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Part V

Topology optimization
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Homogenization (1)

3. Homogenization

Assume, we want to find the optimal distribution of a given volume of a given
material with Hooke’s law A, in a given set Ω ⊂ R3 so as to minimize the compliance
under given loading conditions

Find χ ∈ L∞(Ω, {0, 1}) which minimizes

J(χ) =

∫
Ω

Ae(uχ) : e(uχ) + λ

∫
Ω

χ(x)

where uχ is the solution to
div(Ae(uχ)) = 0 in Ω ∩ {χ = 1}

Ae(uχ)n = g on ΓN ⊂ ∂Ω

uχ = 0 on ΓD ⊂ ∂Ω
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Homogenization (2)

To make the problem less singular, one could replace voids in Ω by a very soft
material, with Hooke’s law ηA, where η << 1 is a fixed parameter

The material coefficients then take the form

Aχ(x) = χ(x)A + (1− χ(x)) ηA

and the previous PDE is set in the whole of Ω

The optimization problem then becomes : Find χ ∈ L∞(Ω, {0, 1}) such that χ
minimizes

J(χ) =

∫
Ω

Aχ(x)e(uχ) : e(uχ) + λ

∫
Ω

χ(x)

where uχ is the solution to
div(Aχ(x)e(uχ)) = 0 in Ω

Aχe(uχ)n = g on ΓN ⊂ ∂Ω

uχ = 0 on ΓD ⊂ ∂Ω

(1)
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Homogenization (3)

The shape optimization problem then becomes one of finding an optimal distribution
of a mixture of 2 phases, with Lamé coefficients A and ηA

One strategy may consist in filling in the whole of Ω with material A and then
replacing this material by the weak material ηA at places where the former is least
necessary, to match the volume constraint while optimizing the overall rigidity

One could remove material A in big chunks or by drilling many tiny holes

Removing many tiny holes often proves more advantageous. It allows to reduce
weight while maintaning some structural rigidity

When the holes become infinitesimally small, the structure effectively behaves like a
composite material
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Homogenization (4)

In the direct method of the calculus of variation, existence of minimizers was shown
by studying the behavior of minimizing sequences

In the context of a mixture of 2 phases, studying minimizing sequences raises the
following questions :

1. Admissible designs χn are characteristic functions, thus any minimizing
sequence is uniformly bounded in L∞ : if it converges, its limit θ∗ is likely to be
a density

2. The associated displacements un are bounded in H1(Ω). By weak compactness
a subsequence converges to a limit u∗. Does u∗ satisfy a PDE similar to (??) ?
What would be the associated (effective) Hooke’s law A∗ ? What is the
relation between θ∗ and A∗ ?

3. Is there a relation between limn J(χn) and u∗,A
∗ ?
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Homogenization (5)

Homogenization is a mathematical theory of composite materials : it helps answer
the above questions

Historically, the first works on effective modulus theory may date back to Poisson
(1781-1840)

The term homogenization is due to I. Babuška, and the variational theory was
essentially developped by F. Murat and L. Tartar

Here, we are only concerned with periodic homogenization of 2nd order elliptic PDE’s
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A model example in electrostatics (1)

3.1. A formal expansion

Let Ω be a smooth bounded open set in Rd and let Y = (0, 1)d ⊂ Rd

Let a(y) be a Y -periodic function in Rd such that

0 < α∗ ≤ a(y) ≤ α∗, a.e. y ∈ Y

and set aε(x) = a(x/ε) for x ∈ Ω and ε = 1/n > 0
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A model example in electrostatics (2)

Given f ∈ L2(Ω), we consider the conduction equation{ −div(aε(x)∇uε(x)) = f in Ω

uε(x) = 0, on ∂Ω
(2)

which has a unique solution uε ∈ H1
0 (Ω)

What does uε look like when ε→ 0 ?
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A model example in electrostatics (2)

A formal expansion

Because of the periodic character of the coefficient aε, it is tempting to look for uε in
the form

uε(x) = u0(x , x/ε) + εu1(x , x/ε) + ε2u2(x , x/ε) + · · · (3)

where the functions uj(x , y) are Y -periodic functions of the fast variable y = x/ε

Injecting the ansatz (??) in the PDE, using that

∂

∂xj
uε(x) =

∑
p

εp
(∂up
∂xj

(x , x/ε) +
1
ε

∂up
∂yj

(x , x/ε)
)

and regrouping terms in powers of ε, one obtains (denoting y = x/e) :
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A model example in electrostatics (3)

div(aε(x)∇uε(x))

= (divx +
1
ε
divy )

(
a(y)(∇x +

1
ε
∇y )

)
uε

=
1
ε2

divy (a(y)∇yu0)

+
1
ε

(
divy (a(y)∇yu1) + divy (a(y)∇xu0) + divx(a(y)∇yu0)

)
+ε0

(
divy (a(y)∇yu2) + divy (a(y)∇xu1) + divx(a(y)∇yu1) + divx(a(y)∇xu0)

)
+ε . . .

