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Part V

Topology optimization

@ A glimpse at mathematical homogenization
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Prologue : The direct method of the calculus of variations

Let E be a Banach space and J : E — R. Assume that J is continuous and that J
‘tends to infinity at infinity’
vVC>0,3M>0, st. |x>M = Jx)>C
We consider the optimisation problem
find x. € A, s.t. J(x) = [ = Xigi‘J(x)
where A C E is the set of admissible candidates
Let (x,) C A be a minimizing sequence (such a sequence always exists)

As J(xn) — 1, the sequence (x,) is bounded in E and so there exists x, € E and a
subsequence (not renamed) such that
Xn — X, weaklyin E as n — o0
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If Ais closed for the weak topology, then wu., € A

If J is weakly lower semi-continuous then

J(x) < liminfJ(xy) = [
n—o0o

and we can conclude that x. is indeed a minimum of the optimisation problem
The hypotheses required for this program are satisfied in particular when

- Jis convex and coercive

- Ais a (strongly) closed convex set

(and a converse statement is also true)
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If A and J do not satisfy these conditions, one can seek a relaxation of the
optimisation problem

A" = {x € E, st. x= weak-*limx,, (x,)C A}
Ji(x) = irﬂ J(xn)

and show that the relaxed problem  mingeca J:(x) has a solution
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1. Non existence of minimizers

The direct method of the calculus of variations does not apply in general to shape
optimisation problems

- In general the set of design parameters is not closed and convex (and
sometimes not even a Banach space)

- In general the objective functional is not weakly lower semi-continuous

We illustrate these facts with the following optimisation problem
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Let Q = [0,1] x [0,1] C R? be a fixed domain in which we want to find how to
distribute 2 materials (= phases) with conductivities a, 8 with 0<a << o

An admissible distribution (= design) is represented by the characteristic function
x of the phase a and the conductivity distribution is given by

ax(x) = ax(x)+B(1-x(x)) xeQ

Let 0o = |oole1 be a fixed vector in the direction e; = (1,0)
The voltage potential u, resulting from the application of the current o on 99 to
the design x is given by

—div(ayVuy,) = 0 in Q
ayVuy - n = o0o-n ondfd

the variational formulation of which is
Vv e HY(Q), /aXva‘vV = / oo-nv
Jo Jog

Note that the constraint f;m oo-n=0 s satisfied, and that u, is only defined
up to a constant
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The objective function (the dissipated electrostatic energy) is defined by
Jx) = / ao-nude+>\/(17x)dx
lol Q

= /aXVuX~Vude+/\/(1—X)dx
Q Ja

f— 1 ._1, p—
= Unéwo/ﬁaxaa—&—)\/ﬂ(l X) dx

where Hp is the space

Ho — {O’GLz(Q), {div(a) = 0 inQ )

oc-n = o0p-n onodf2

and where X\ > 0 is a Lagrange multiplier that constrains the amount of the phase 3
in the design
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The optimisation problem is:

Find x. € L(£2,{0,1}) such that  J(xx) = infycrooQ,{0,11 J(X)

Thm : Let A~ = [oime) o lmel*(fe)
1. If A< A7 then x = 0 is the unique minimizer
2. If A > A% then x = 1 is the unique minimizer

3. If A < XA < AT then the optimization problem does not have a minimizer
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Non existence (5)

Lemma : Consider ¢ : R" x R* — R defined by  ¢(a,0) = L|o|?
Then ¢ is convex and

= . a — dao _ i
¢’(37 O') - ¢(30’Go) + D¢(3O,Uo) ( o o0 ) 4 ¢)(a7 p = UO)

Proof : We compute

0¢ = ;1 2 0¢ 20;

55(20) = ol 80,( o) = =
and thus

- - — 2 . _
D¢(ao, 00) - ( a— ao ) _ M‘UOF 4 M
g — 0o aO 2

It is then easy to check that (1) holds
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Non existence (6)

Proof of the Thm :
Set 0= Iﬁll Jox(x)dx and  ag = ﬁ Jo ax(x)dx = 0a+ (1 — 0)8
Let 0 € Ho. Then, fori =1,2

