An introduction to shape and topology optimization

Éric Bonnetier* and Charles Dapogny ${ }^{\dagger}$
* Institut Fourier, Université Grenoble-Alpes, Grenoble, France
\dagger CNRS \& Laboratoire Jean Kuntzmann, Université Grenoble-Alpes, Grenoble, France

Fall, 2020

Part V

Topology optimization

Homogenization (1)

3. Homogenization

Assume, we want to find the optimal distribution of a given volume of a given material with Hooke's law A, in a given set $\Omega \subset \mathbb{R}^{3}$ so as to minimize the compliance under given loading conditions

Find $\chi \in L^{\infty}(\Omega,\{0,1\})$ which minimizes

$$
J(\chi)=\int_{\Omega} \operatorname{Ae}\left(u_{\chi}\right): e\left(u_{\chi}\right)+\lambda \int_{\Omega} \chi(x)
$$

where u_{χ} is the solution to

$$
\left\{\begin{array}{cll}
\operatorname{div}\left(A e\left(u_{\chi}\right)\right) & =0 & \text { in } \Omega \cap\{\chi=1\} \\
\operatorname{Ae}\left(u_{\chi}\right) n & =g & \text { on } \Gamma_{N} \subset \partial \Omega \\
u_{\chi} & =0 & \text { on } \Gamma_{D} \subset \partial \Omega
\end{array}\right.
$$

Homogenization (2)

To make the problem less singular, one could replace voids in Ω by a very soft material, with Hooke's law ηA, where $\eta \ll 1$ is a fixed parameter

The material coefficients then take the form

$$
A_{\chi}(x)=\chi(x) A+(1-\chi(x)) \eta A
$$

and the previous PDE is set in the whole of Ω
The optimization problem then becomes: Find $\chi \in L^{\infty}(\Omega,\{0,1\})$ such that χ minimizes

$$
J(\chi)=\int_{\Omega} A_{\chi}(x) e\left(u_{\chi}\right): e\left(u_{\chi}\right)+\lambda \int_{\Omega} \chi(x)
$$

where u_{χ} is the solution to

$$
\left\{\begin{array}{cll}
\operatorname{div}\left(A_{\chi}(x) e\left(u_{\chi}\right)\right) & =0 & \text { in } \Omega \tag{1}\\
A_{\chi} e\left(u_{\chi}\right) n & =g \text { on } \Gamma_{N} \subset \partial \Omega \\
u_{\chi} & =0 & \text { on } \Gamma_{D} \subset \partial \Omega
\end{array}\right.
$$

Homogenization (3)

The shape optimization problem then becomes one of finding an optimal distribution of a mixture of 2 phases, with Lamé coefficients A and ηA

One strategy may consist in filling in the whole of Ω with material A and then replacing this material by the weak material ηA at places where the former is least necessary, to match the volume constraint while optimizing the overall rigidity

One could remove material A in big chunks or by drilling many tiny holes
Removing many tiny holes often proves more advantageous. It allows to reduce weight while maintaning some structural rigidity

When the holes become infinitesimally small, the structure effectively behaves like a composite material

Homogenization (4)

In the direct method of the calculus of variation, existence of minimizers was shown by studying the behavior of minimizing sequences

In the context of a mixture of 2 phases, studying minimizing sequences raises the following questions:

1. Admissible designs χ_{n} are characteristic functions, thus any minimizing sequence is uniformly bounded in L^{∞} : if it converges, its limit θ_{*} is likely to be a density
2. The associated displacements u_{n} are bounded in $H^{1}(\Omega)$. By weak compactness a subsequence converges to a limit u_{*}. Does u_{*} satisfy a PDE similar to (??) ? What would be the associated (effective) Hooke's law A^{*} ? What is the relation between θ_{*} and A^{*} ?
3. Is there a relation between $\lim _{n} J\left(\chi_{n}\right)$ and u_{*}, A^{*} ?

