω

|∇uε|2 dx+
s2
εδ

ε
Bε,δ

,

where Bε,δ is uniformly bounded with respect to ε and δ. Finally, choosing ε = δ and using (6.5) and (6.3),
it follows that the function wδ := vδ,δ satisfies∣∣∣∣∣∣∣∣β −

∫
Dδ

|∇wδ|2 dx∫
Ω

|∇wδ|2 dx

∣∣∣∣∣∣∣∣ ≤
C

| log δ|
→ 0, as δ → 0. (6.10)
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On a different note, it will be useful for further purpose to notice that wδ is somehow ‘close’ to uδ. More
precisely, the following result will come in handy:

Lemma 3. The following convergence holds:

||uδ − wδ||H1
0 (Ω)→ 0 as δ → 0.

The proof of Lemma 3 is technical and is postponed to the end of this section.

To summarize: we have constructed a series of ‘test’ functions wδ ∈ H1
0 (Ω) whose energy ratio converges to

the desired value β as δ → 0. To use these functions in the variational principles (6.1), we now construct
from wδ a new series of functions Zδ ∈ H1

0 (Ω) which satisfy the orthogonality conditions Zδ ⊥ Ker(TDδ) or
Zδ ⊥ Ker(Id− TDδ). To achieve this, we separate both cases.

Case 1: 1− α
π < β < 1.

Let Wδ denote the orthogonal projection of wδ on Ker(Id− TDδ) = H1
0 (Dδ) and let Zδ = wδ −Wδ. We also

define the function:

Uδ(x) = 1{x1<0}(x)Wδ(x1 −
δ

2
, x2) + 1{x1>0}(x)Wδ(x1 +

δ

2
, x2).

Obviously, ||Uδ||H1
0 (Ω)= ||Wδ||H1

0 (Ω). Also, since Wδ ∈ H1
0 (Dδ), there exists a sequence of smooth functions

(Wn,δ)n≥1 with compact support inside Dδ such that Wn,δ →Wδ strongly in H1
0 (Ω). It is then easy to check

that the functions

Un,δ(x) := 1{x1<0}(x)Wn,δ(x1 −
δ

2
, x2) + 1{x1>0}(x)Wn,δ(x1 +

δ

2
, x2)

are smooth with compact support inside D and that they satisfy Un,δ → Uδ strongly in H1
0 (Ω). It follows

that Uδ ∈ H1
0 (D).

Now, at first using (6.8), (6.9) and the orthogonality of Wδ and Zδ yields:

1 + o(1) =

∫
Ω

|∇wδ|2 dx =

∫
Ω

|∇Wδ|2 dx+

∫
Ω

|∇Zδ|2 dx

=

∫
Dδ

|∇Wδ|2 dx+

∫
Ω

|∇Zδ|2 dx,

where o(1)→ 0 as δ → 0. Also, from (6.10), using again (6.8) and (6.9), we infer:

β + o(1) =

∫
Dδ

|∇wδ|2 dx =

∫
Dδ

|∇Wδ|2 dx+

∫
Dδ

|∇Zδ|2 dx+ 2

∫
Dδ

∇Wδ · ∇Zδ dx

=

∫
Dδ

|∇Wδ|2 dx+

∫
Dδ

|∇Zδ|2 dx,

since ∫
Dδ

∇Wδ · ∇Zδ dx =

∫
Ω

∇(TDδWδ) · ∇Zδ dx =

∫
Ω

∇Wδ · ∇Zδ dx = 0.

Hence, our purpose is now to prove that ||Wδ||H1
0 (Ω)→ 0 as δ → 0.

To this end, we first observe that, on the one hand, since Wδ ∈ Ker(Id− TDδ),∫
Ω

∇((TDδ − βId)wδ) · ∇Wδ dx =

∫
Ω

∇wδ · ∇((TDδ − βId)Wδ) dx,

= (1− β)

∫
Ω

∇wδ · ∇Wδ dx,

= (1− β)||Wδ||2H1
0 (Ω).

(6.11)
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On the other hand, recalling (6.6) with ε = δ, a change of variables yields:∫
Ω

∇(TDδwδ) · ∇Wδ dx =

∫
Dδ

∇wδ · ∇Wδ dx

=

∫
D

∇uδ · ∇Uδ dx =

∫
Ω

∇(TDuδ) · ∇Uδ dx,
(6.12)

and also, since Wδ and Uδ are supported in Dδ and in D respectively,∫
Ω

∇wδ · ∇Wδ dx =

∫
Dδ

∇wδ · ∇Wδ dx =

∫
Ω

∇uδ · ∇Uδ dx. (6.13)

Combining (6.12) and (6.13) thus implies:∫
Ω

∇((TDδ − βId)wδ) · ∇Wδ dx =

∫
Ω

∇((TD − βId)uδ) · ∇Uδ dx

≤ ||(TD − βId)uδ||H1
0 (Ω)||Uδ||H1

0 (Ω)

= ||(TD − βId)uδ||H1
0 (Ω)||Wδ||H1

0 (Ω).