= −ε0f
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A model example in electrostatics (4)

Identifying the powers of ε yields

• Terms in ε−2 :

divy (a(y)∇yu0(x , y)) = 0 (4)

which we view as an equation for the Y -periodic function u0(x , ·), considering x as a
parameter

Let H1
#(Y ) denote the closure of the space of Y -periodic C∞ functions for

the H1 norm, and let g ∈ L2(Y )

Under our hypotheses on the coefficient a, we have

Lemma 1 : The variational problem : find v ∈ H1
#(Y ) such that

−div(a(y)∇yv(y)) = g , in Y

has a unique solution in H1
#(Y )/R provided

∫
Y

g(y) dy = 0
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A model example in electrostatics (5)

The Lemma thus shows that the first term u0(x , y) ∼ u0(x) is independent of y

• Terms in ε−1 : (
divy (a(y)∇yu1) + divy (a(y)∇xu0) + divx(a(y)∇yu0)

)
=

(
divy (a(y)∇yu1) + divy (a(y)∇xu0)

)
= 0

which we rewrite as and equation for the y -periodic function u1(x , ·)

− divy (a(y)∇yu1) =
∑
j

∂u0

∂xj
(x) div(a(y)ej) in Y (5)

The periodic character of a shows that one can apply Lemma 1, which yields a
solution u1 ∈ H1

#(Y ) to this equation (unique up to a constant w.r.t. y, which
however may depend on x)

Note that u1 depends linearly on the data of equation (??) and thus can be written

u1(x , y) =
d∑

j=1

∂u0

∂xj
(x)χj(y) + U1(x)
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A model example in electrostatics (6)

where the functions χj , 1 ≤ j ≤ d , are solutions to the cell problems div
(
a(y)∇(χj(y) + yj)

)
= 0 in Y

χj ∈ H1
#(y)

(6)

and are called correctors

(or the vector-valued function χ = (χj)1≤j≤n)
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A model example in electrostatics (7)

• Terms in ε0 : we rewrite them in the form

−divy (a(y)∇yu2) = divy (a(y)∇xu1) + divx(a(y)∇yu1) + divx(a(y)∇xu0) + f

Invoking Lemma 1 again, this problem is well-posed in H1
#(Y )/R if the RHS has zero

average w.r.t. y, i.e.∫
Y

divy (a(y)∇xu1) + divx(a(y)∇yu1) + divx(a(y)∇xu0) + f = 0

Using the fact that a(y)∇xu1 is Y -periodic, one sees that∫
Y

divy (a(y)∇xu1) = 0

so that in view of the expression of u1, the compatibility condition reduces to

−divx

(∫
Y

a(y)
[
I +∇χ(y)

]
dy ∇xu0

)
=

(∫
Y

dy
)
f (x) = f (x)
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A model example in electrostatics (8)

Thus, u0 is the solution to a PDE of the form{ −div(A∗∇u0) = f in Ω

u0 = 0 on ∂Ω
(7)

where the effective conductivity is the constant matrix

A∗ij =

∫
Y

a(y)
[
δij +

∂χi

∂yj

]
dy
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A model example in electrostatics (9)

Remarks :

- The effective conductivity is generally anisotropic, albeit in the case of this
example the conductivities aε(x), with fast variations at the microscopic scale,
are isotropic

- A∗ is symmetric and positive definite

- A∗ is given by the following variational principle : for any ξ ∈ Rd

A∗ξ · ξ = inf
(∫

Y

a(y)(ξ +∇w(y)) · (ξ +∇w(y)) dy , w ∈ H1
#(Y )

)

- Assume that a(y) = αχ(y) + β(1− χ(y)) describes the mixture of 2 phases :

What are all the A∗ that can be achieved by mixing the phases α and β with a
given volume fraction of α ?