Homogenization (5)

Homogenization is a mathematical theory of composite materials : it helps answer the above questions

Historically, the first works on effective modulus theory may date back to Poisson (1781-1840)

The term homogenization is due to I . Babuška, and the variational theory was essentially developped by F. Murat and L. Tartar

Here, we are only concerned with periodic homogenization of 2nd order elliptic PDE's

A model example in electrostatics (1)

3.1. A formal expansion

Let Ω be a smooth bounded open set in \mathbb{R}^{d} and let $Y=(0,1)^{d} \subset \mathbb{R}^{d}$
Let $a(y)$ be a Y-periodic function in \mathbb{R}^{d} such that

$$
0<\alpha_{*} \leq a(y) \leq \alpha^{*}, \quad \text { a.e. } y \in Y
$$

and set $a_{\varepsilon}(x)=a(x / \varepsilon)$ for $x \in \Omega$ and $\varepsilon=1 / n>0$

A model example in electrostatics (2)

Given $f \in L^{2}(\Omega)$, we consider the conduction equation

$$
\left\{\begin{array}{lll}
-\operatorname{div}\left(a_{\varepsilon}(x) \nabla u_{\varepsilon}(x)\right) & =f \quad \text { in } \Omega \tag{2}\\
u_{\varepsilon}(x) & =0, & \text { on } \partial \Omega
\end{array}\right.
$$

which has a unique solution $u_{\varepsilon} \in H_{0}^{1}(\Omega)$

What does u_{ε} look like when $\varepsilon \rightarrow 0$?

A model example in electrostatics (2)

A formal expansion

Because of the periodic character of the coefficient a_{ε}, it is tempting to look for u_{ε} in the form

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{0}(x, x / \varepsilon)+\varepsilon u_{1}(x, x / \varepsilon)+\varepsilon^{2} u_{2}(x, x / \varepsilon)+\cdots \tag{3}
\end{equation*}
$$

where the functions $u_{j}(x, y)$ are Y-periodic functions of the fast variable $y=x / \varepsilon$ Injecting the ansatz (??) in the PDE, using that

$$
\frac{\partial}{\partial x_{j}} u_{\varepsilon}(x)=\sum_{p} \varepsilon^{p}\left(\frac{\partial u_{p}}{\partial x_{j}}(x, x / \varepsilon)+\frac{1}{\varepsilon} \frac{\partial u_{p}}{\partial y_{j}}(x, x / \varepsilon)\right)
$$

and regrouping terms in powers of ε, one obtains (denoting $y=x / e$):

A model example in electrostatics (3)

$$
\begin{aligned}
& \operatorname{div}\left(a_{\varepsilon}(x) \nabla u_{\varepsilon}(x)\right) \\
&=\left(\operatorname{div}_{x}+\frac{1}{\varepsilon} \operatorname{div}_{y}\right)\left(a(y)\left(\nabla_{x}+\frac{1}{\varepsilon} \nabla_{y}\right)\right) u_{\varepsilon} \\
&= \frac{1}{\varepsilon^{2}} \operatorname{div}_{y}\left(a(y) \nabla_{y} u_{0}\right) \\
&+\frac{1}{\varepsilon}\left(\operatorname{div}_{y}\left(a(y) \nabla_{y} u_{1}\right)+\operatorname{div}_{y}\left(a(y) \nabla_{x} u_{0}\right)+\operatorname{div}_{x}\left(a(y) \nabla_{y} u_{0}\right)\right) \\
&+\varepsilon^{0}\left(\operatorname{div}_{y}\left(a(y) \nabla_{y} u_{2}\right)+\operatorname{div}_{y}\left(a(y) \nabla_{x} u_{1}\right)+\operatorname{div}_{x}\left(a(y) \nabla_{y} u_{1}\right)+\operatorname{div}_{x}\left(a(y) \nabla_{x} u_{0}\right)\right) \\
&+\varepsilon \ldots \\
&=-\varepsilon^{0} f
\end{aligned}
$$

A model example in electrostatics (4)

Identifying the powers of ε yields

- Terms in ε^{-2} :

$$
\begin{equation*}
\operatorname{div}_{y}\left(a(y) \nabla_{y} u_{0}(x, y)\right)=0 \tag{4}
\end{equation*}
$$

which we view as an equation for the Y-periodic function $u_{0}(x, \cdot)$, considering x as a parameter

Let $H_{\#}^{1}(Y)$ denote the closure of the space of Y-periodic \mathcal{C}^{∞} functions for the H^{1} norm, and let $g \in L^{2}(Y)$

Under our hypotheses on the coefficient a, we have
Lemma 1 : The variational problem : find $v \in H_{\#}^{1}(Y)$ such that

$$
-\operatorname{div}\left(a(y) \nabla_{y} v(y)\right)=g, \quad \text { in } Y
$$

has a unique solution in $H_{\#}^{1}(Y) / \mathbb{R}$ provided $\int_{Y} g(y) d y=0$

A model example in electrostatics (5)