0 = /Qdiv(a—ao)x,- = /Q(a—ao)-x,-—i-/m(o—ao)~nx,-ds = /Q(U,——ao,,-)

so that

1
@/Qadx = oo @

From the Lemma, we have for any x € Q

alto(x)-o(x) = M%J@+DM@J@.<%“Vﬂ0>

o(x) — oo

Fan(x), o(x) — 20 g

ae

ae_1|00|2+D¢(ag,ao).< ax(x) —as )

o(x) — oo

Y
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Non existence (7)

Integrating obtains

/a;la-a—i—)\(l—x)dx > 1Qlar ool? + A(L— 6)
Q
_ |oo]?
= QL L x1-0)
ae
It follows that
inf = inf inf [ alo o+ A1-
in J(x) in UlgHO/QaX oo+ A1-x)

Y

. loo|? .
9] inf (Te F A1 - 9)) = inf F(0)

F is a strictly convex expression of 6 and an easy computation shows that

loo|? if \ > A+

o

inf F(0) = h = |9 oo 4 A< A

o0l /525 — 50 AT <A<t

12/37



Can the lower bound /5 be attained ?

This would require that (1) is an equality, so that the remainder

a
¢(ax(X)7Ux - lJo) = 0 aexeQ
ag
so that the optimal current o, satisfies
a
ox(x) = Xog aexeQ (3)
ag

e If x is constant in €, then either x =0 or x =1 and o, = 09
One checks that J(x) =h if x=1and A > At orif xy=0and A < A~
e If x is not constant, then 0 < 6 < 1 and (3) yields
iao when y =1
Oy =

500 when xy =0

In particular o, cannot match the boundary condition oy -n=00-n
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However, Iy is indeed the correct value of the minimum when A~ < A < AT

In this case, F(6) is minimal for 6. given by

0, = ﬁ(ﬁ—\aolﬂﬁ), 0<0. <1

1 if0<x <0,
Let g(x2) = extended by periodicity to the whole R,
0 iff.<x<1

and set  xp(x) = g(px2)

As (Xp)p>1 is a sequence of periodic functions, bounded in L*°() it converges
weakly-* to its average

Vve L), /Xp(x v(x) — 6’/
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Non existence (10)

In addition, the solutions to

div(ay,Vu,) = 0 inQ
ax,Vup-n = o0og-n ondQ
converge, weakly in H, to the solution to
div(A.Vu.) = 0 in Q
A.NVu,-n = o0o-n onodf
Oa+ (1 —0)8 0
h A* - —1
where 0 {9071 . 0)5*1}
And the energies converge
lim / a, Vi, Vu, = / A.Vu.-Vu, = min / Allo-o
p—0 Jo Q oE€Hgp Q
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Non existence (11)

Since A, is constant in Q, u, can be easily computed
. = A.Vu,=o9 in Q

from which we obtain

- B 9o+ (1—60)8 0 (e 7
/QA*la*m = /Q( 0 [9a*1+(1—9)/3’1]71> ( 0 )( 00)

|oo|?
ap

5

and we see that

) — |Q\(|ZL|+)\(170*)) = F(6.) = I

5
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Non existence (12)

The main reason for this non existence of optimal solution is the homogenization
effect: the values of J(Q2) are improved by sequences of shapes showing smaller and
smaller features.

A sequence of shapes showing smaller and smaller features, making J(Q2) better and better.




The previous example, where the objective functional involes the compliance shows
that

- a sequence of admissible designs (x») C L*°(£2,{0,1}) is naturally uniformly
bounded

- a subsequence naturally converges to some density 6 € L*°(, [0, 1]) in the
weak-* topology

- the associated fields u, are naturally bounded in H*(Q) and a subsequence
converges to some u. € H'(Q) for the weak topology

- so the question is : what do the energies / A(xn)Vup - Vu, converge to ?
Q
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Def : Let E be a Banach space with norm || - ||g, and E’ its dual

- The sequence (f,)n C E converges strongly to f € E if

Ifa—flle — 0 asn— o0

- The sequence (f,), C E converges weakly to f € E if
Vo€E, <fup>cp — <funp>cg asn— oo
We write f, — f
® The sequence (¢n)n C E’ converges weakly-* to ¢ € E if
VfeE, <f,on>ep — <f,o>pp asn— oo