Combining this estimate with (6.11), and in view of (6.4), we obtain

(1− β)||Wδ||H1
0 (Ω) ≤ ||(TD − βId)uδ||H1

0 (Ω) = o(1) as δ → 0.

Since β 6= 1, we conclude that ||Wδ||H1
0 (Ω) → 0, as expected.

This together with (6.10) finally implies:

β = lim
δ→0

∫
Dδ

|∇wδ|2 dx∫
Ω

|∇wδ|2 dx
= lim

δ→0

∫
Dδ

|∇Zδ|2 dx∫
Ω

|∇Zδ|2 dx
,

and so, since Zδ ⊥ Ker(Id− TDδ):

β+
δ = max

w∈H1
0(Ω)

w⊥Ker(Id−TDδ
)

∫
Dδ

|∇w|2 dx∫
Ω

|∇w|2 dx
≥ β + o(1), (6.14)

which is the desired result.

Case 2: 0 < β < α
π .

Recalling (6.10), we again decompose wδ = Wδ + Zδ, where Wδ now denotes the orthogonal projection of
wδ on Ker(TDδ), so that in particular ∇Wδ = 0 inside Dδ. Again, our aim is to prove that Wδ → 0 strongly
in H1

0 (Ω) as δ → 0.

This follows from the chain of inequalities:

||Wδ||2H1
0 (Ω) =

∫
Ω

∇Wδ · ∇(wδ − Zδ) dx

=

∫
Ω

∇Wδ · ∇wδ dx

=
1

β

∫
Ω

∇((βI − TDδ)uδ) · ∇Wδ dx+

∫
Ω

∇(wδ − uδ) · ∇Wδ dx+
1

β

∫
Ω

∇TDδuδ · ∇Wδ dx

≤ 1

β
||(βI − TDδ)uδ||H1

0 (Ω)||Wδ||H1
0 (Ω) + ||uδ − wδ||H1

0 (Ω)||Wδ||H1
0 (Ω)+

1

β

∣∣∣∣ ∫
Dδ

∇wδ · ∇Wδ dx

∣∣∣∣ ,
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and so:

||Wδ||H1
0 (Ω)≤

1

β
||(βI − TDδ)uδ||H1

0 (Ω) + ||uδ − wδ||H1
0 (Ω).

It thus follows from (6.4) and Lemma 3 that ||Wδ||H1
0 (Ω) → 0, so that

lim
δ→0

∫
Dδ

|∇wδ|2 dx∫
Ω

|∇wδ|2 dx
= lim

δ→0

∫
Dδ

|∇Zδ|2 dx

s

∫
Ω

|∇Zδ|2 dx
= β,

which yields, since Zδ ⊥ Ker(TDδ),

min
w∈H1

0(Ω)

w⊥Ker(TDδ
)

∫
Dδ

|∇w|2 dx∫
Ω

|∇w|2 dx
≤ β + o(1). (6.15)

We conclude from (6.14) and (6.15) that for δ > 0 small enough, TDδ necessarily has eigenvalues in the range
[1− α

π , 1) and in the range (0, απ ), i.e., outside the essential spectrum.

We eventually prove the missing link in the above discussion.

Proof of Lemma 3. By definition, uδ has compact support inside B2ρ, while wδ has compact support in the
stadium

Sδ := B2ρ(−
δ

2
, 0) ∪ Lδ ∪B2ρ(

δ

2
, 0), where Lδ :=

{
x = (x1, x2) ∈ Ω, |x1|<

δ

2
, |x2|< 2ρ

}
.

Denote
H−δ =

{
x ∈ B2ρ \ Lδ, x1 < 0

}
, and H+

δ =
{
x ∈ B2ρ \ Lδ, x1 > 0

}
.