The Lemma thus shows that the first term $u_{0}(x, y) \sim u_{0}(x)$ is independent of y

- Terms in ε^{-1} :

$$
\begin{aligned}
& \left(\operatorname{div}_{y}\left(a(y) \nabla_{y} u_{1}\right)+\operatorname{div}_{y}\left(a(y) \nabla_{x} u_{0}\right)+\operatorname{div}_{x}\left(a(y) \nabla_{y} u_{0}\right)\right) \\
& =\left(\operatorname{div}_{y}\left(a(y) \nabla_{y} u_{1}\right)+\operatorname{div}_{y}\left(a(y) \nabla_{x} u_{0}\right)\right)=0
\end{aligned}
$$

which we rewrite as and equation for the y-periodic function $u_{1}(x, \cdot)$

$$
\begin{equation*}
-\operatorname{div}_{y}\left(a(y) \nabla_{y} u_{1}\right)=\sum_{j} \frac{\partial u_{0}}{\partial x_{j}}(x) \operatorname{div}\left(a(y) e_{j}\right) \quad \text { in } Y \tag{5}
\end{equation*}
$$

The periodic character of a shows that one can apply Lemma 1, which yields a solution $u_{1} \in H_{\#}^{1}(Y)$ to this equation (unique up to a constant w.r.t. y, which however may depend on x)
Note that u_{1} depends linearly on the data of equation (??) and thus can be written

$$
u_{1}(x, y)=\sum_{j=1}^{d} \frac{\partial u_{0}}{\partial x_{j}}(x) \chi_{j}(y)+U_{1}(x)
$$

A model example in electrostatics (6)

where the functions $\chi_{j}, 1 \leq j \leq d$, are solutions to the cell problems

$$
\left\{\begin{array}{l}
\operatorname{div}\left(a(y) \nabla\left(\chi_{j}(y)+y_{j}\right)\right)=0 \quad \text { in } Y \tag{6}\\
\chi_{j} \in H_{\#}^{1}(y)
\end{array}\right.
$$

and are called correctors
(or the vector-valued function $\chi=\left(\chi_{j}\right)_{1 \leq j \leq n}$)

A model example in electrostatics (7)

- Terms in ε^{0} : we rewrite them in the form

$$
-\operatorname{div}_{y}\left(a(y) \nabla_{y} u_{2}\right)=\operatorname{div}_{y}\left(a(y) \nabla_{x} u_{1}\right)+\operatorname{div}_{x}\left(a(y) \nabla_{y} u_{1}\right)+\operatorname{div}_{x}\left(a(y) \nabla_{x} u_{0}\right)+f
$$

Invoking Lemma 1 again, this problem is well-posed in $H_{\#}^{1}(Y) / \mathbb{R}$ if the RHS has zero average w.r.t. y, i.e.

$$
\int_{Y} \operatorname{div}_{y}\left(a(y) \nabla_{x} u_{1}\right)+\operatorname{div}_{x}\left(a(y) \nabla_{y} u_{1}\right)+\operatorname{div}_{x}\left(a(y) \nabla_{x} u_{0}\right)+f=0
$$

Using the fact that $a(y) \nabla_{x} u_{1}$ is Y-periodic, one sees that

$$
\int_{Y} \operatorname{div}_{y}\left(a(y) \nabla_{x} u_{1}\right)=0
$$

so that in view of the expression of u_{1}, the compatibility condition reduces to

$$
-\operatorname{div}_{x}\left(\int_{Y} a(y)[I+\nabla \chi(y)] d y \nabla_{x} u_{0}\right)=\left(\int_{Y} d y\right) f(x)=f(x)
$$

A model example in electrostatics (8)

Thus, u_{0} is the solution to a PDE of the form

$$
\left\{\begin{array}{ccl}
-\operatorname{div}\left(A^{*} \nabla u_{0}\right) & =f \quad \text { in } \Omega \tag{7}\\
u_{0} & =0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where the effective conductivity is the constant matrix

$$
A_{i j}^{*}=\int_{Y} a(y)\left[\delta_{i j}+\frac{\partial \chi_{i}}{\partial y_{j}}\right] d y
$$

A model example in electrostatics (9)

Remarks :