We write ¢, — ¢ as well
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Weak topologies express some form of convergence ‘in average'

We are mostly interested in the cases when E = LP(Q) or E = W'P(Q),1 < p < o0
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- For 1 < p < oo, the dual space of LP(Q2) is (LP(Q2)) = LY(Q) with % + % =1

f—f weakly in " <& /fnapﬁ/f@ Ve LiQ)
Q Q

- When p =1, L}(Q) = L=(Q)
f, = f weaklyin ' < /fnc,p—>/f<p Ve =(Q)
Q Q

- When p = oo, (L(Q))’ is strictly larger than L'(Q) and can be identified as
the space of Radon measures

So weak-* convergence matters in this case

f, = f weakly-* in L® & /f,,ap%/ftp Vo el(Q)
Q Q
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Thm :

1. If up — u strongly in LP(Q2),1 < p < oo there exists h € LP(Q) and a
subsequence such that

up — u(x) a.e.x € Q, |un(x)| < h(x) a.ex € Q

2. If (un)n is bounded in LP(Q2) and un(x) — u(x) a.e. x € Q, then u, — u
strongly in L"(Q) forany 1< r<p

3. If up — u strongly in LP(£2), then
u, — u weakly in L(Q)
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Functional analysis (6)

4. If up — u weakly in LP(R2),1 < p < oo, then u, is bounded and

[lullee < liminf||up]|ce
n—o00

5. If u, — u weakly in L?(Q2),1 < p < o0, and v, — v strongly in (L?)'(€) then
/ UnVp — / uv
Q 0

However if u, — u weakly, one does not have f(u,) — f(u) when f is a nonlinear
expression
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If dim(E) = oo, the weak topology contains less open (and closed) sets than the
strong topology

However, it contains more compact sets

Thm : (Banach-Alaoglu)
The unit ball Bey = {p € E’, s.t. ||o||ler < 1} is compact for the weak-* topology

Consequences for the L” spaces

- When 1 < p < 0o, any bounded sequence in LP(€2) contains a weakly
convergent subsequence

- When p = oo, any bounded sequence in L°°(2) contains a subsequence that
converges weakly-*
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Closed sets for the weak topology are also closed for the strong topology

The converse is false in general, except for convex sets

Thm : Let C C E be a convex set. Then C is closed for the weak topology if and
only if C is closed for the strong topology

Thm : Let J : E =] — 00, +o0] be a convex function which is continuous
(respectively Isc) for the strong topology

Then it is continous (rep. Isc) for the weak topology

In particular (in the Isc case)
fom f = J(F) < liminf J(f,)
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Prop : An important exemple for shape optimization

Let Q be a bounded open set in R? and let Y = [0, 1] denote the unit cube in R?
Let x € L°(Y) and extend it as a Y —periodic function to the whole R?

Define for n > 1 xa(x) = x(nx), x€Q

Then xn — 6 weakly-* in L°°Q, where 6 is the constant function

0 = /Yx(y)dy
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Proof : in the 1-d case

Let Q =]a, b[ be a bounded interval in R, Y = [0,1] and x(x) € L*°([0, 1]) extended
by periodicity in R

We have to show that for any ¢ € L1(Q)

/abx(nX)sD(X)dX — 9/abs0(y)dy

By density, it suffices to show this for functions ¢ of the form  (x) = 1}, ((x)

Let n > 1and write a=[na]/n+ro, B=[nf]/n+rs ,0<ra,r3<1/n

27/37



Functional analysis (11)

Then we can write for n large enough

b [nﬁ]/n+r5
/ x(nx) 1y gi(x) dx = /[ x(nx) dx

nal/n+ra

([naJ+1)/n 5] (+1)/n [nB1/n+rg
= / x(nx) dx + Z / x(nx) dx+/ x(nx) dx
[nal/n+7a J—tmasa i/ [61/n
Il -
= oy oy 2
j= [na]+1

- ([xma)e-w =0 / 1y ()
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