= the problem of G -closure
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A convergence result

3.2. A convergence result for periodic homogenization

Thm : (Tartar’s energy proof)

Assume that the conductivity a ∈ L∞(Ω) is uniformly elliptic in Ω

0 < α∗ ≤ a(y) ≤ α∗, a.e. in Ω

Let u∗ ∈ H1
0 (Ω) denote the solution to the homogenized problem

a∗(u∗, v) :=

∫
Ω

A∗∇u∗ · ∇v =

∫
Ω

fv ∀ v ∈ H1
0 (Ω)

Then the solutions uε ∈ H1
0 (Ω) to

aε(uε, v) :=

∫
Ω

aε∇uε · ∇v =

∫
Ω

fv ∀ v ∈ H1
0 (Ω)

converge weakly in H1 to u∗.

In addition, the energies converge
∫

Ω

aε∇uε · ∇uε →
∫

Ω

A∗∇u∗ · ∇u∗
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A convergence result (2)

Remark : Note that in general, the functions uε do not converge strongly to u∗ in H1

(in particular their gradients only converge weakly in L2)

Proof :
• Step 1 : A priori estimates

Recall that uε ∈ H1
0 (Ω) solves

∀ v ∈ H1
0 (Ω)

∫
Ω

aε∇uε · ∇v =

∫
Ω

fv (8)

Choosing v = uε shows that∫
Ω

aε|∇uε|2 ≤ ||f ||H−1 ||uε||H1

It follows from the ellipticity and the Poincaré inequality that for some M > 0,

||uε||H1 ≤ M ||aε∇uε||L2 ≤ M
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A convergence result (3)

We thus can extract a subsequence (not re-named) such that{
uε ⇀ u∗ weakly in H1(Ω)

σε := aε∇uε ⇀ σ∗ weakly in L2(Ω)

Passing to the limit in (??) we se that σ∗ satisfies the following equation

∀ v ∈ H1
0 (Ω)

∫
Ω

σ∗ · ∇v =

∫
Ω

fv (9)
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A convergence result (4)

• Step 2 : Fix 1 ≤ j ≤ n and consider the j-th corrector −divy

(
a(y)∇y (χj + yj)

)
= 0 in Y

χj ∈ H1
#(Y )/R

Set w(y) = χj(y) + yj and wε(x) = εw(x/ε)

The wε satisfies the following equation in D′(Ω)

divx

(
aε(x)∇xwε(x)

)
= 0 (10)

21 / 43



A convergence result (5)

In addition, note that

wε(x) = εχj(x/ε) + xj → xj strongly in L2

∂wε
∂xi

= δij +
(∂χj

∂yi

)(x
ε

)
⇀ δij +M

(∂χj

∂yi

)
= δij

whereM(ψ) =

∫
Y

ψ(y) dy and the last convergence is in L2 weak

Note that this last convergence results from the periodicity of
(
∂χj

∂yi

)(
x
ε

)
In short : wε ⇀ xj weakly in H1

We would like to use wε as a test function, however is does not satisfy the BC’s
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A convergence result (6)

• Step 3 : Let φ ∈ C∞c (Ω). Choosing v = φwε in the variational formulation (??)
gives ∫

Ω

f
(
φwε

)
=

∫
Ω

aε∇uε · ∇(φwε)

=

∫
Ω

aε∇uε ·
[
φ∇wε + wε∇φ

]

=

∫
Ω

aε∇wε · ∇
(
φuε
)
− aε∇wε ·

(
uε∇φ

)
+ σεwε∇φ

=

∫
Ω

−
(
a∇w

)(x
ε

)
· uε∇φ+ σεwε∇φ

where we have used the fact that wε satisfies (??)
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A convergence result (7)

∫
Ω

f
(
φwε

)
=

∫
Ω

−
(
a∇w

)(x
ε

)
· uε∇φ+ σεwε∇φ

Recall that

{
uε,wε ⇀ u∗, xj weakly in H1 and thus strongly in L2

σε ⇀ σ∗ weakly in L2

Noting that we can take limits as ε→ 0 in products where one of the terms
converges strongly and the other weakly, we obtain

∫
Ω

f
(
φxj
)

=

∫
Ω

−M
(
a∇w

)
· u∗∇φ+ σ∗ · xj∇φ
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A convergence result (8)

so that recalling the equation satisfied by σ∗ yields∫
Ω

σ∗ ·
(
φ∇xj + xj∇φ

)

=

∫
Ω

σ∗ · ∇
(
φxj
)

=

∫
Ω

f
(
φxj
)