- The effective conductivity is generally anisotropic, albeit in the case of this example the conductivities $a_{\varepsilon}(x)$, with fast variations at the microscopic scale, are isotropic
- A^{*} is symmetric and positive definite
- A^{*} is given by the following variational principle : for any $\xi \in \mathbb{R}^{d}$

$$
A^{*} \xi \cdot \xi=\inf \left(\int_{Y} a(y)(\xi+\nabla w(y)) \cdot(\xi+\nabla w(y)) d y, \quad w \in H_{\#}^{1}(Y)\right)
$$

- Assume that $a(y)=\alpha \chi(y)+\beta(1-\chi(y))$ describes the mixture of 2 phases :

What are all the A^{*} that can be achieved by mixing the phases α and β with a given volume fraction of α ?
$=$ the problem of G-closure

A convergence result

3.2. A convergence result for periodic homogenization

Thm : (Tartar's energy proof)
Assume that the conductivity $a \in L^{\infty}(\Omega)$ is uniformly elliptic in Ω

$$
0<\alpha_{*} \leq a(y) \leq \alpha^{*}, \quad \text { a.e. in } \Omega
$$

Let $u_{*} \in H_{0}^{1}(\Omega)$ denote the solution to the homogenized problem

$$
a_{*}\left(u_{*}, v\right):=\int_{\Omega} A^{*} \nabla u_{*} \cdot \nabla v=\int_{\Omega} f v \quad \forall v \in H_{0}^{1}(\Omega)
$$

Then the solutions $u_{\varepsilon} \in H_{0}^{1}(\Omega)$ to

$$
a_{\varepsilon}\left(u_{\varepsilon}, v\right):=\int_{\Omega} a_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla v=\int_{\Omega} f v \quad \forall v \in H_{0}^{1}(\Omega)
$$

converge weakly in H^{1} to u_{*}.
In addition, the energies converge $\int_{\Omega} a_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla u_{\varepsilon} \rightarrow \int_{\Omega} A^{*} \nabla u_{*} \cdot \nabla u_{*}$

A convergence result (2)

Remark : Note that in general, the functions u_{ε} do not converge strongly to u_{*} in H^{1} (in particular their gradients only converge weakly in L^{2})

Proof :

- Step 1 : A priori estimates

Recall that $u_{\varepsilon} \in H_{0}^{1}(\Omega)$ solves

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega) \quad \int_{\Omega} a_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla v=\int_{\Omega} f v \tag{8}
\end{equation*}
$$

Choosing $v=u_{\varepsilon}$ shows that

$$
\int_{\Omega} a_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{2} \leq\|f\|_{H^{-1}}\left\|u_{\varepsilon}\right\|_{H^{1}}
$$

It follows from the ellipticity and the Poincaré inequality that for some $M>0$,

$$
\left\|u_{\varepsilon}\right\|_{H^{1}} \leq M \quad\left\|a_{\varepsilon} \nabla u_{\varepsilon}\right\|_{L^{2}} \leq M
$$

A convergence result (3)

We thus can extract a subsequence (not re-named) such that

$$
\left\{\begin{array}{llll}
u_{\varepsilon} & \rightharpoonup & u_{*} & \text { weakly in } H^{1}(\Omega) \\
\sigma_{\varepsilon}:=a_{\varepsilon} \nabla u_{\varepsilon} & \rightharpoonup & \sigma_{*} & \text { weakly in } L^{2}(\Omega)
\end{array}\right.
$$

Passing to the limit in (??) we se that σ_{*} satisfies the following equation

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega) \quad \int_{\Omega} \sigma_{*} \cdot \nabla v=\int_{\Omega} f v \tag{9}
\end{equation*}
$$

A convergence result (4)

- Step 2 : Fix $1 \leq j \leq n$ and consider the j-th corrector

$$
\left\{\begin{array}{l}
-\operatorname{div}_{y}\left(a(y) \nabla_{y}\left(\chi_{j}+y_{j}\right)\right)=0 \quad \text { in } Y \\
\chi_{j} \in H_{\#}^{1}(Y) / \mathbb{R}
\end{array}\right.
$$

Set $\quad w(y)=\chi_{j}(y)+y_{j} \quad$ and $\quad w_{\varepsilon}(x)=\varepsilon w(x / \varepsilon)$
The w_{ε} satisfies the following equation in $\mathcal{D}^{\prime}(\Omega)$

$$
\begin{equation*}
\operatorname{div}_{x}\left(a_{\varepsilon}(x) \nabla_{x} w_{\varepsilon}(x)\right)=0 \tag{10}
\end{equation*}
$$

A convergence result (5)