Using that |Sδ \B2ρ|→ 0 as δ → 0, and the uniform boundedness of uδ and wδ ‘far’ from 0, one has first:

||uδ − wδ||2H1
0 (Ω) =

∫
Sδ

|∇uδ −∇wδ|2 dx,

=

∫
Lδ

|∇uδ −∇wδ|2 dx+

∫
B2ρ\Lδ

|∇uδ −∇wδ|2 dx+ o(1),

=: I−δ + I+
δ + ILδ + o(1),

where we have introduced the following three integrals (recalling the definition (6.6) of wδ):

I−δ :=

∫
H−δ

|∇uδ(x1, x2)−∇uδ(x1 +
δ

2
, x2)|2 dx, I+

δ :=

∫
H+
δ

|∇uδ(x1, x2)−∇uδ(x1 −
δ

2
, x2)|2 dx,

ILδ :=

∫
Lδ

|∇uδ(x1, x2)−∇uδ(0, x2)|2 dx,

We now prove that I−δ , I+
δ and ILδ vanish as δ → 0.

• Proof of the convergence I−δ → 0: A simple calculation yields:

I−δ =

∫
H−δ ∩B3δ

|∇uδ(x1, x2)−∇uδ(x1 +
δ

2
, x2)|2 dx+

∫
H−δ \B3δ

|∇uδ(x1, x2)−∇uδ(x1 +
δ

2
, x2)|2 dx,

=: J1
δ + J2

δ .
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At first, for x ∈ B3δ, one has uδ(x) = sδχ1( rδ )u(x), and so:

∂uδ
∂xi

(x1, x2) = sδ

(
1

δ

xi
r
χ′1(

r

δ
)u(x) +

iξxi
2r2

χ1(
r

δ
)(riξ − r−iξ)ϕ(θ)

)
, i = 1, 2. (6.16)

Now using Taylor’s formula yields:

J1
δ ≤ Cδ2

(∫
H−δ ∩B3δ

∫ 1

0

∣∣∣∣∂2uδ
∂x2

1

(x1 + t
δ

2
, x2)

∣∣∣∣2 dt dx+

∫
H−δ ∩B3δ

∫ 1

0

∣∣∣∣ ∂2uδ
∂x1∂x2

(x1 + t
δ

2
, x2)

∣∣∣∣2 dt dx
)
,

≤ Cδ2s2
δ

∫
H−δ ∩B3δ

∫ 1

0

(
1

δ4
+

1

δ2r2
t

+
1

r4
t

)
(|χ1(

rt
δ

)|2+|χ′1(
rt
δ

)|2+|χ′′1(
rt
δ

)|2) dt dx,

where we have denoted by (rt, θt) the polar representation of the point with Cartesian coordinates (x1 +
t δ2 , x2). Using that χ1( rtδ ) vanishes for rt ≤ δ, it follows:

J1
δ ≤ Cδ2s2

δ

∫
H−δ ∩B3δ

1

δ4
dx,

and so J1
δ converges to 0 as δ → 0, owing to the estimate (6.3) on sδ.

Let us now deal with the integral J2
δ . Using the same calculation as above yields:

J2
δ ≤ Cδ2

(∫
H−δ \B3δ

∫ 1

0

∣∣∣∣∂2uδ
∂x2

1

(x1 + t
δ

2
, x2)

∣∣∣∣2 dt dx+

∫
H−δ \B3δ

∫ 1

0

∣∣∣∣ ∂2uδ
∂x1∂x2

(x1 + t
δ

2
, x2)

∣∣∣∣2 dt dx
)
,

and since for x ∈ Ω \B3δ, one has uδ(x) = sδu(x)χ2(r), it follows:

∂uδ
∂xi

(x) = sδ
iξxi
2r2

(riξ − r−iξ)ϕ(θ)χ2(r) +
xi
r
χ′2(r)u(x), for x ∈ Ω \B3δ, (6.17)

so that:

J2
δ ≤ Cδ2s2

δ

∫
B2ρ\B3δ

∫ 1

0

∣∣∣∣ 1

r2
t

∣∣∣∣2 dx,
where, again, (rt, θt) are the polar coordinates of (x1 + t δ2 , x2). We now remark that, by an elementary
calculation:

r2
t ≥

r2

2
− δ2

2
,

so that, switching to polar coordinates:

J2
δ ≤ Cδ2s2

δ

∫ 2ρ

3δ

rdr

(r2 − δ2)2
≤ Cs2

δ ,

whence J2
δ → 0. This completes the proof of that fact that I−δ → 0 as δ → 0.

• The proof that I+
δ → 0 is completely similar.