=

∫
Ω

−M
(
a∇w

)
· u∗∇φ+ σ∗ · xj∇φ

which we simplify after integration by parts to get∫
Ω

(
σ∗ · ∇xj

)
φ =

∫
Ω

(
M
(
a∇w

)
· ∇u∗

)
φ
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A convergence result (9)

As φ was arbitrary, we see that

σ∗ej =
[ ∫

Y

a(y)∇(yj + χj) dy
]
∇u∗

σ∗ =
[ ∫

Y

a(y)
(
I +∇χ

)
dy
]
∇u∗ = A∗∇u∗

We conclude that uε ⇀ u∗ weakly in H1, where u∗ is the solution in H1
0 (Ω) to

∀ v ∈ H1
0 (Ω)

∫
Ω

σ∗ · ∇v =

∫
Ω

A∗∇u∗ · ∇v =

∫
Ω

fv
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A few remarks

- Essentially the same approach can be carried out for any 2nd order elliptic PDE
or system of strongly elliptic PDE’s

In particular one can homogenize the Helmholtz equations, the Maxwell
equations, the system of elasticity.

- In the latter case, the tensor of homogenized coefficients is given in terms of a
cell problem in the form : for any ξ ∈ M3

s

A∗ξ : ξ = inf

{∫
Ω

A(y)(ξ + e(w)) : (ξ + e(w)) dy , w ∈ H1
#(Y ,R3)

}
where A(y) is the microscopic tensor of Lamé coefficients
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A few remarks (3)

- Homogenization can be generalized to non periodic settings : quasi-periodicity,
G and H- convergence (De Giorgi, Murat-Tartar) and to other notions of
variational convergence (Γ-convergence)

Def : A sequence of fields Aε H-converges to a field A∗ if for any f ∈ V ′, the
solutions uε ∈ V to

∀ v ∈ V

∫
Ω

Aε∇uε · ∇v = < f , v >

converge weakly in V to the solution u∗ ∈ V of

∀ v ∈ V

∫
Ω

A∗∇u∗ · ∇v = < f , v >

A celebrated theorem of Tartar’s shows that any uniformly elliptic and
uniformly bounded sequence of fields Aε has a H-converging subsequence
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A few remarks (3)

- Homogenization has a local character : a result of Tartar (-Kohn-Dal Maso)
states that if A∗ is a field that can be obtained as the H-limit of mixtures of 2
phases, then for a.e.x ∈ Ω the tensor A∗(x) can be constructed by periodic
homogenization

- Extensions exist to degenerate cases : perforated media, porous media-Darcy
law, assemblages of thin structures, high contrast coefficients, random
coefficients...

- There exist a rich and vast body of work on homogenization : homogenization
via Floquet-Bloch expansions, 2-scale convergence, homogenization of
eigenvalue problems, of rough boundaries, homogenization in the case of dilute
phases,...
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A few remarks (4)

- The above proof is due to Tartar, who had the idea to use oscillating test
functions in the variational formulation for the uε’s to compensate for the
oscillating nature of the latter

This has lead to the theory of compensated compactness and to the notion of
2-scale convergence
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Functional analysis (1)

The previous example, where the objective functional involes the compliance shows
that

- a sequence of admissible designs (χn) ⊂ L∞(Ω, {0, 1}) is naturally uniformly
bounded

- a subsequence naturally converges to some density θ ∈ L∞(Ω, [0, 1]) in the
weak-* topology

- the associated fields un are naturally bounded in H1(Ω) and a subsequence
converges to some u∗ ∈ H1(Ω) for the weak topology

- so the question is : what do the energies
∫

Ω

A(χn)∇un · ∇un converge to ?
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Functional analysis (2)

Def : Let E be a Banach space with norm || · ||E , and E ′ its dual

- The sequence (fn)n ⊂ E converges strongly to f ∈ E if

||fn − f ||E → 0 as n→∞

- The sequence (fn)n ⊂ E converges weakly to f ∈ E if

∀ ϕ ∈ E ′, < fn, ϕ >E ,E ′ → < fn, ϕ >E ,E ′ as n→∞

We write fn ⇀ f

- The sequence (ϕn)n ⊂ E ′ converges weakly-* to ϕ ∈ E ′ if

∀ f ∈ E , < f , ϕn >E ,E ′ → < f , ϕ >E ,E ′ as n→∞

We write ϕn ⇀ ϕ as well
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Functional analysis (3)

Weak topologies express some form of convergence ‘in average’