In addition, note that

$$
\begin{aligned}
w_{\varepsilon}(x) & =\varepsilon \chi_{j}(x / \varepsilon)+x_{j} \rightarrow x_{j} \quad \text { strongly in } L^{2} \\
\frac{\partial w_{\varepsilon}}{\partial x_{i}} & =\delta_{i j}+\left(\frac{\partial \chi_{j}}{\partial y_{i}}\right)\left(\frac{x}{\varepsilon}\right) \\
& \rightharpoonup \delta_{i j}+\mathcal{M}\left(\frac{\partial \chi_{j}}{\partial y_{i}}\right)=\delta_{i j}
\end{aligned}
$$

where $\mathcal{M}(\psi)=\int_{Y} \psi(y) d y$ and the last convergence is in L^{2} weak
Note that this last convergence results from the periodicity of $\left(\frac{\partial \chi_{j}}{\partial y_{i}}\right)\left(\frac{x}{\varepsilon}\right)$
In short: $\quad w_{\varepsilon} \rightharpoonup x_{j} \quad$ weakly in H^{1}
We would like to use w_{ε} as a test function, however is does not satisfy the BC's

A convergence result (6)

- Step 3 : Let $\phi \in \mathcal{C}_{c}^{\infty}(\Omega)$. Choosing $v=\phi w_{\varepsilon}$ in the variational formulation (??) gives

$$
\begin{aligned}
\int_{\Omega} f\left(\phi w_{\varepsilon}\right) & =\int_{\Omega} a_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla\left(\phi w_{\varepsilon}\right) \\
& =\int_{\Omega} a_{\varepsilon} \nabla u_{\varepsilon} \cdot\left[\phi \nabla w_{\varepsilon}+w_{\varepsilon} \nabla \phi\right] \\
& =\int_{\Omega} a_{\varepsilon} \nabla w_{\varepsilon} \cdot \nabla\left(\phi u_{\varepsilon}\right)-a_{\varepsilon} \nabla w_{\varepsilon} \cdot\left(u_{\varepsilon} \nabla \phi\right)+\sigma_{\varepsilon} w_{\varepsilon} \nabla \phi \\
& =\int_{\Omega}-(a \nabla w)\left(\frac{x}{\varepsilon}\right) \cdot u_{\varepsilon} \nabla \phi+\sigma_{\varepsilon} w_{\varepsilon} \nabla \phi
\end{aligned}
$$

where we have used the fact that w_{ε} satisfies (??)

A convergence result (7)

$$
\int_{\Omega} f\left(\phi w_{\varepsilon}\right)=\int_{\Omega}-(a \nabla w)\left(\frac{x}{\varepsilon}\right) \cdot u_{\varepsilon} \nabla \phi+\sigma_{\varepsilon} w_{\varepsilon} \nabla \phi
$$

Recall that $\left\{\begin{array}{llll}u_{\varepsilon}, w_{\varepsilon} & \rightharpoonup & u_{*}, x_{j} & \text { weakly in } H^{1} \\ \sigma_{\varepsilon} & & \rightharpoonup & \sigma_{*}\end{array}\right.$ weakly in L^{2} and thus strongly in L^{2}
Noting that we can take limits as $\varepsilon \rightarrow 0$ in products where one of the terms converges strongly and the other weakly, we obtain

$$
\int_{\Omega} f\left(\phi x_{j}\right)=\int_{\Omega}-\mathcal{M}(a \nabla w) \cdot u_{*} \nabla \phi+\sigma_{*} \cdot x_{j} \nabla \phi
$$

A convergence result (8)

so that recalling the equation satisfied by σ_{*} yields

$$
\begin{aligned}
& \int_{\Omega} \sigma_{*} \cdot\left(\phi \nabla x_{j}+x_{j} \nabla \phi\right) \\
& \quad=\int_{\Omega} \sigma_{*} \cdot \nabla\left(\phi x_{j}\right)=\int_{\Omega} f\left(\phi x_{j}\right) \\
& \quad=\int_{\Omega}-\mathcal{M}(a \nabla w) \cdot u_{*} \nabla \phi+\sigma_{*} \cdot x_{j} \nabla \phi
\end{aligned}
$$

which we simplify after integration by parts to get

$$
\int_{\Omega}\left(\sigma_{*} \cdot \nabla x_{j}\right) \phi=\int_{\Omega}\left(\mathcal{M}(a \nabla w) \cdot \nabla u_{*}\right) \phi
$$

A convergence result (9)