• Proof of the convergence ILδ → 0: Using a similar decomposition as in the case for I−δ , we get:

ILδ =

∫
Lδ∩B3δ

|∇uδ(x1, x2)−∇uδ(0, x2)|2 dx+

∫
Lδ\B3δ

|∇uδ(x1, x2)−∇uδ(0, x2)|2 dx,

=: K1
δ +K2

δ .
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Using the expression (6.16) for the gradient of uδ inside B3δ, it comes:

K1
δ =

∫
Lδ∩B3δ

∣∣∣∣∫ 1

0

∂2uδ
∂x2

1

(tx1, x2)x1 dt

∣∣∣∣2 dx+

∫
Lδ∩B3δ

∣∣∣∣∫ 1

0

∂2uδ
∂x1∂x2

(tx1, x2)x1 dt

∣∣∣∣2 dx
≤ Cs2

δ

∫
H−δ ∩B3δ

∫ 1

0

(
1

δ4
+

1

δ2r2
t

+
1

r4
t

)
(|χ1(

rt
δ

)|2+|χ′1(
rt
δ

)|2+|χ′′1(
rt
δ

)|2)|x1|2 dt dx,

where we have now denoted by (rt, θt) the polar coordinates of (tx1, x2). Since χ1( rtδ ), χ′1( rtδ ) and χ′′1( rtδ )
vanish identically for rt ≤ δ, we obtain:

K1
δ ≤ Cs2

δ

∫
Lδ∩B3δ

|x1|2

δ4
dx,

and it follows as previously that K1
δ → 0 as δ → 0. Likewise, using (6.17), we get:

K2
δ =

∫
Lδ\B3δ

∣∣∣∣∫ 1

0

∂2uδ
∂x2

1

(tx1, x2)x1 dt

∣∣∣∣2 dx+

∫
Lδ\B3δ

∣∣∣∣∫ 1

0

∂2uδ
∂x1∂x2

(tx1, x2)x1 dt

∣∣∣∣2 dx
≤ Cs2

δ

∫
Lδ\B3δ

∫ 1

0

1

|rt|4
|x1|2 dt dx,

where (rt, θt) are the polar coordinates of (tx1, x2). We now use the fact that, for x ∈ Lδ \B3δ and t ∈ (0, 1),

r2
t = t2x2

1 + x2
2,

= r2 + (t2 − 1)x2
1,

≥ r2 − δ2

4 .

Hence, switching to polar coordinates,

K2
δ ≤ Cs2

δ

∫
Lδ\B3δ

|x1|2

(r2 − δ2)2
dx,

≤ Cδ2s2
δ

∫
Lδ\B3δ

1

(r2 − δ2)2
dx,

≤ Cδ2s2
δ

∫ 2ρ

3δ

r

(r2 − δ2)2
dr,

≤ Cs2
δ ,

which completes the proof of the fact that K2
δ → 0 as δ → 0, and so that ILδ → 0.

Putting things together, we have proved that ||uδ −wδ||2H1
0 (Ω)

= I−δ + I+
δ + ILδ + o(1) converges to 0 as δ → 0,

which is the expected conclusion.
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A The spectrum of an operator and the Weyl criterion

For the reader’s convenience, we recall in this appendix the Weyl criterion, one of the main tools used in the
present article; see for instance [44], Chap. VII or [10] for a more complete presentation.

Let T : H → H be a bounded self-adjoint operator on a Hilbert space H. As is well-known, the spectrum
σ(T ) of T is the set of real numbers λ such that (λId − T ) does not have a bounded inverse. The discrete
spectrum σdisc(T ) of T is the subset of the λ ∈ σ(T ) such that both the following conditions hold:

23



(i) λ is isolated in σ(T ), i.e. there exists ε > 0 such that σ(T ) ∩ (λ− ε, λ+ ε) = {λ},

(ii) λ is an eigenvalue of T with finite multiplicity.

The complement of σdisc(T ) in σ(T ) is a closed set called the essential spectrum of T and is denoted by
σess(T ).

The Weyl criterion offers a convenient characterization of the spectrum and essential spectrum in terms of
Weyl sequences:

Theorem 4. Let T : H → H be a bounded, self-adjoint operator on a Hilbert space H. Then,

• A number λ ∈ R belongs to the spectrum σ(T ) if and only if there exists a sequence un ∈ H such that:

||un||= 1 and ||λun − Tun||
n→∞−−−−→ 0.

Such a sequence is called a Weyl sequence for T associated to the value λ.

• λ ∈ R belongs to the essential spectrum σess(T ) if and only if there exists a Weyl sequence un for λ
such that un → 0 weakly in H; such a sequence is called a singular Weyl sequence for T and λ.
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touching inclusions in 2d. Arch. Rational Mech. Anal., 209 (2013) 541–567.

[17] E. Bonnetier, and M. Vogelius. An elliptic regularity result for a composite medium with “touching”
fibers of circular cross-section, SIAM J. Math. Analysis, 31 (2000) 651–677.

[18] E. Bonnetier, and Hai Zhang, Characterization of the essential spectrum of the Neumann-Poincaré
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