As ϕ was arbitrary, we see that

$$
\begin{aligned}
\sigma_{*} e_{j} & =\left[\int_{Y} a(y) \nabla\left(y_{j}+\chi_{j}\right) d y\right] \nabla u_{*} \\
\sigma_{*} & =\left[\int_{Y} a(y)(I+\nabla \chi) d y\right] \nabla u_{*}=A^{*} \nabla u_{*}
\end{aligned}
$$

We conclude that $u_{\varepsilon} \rightharpoonup u_{*}$ weakly in H^{1}, where u_{*} is the solution in $H_{0}^{1}(\Omega)$ to

$$
\forall v \in H_{0}^{1}(\Omega) \quad \int_{\Omega} \sigma_{*} \cdot \nabla v=\int_{\Omega} A^{*} \nabla u_{*} \cdot \nabla v=\int_{\Omega} f v
$$

A few remarks

- Essentially the same approach can be carried out for any 2nd order elliptic PDE or system of strongly elliptic PDE's

In particular one can homogenize the Helmholtz equations, the Maxwell equations, the system of elasticity.

- In the latter case, the tensor of homogenized coefficients is given in terms of a cell problem in the form : for any $\xi \in \mathbb{M}_{s}^{3}$

$$
A^{*} \xi: \xi=\inf \left\{\int_{\Omega} A(y)(\xi+e(w)):(\xi+e(w)) d y, \quad w \in H_{\#}^{1}\left(Y, \mathbf{R}^{3}\right)\right\}
$$

where $A(y)$ is the microscopic tensor of Lamé coefficients

A few remarks (3)

- Homogenization can be generalized to non periodic settings : quasi-periodicity, G and H - convergence (De Giorgi, Murat-Tartar) and to other notions of variational convergence (Γ-convergence)

Def : A sequence of fields $A_{\varepsilon} \mathrm{H}$-converges to a field A_{*} if for any $f \in V^{\prime}$, the solutions $u_{\varepsilon} \in V$ to

$$
\left.\forall v \in V \quad \int_{\Omega} A_{\varepsilon} \nabla u_{\varepsilon} \cdot \nabla v=<f, v\right\rangle
$$

converge weakly in V to the solution $u_{*} \in V$ of

$$
\forall v \in V \quad \int_{\Omega} A_{*} \nabla u_{*} \cdot \nabla v=\langle f, v\rangle
$$

A celebrated theorem of Tartar's shows that any uniformly elliptic and uniformly bounded sequence of fields A_{ε} has a H -converging subsequence

A few remarks (3)

- Homogenization has a local character : a result of Tartar (-Kohn-Dal Maso) states that if A_{*} is a field that can be obtained as the H-limit of mixtures of 2 phases, then for a.e. $x \in \Omega$ the tensor $A_{*}(x)$ can be constructed by periodic homogenization
- Extensions exist to degenerate cases : perforated media, porous media-Darcy law, assemblages of thin structures, high contrast coefficients, random coefficients...
- There exist a rich and vast body of work on homogenization : homogenization via Floquet-Bloch expansions, 2-scale convergence, homogenization of eigenvalue problems, of rough boundaries, homogenization in the case of dilute phases,...

A few remarks (4)

- The above proof is due to Tartar, who had the idea to use oscillating test functions in the variational formulation for the u_{ε} 's to compensate for the oscillating nature of the latter

This has lead to the theory of compensated compactness and to the notion of 2-scale convergence

Functional analysis (1)

The previous example, where the objective functional involes the compliance shows that

- a sequence of admissible designs $\left(\chi_{n}\right) \subset L^{\infty}(\Omega,\{0,1\})$ is naturally uniformly bounded
- a subsequence naturally converges to some density $\theta \in L^{\infty}(\Omega,[0,1])$ in the weak-* topology
- the associated fields u_{n} are naturally bounded in $H^{1}(\Omega)$ and a subsequence converges to some $u_{*} \in H^{1}(\Omega)$ for the weak topology
- so the question is: what do the energies $\int_{\Omega} A\left(\chi_{n}\right) \nabla u_{n} \cdot \nabla u_{n}$ converge to ?

Functional analysis (2)

Def : Let E be a Banach space with norm $\|\cdot\|_{E}$, and E^{\prime} its dual

- The sequence $\left(f_{n}\right)_{n} \subset E$ converges strongly to $f \in E$ if

$$
\left\|f_{n}-f\right\|_{E} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

- The sequence $\left(f_{n}\right)_{n} \subset E$ converges weakly to $f \in E$ if

$$
\forall \varphi \in E^{\prime}, \quad\left\langle f_{n}, \varphi\right\rangle_{E, E^{\prime}} \rightarrow\left\langle f_{n}, \varphi\right\rangle_{E, E^{\prime}} \quad \text { as } n \rightarrow \infty
$$

We write $f_{n} \rightharpoonup f$

- The sequence $\left(\varphi_{n}\right)_{n} \subset E^{\prime}$ converges weakly-* to $\varphi \in E^{\prime}$ if

$$
\forall f \in E, \quad<f, \varphi_{n}>_{E, E^{\prime}} \rightarrow\langle f, \varphi\rangle_{E, E^{\prime}} \quad \text { as } n \rightarrow \infty
$$

We write $\varphi_{n} \rightharpoonup \varphi$ as well

Functional analysis (3)

Weak topologies express some form of convergence 'in average'
We are mostly interested in the cases when $E=L^{p}(\Omega)$ or $E=W^{1, p}(\Omega), 1 \leq p \leq \infty$

Functional analysis (4)

- For $1<p<\infty$, the dual space of $L^{p}(\Omega)$ is $\left(L^{p}(\Omega)\right)^{\prime}=L^{q}(\Omega)$ with $\frac{1}{p}+\frac{1}{q}=1$

$$
f_{n} \rightharpoonup f \quad \text { weakly in } L^{p} \quad \Leftrightarrow \quad \int_{\Omega} f_{n} \varphi \rightarrow \int_{\Omega} f \varphi \quad \forall \varphi \in L^{q}(\Omega)
$$

- When $p=1, L^{1}(\Omega)^{\prime}=L^{\infty}(\Omega)$

$$
f_{n} \rightharpoonup f \quad \text { weakly in } L^{1} \quad \Leftrightarrow \quad \int_{\Omega} f_{n} \varphi \rightarrow \int_{\Omega} f \varphi \quad \forall \varphi \in^{\infty}(\Omega)
$$

- When $p=\infty,\left(L^{\infty}(\Omega)\right)^{\prime}$ is strictly larger than $L^{1}(\Omega)$ and can be identified as the space of Radon measures

So weak-* convergence matters in this case

$$
f_{n} \rightharpoonup f \quad \text { weakly-* in } L^{\infty} \quad \Leftrightarrow \quad \int_{\Omega} f_{n} \varphi \rightarrow \int_{\Omega} f \varphi \quad \forall \varphi \in{ }^{1}(\Omega)
$$

Functional analysis (5)

Thm :

1. If $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega), 1 \leq p \leq \infty$ there exists $h \in L^{p}(\Omega)$ and a subsequence such that

$$
u_{n} \rightarrow u(x) \text { a.e. } x \in \Omega, \quad\left|u_{n}(x)\right| \leq h(x) \text { a.e. } x \in \Omega
$$

2. If $\left(u_{n}\right)_{n}$ is bounded in $L^{p}(\Omega)$ and $u_{n}(x) \rightarrow u(x)$ a.e. $x \in \Omega$, then $u_{n} \rightarrow u$ strongly in $L^{r}(\Omega)$ for any $1 \leq r<p$
3. If $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega)$, then

$$
u_{n} \quad \rightharpoonup \quad u \quad \text { weakly in } L^{P}(\Omega)
$$

Functional analysis (6)

4. If $u_{n} \rightharpoonup u$ weakly in $L^{p}(\Omega), 1 \leq p<\infty$, then u_{n} is bounded and

$$
\|u\|_{L^{p}} \leq \liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{p}}
$$

5. If $u_{n} \rightharpoonup u$ weakly in $L^{p}(\Omega), 1 \leq p<\infty$, and $v_{n} \rightarrow v$ strongly in $\left(L^{p}\right)^{\prime}(\Omega)$ then

$$
\int_{\Omega} u_{n} v_{n} \rightarrow \int_{\Omega} u v
$$

However if $u_{n} \rightharpoonup u$ weakly, one does not have $f\left(u_{n}\right) \rightharpoonup f(u)$ when f is a nonlinear expression

Functional analysis (7)

If $\operatorname{dim}(E)=\infty$, the weak topology contains less open (and closed) sets than the strong topology

However, it contains more compact sets

Thm : (Banach-Alaoglu)
The unit ball $B_{E^{\prime}}=\left\{\varphi \in E^{\prime}\right.$, s.t. $\left.\|\varphi\|_{E^{\prime}} \leq 1\right\}$ is compact for the weak-* topology

Consequences for the L^{p} spaces

- When $1<p<\infty$, any bounded sequence in $L^{p}(\Omega)$ contains a weakly convergent subsequence
- When $p=\infty$, any bounded sequence in $L^{\infty}(\Omega)$ contains a subsequence that converges weakly-*

Functional analysis (8)

Closed sets for the weak topology are also closed for the strong topology
The converse is false in general, except for convex sets
Thm : Let $C \subset E$ be a convex set. Then C is closed for the weak topology if and only if C is closed for the strong topology

Thm : Let $J: E \rightarrow$] $-\infty,+\infty$] be a convex function which is continuous (respectively Isc) for the strong topology

Then it is continous (rep. Isc) for the weak topology
In particular (in the Isc case)

$$
f_{n} \rightharpoonup f \Rightarrow J(f) \leq \liminf _{n} J\left(f_{n}\right)
$$

Functional analysis (9)

Prop : An important exemple for shape optimization

Let Ω be a bounded open set in \mathbb{R}^{d} and let $Y=[0,1]^{d}$ denote the unit cube in \mathbb{R}^{d}
Let $\chi \in L^{\infty}(Y)$ and extend it as a Y-periodic function to the whole \mathbb{R}^{d}
Define for $n \geq 1 \quad \chi_{n}(x)=\chi(n x), \quad x \in \Omega$
Then $\quad \chi_{n} \rightharpoonup \theta \quad$ weakly-* in $L^{\infty} \Omega$, where θ is the constant function

$$
\theta=\int_{Y} \chi(y) d y
$$

Functional analysis (10)

Proof : in the 1-d case
Let $\Omega=] a, b\left[\right.$ be a bounded interval in $\mathbb{R}, Y=[0,1]$ and $\chi(x) \in L^{\infty}([0,1])$ extended by periodicity in \mathbb{R}
We have to show that for any $\varphi \in L^{1}(\Omega)$

$$
\int_{a}^{b} \chi(n x) \varphi(x) d x \quad \rightarrow \quad \theta \int_{a}^{b} \varphi(y) d y
$$

By density, it suffices to show this for functions φ of the form $\quad \varphi(x)=1_{]_{\alpha, \beta]}}(x)$
Let $n \geq 1$ and write $\quad \alpha=[n \alpha] / n+r_{\alpha}, \quad \beta=[n \beta] / n+r_{\beta} \quad, 0 \leq r_{\alpha}, r_{\beta}<1 / n$

Functional analysis (11)

Then we can write for n large enough

$$
\begin{aligned}
& \int_{a}^{b} \chi(n x) 1_{] \alpha, \beta[}(x) d x=\int_{[n \alpha] / n+r_{\alpha}}^{[n \beta] / n+r_{\beta}} \chi(n x) d x \\
& \quad=\int_{[n \alpha] / n+r_{\alpha}}^{([n \alpha]+1) / n} \chi(n x) d x+\sum_{j=[n \alpha]+1}^{[n \beta]} \int_{j / n}^{(j+1) / n} \chi(n x) d x+\int_{[n \beta] / n}^{[n \beta] / n+r_{\beta}} \chi(n x) d x \\
& \quad=O\left(\frac{\|\chi\|_{L \infty}}{n}\right)+\sum_{j=[n \alpha]+1}^{[n \beta]} \frac{1}{n} \int_{0}^{1} \chi(y) d y \\
& \quad \rightarrow\left(\int_{0}^{1} \chi(y) d y\right)(\beta-\alpha)=\theta \int_{a}^{b} 1_{] \alpha, \beta[}(x) d x
\end{aligned}
$$

Bibliography

Ref．for today＇s lecture I

［All2］G．Allaire，Shape optimization by the homogenization method，Springer Verlag，（2012）．
（國 A．Bensoussan，J．L．Lions，G．Papanicolaou，Asymptotic Analysis for Periodic Structures North－Holland，Amsterdam（1978）．

曷
H．Brezis，Functional Analysis，Sobolev Spaces and Partial Differential Equations，Springer Verlag，（2011）．

國 B．Dacorogna，Weak Continuity and Weak Lower Semicontinuity of Non－Linear Functionals，Springer Lecture Notes in Mathematics，vol． 922 （1982）．

画 G．Milton，The theory of composites，Cambridge University Press（2001）．