We are mostly interested in the cases when E = Lp(Ω) or E = W 1,p(Ω), 1 ≤ p ≤ ∞
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Functional analysis (4)

- For 1 < p <∞, the dual space of Lp(Ω) is (Lp(Ω))′ = Lq(Ω) with 1
p

+ 1
q

= 1

fn ⇀ f weakly in Lp ⇔
∫

Ω

fnϕ→
∫

Ω

f ϕ ∀ ϕ ∈ Lq(Ω)

- When p = 1, L1(Ω)′ = L∞(Ω)

fn ⇀ f weakly in L1 ⇔
∫

Ω

fnϕ→
∫

Ω

f ϕ ∀ ϕ ∈ ∞(Ω)

- When p =∞, (L∞(Ω))′ is strictly larger than L1(Ω) and can be identified as
the space of Radon measures

So weak-* convergence matters in this case

fn ⇀ f weakly-* in L∞ ⇔
∫

Ω

fnϕ→
∫

Ω

f ϕ ∀ ϕ ∈ 1(Ω)
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Functional analysis (5)

Thm :

1. If un → u strongly in Lp(Ω), 1 ≤ p ≤ ∞ there exists h ∈ Lp(Ω) and a
subsequence such that

un → u(x) a.e.x ∈ Ω, |un(x)| ≤ h(x) a.e.x ∈ Ω

2. If (un)n is bounded in Lp(Ω) and un(x)→ u(x) a.e. x ∈ Ω, then un → u
strongly in Lr (Ω) for any 1 ≤ r < p

3. If un → u strongly in Lp(Ω), then

un ⇀ u weakly in Lp(Ω)
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Functional analysis (6)

4. If un ⇀ u weakly in Lp(Ω), 1 ≤ p <∞, then un is bounded and

||u||Lp ≤ lim inf
n→∞

||un||Lp

5. If un ⇀ u weakly in Lp(Ω), 1 ≤ p <∞, and vn → v strongly in (Lp)′(Ω) then∫
Ω

unvn →
∫

Ω

uv

However if un ⇀ u weakly, one does not have f (un) ⇀ f (u) when f is a nonlinear
expression
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Functional analysis (7)

If dim(E) =∞, the weak topology contains less open (and closed) sets than the
strong topology

However, it contains more compact sets

Thm : (Banach-Alaoglu)

The unit ball BE ′ = {ϕ ∈ E ′, s.t. ||ϕ||E ′ ≤ 1} is compact for the weak-* topology

Consequences for the Lp spaces

- When 1 < p <∞, any bounded sequence in Lp(Ω) contains a weakly
convergent subsequence

- When p =∞, any bounded sequence in L∞(Ω) contains a subsequence that
converges weakly-*
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Functional analysis (8)

Closed sets for the weak topology are also closed for the strong topology

The converse is false in general, except for convex sets

Thm : Let C ⊂ E be a convex set. Then C is closed for the weak topology if and
only if C is closed for the strong topology

Thm : Let J : E →]−∞,+∞] be a convex function which is continuous
(respectively lsc) for the strong topology

Then it is continous (rep. lsc) for the weak topology

In particular (in the lsc case)

fn ⇀ f ⇒ J(f ) ≤ lim inf
n

J(fn)
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Functional analysis (9)

Prop : An important exemple for shape optimization

Let Ω be a bounded open set in Rd and let Y = [0, 1]d denote the unit cube in Rd

Let χ ∈ L∞(Y ) and extend it as a Y−periodic function to the whole Rd

Define for n ≥ 1 χn(x) = χ(nx), x ∈ Ω

Then χn ⇀ θ weakly-* in L∞Ω, where θ is the constant function

θ =

∫
Y

χ(y) dy
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Functional analysis (10)

Proof : in the 1-d case

Let Ω =]a, b[ be a bounded interval in R, Y = [0, 1] and χ(x) ∈ L∞([0, 1]) extended
by periodicity in R

We have to show that for any ϕ ∈ L1(Ω)∫ b

a

χ(nx)ϕ(x) dx → θ

∫ b

a

ϕ(y) dy

By density, it suffices to show this for functions ϕ of the form ϕ(x) = 1]α,β[(x)

Let n ≥ 1 and write α = [nα]/n + rα, β = [nβ]/n + rβ , 0 ≤ rα, rβ < 1/n
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Functional analysis (11)

Then we can write for n large enough∫ b

a

χ(nx) 1]α,β[(x) dx =

∫ [nβ]/n+rβ

[nα]/n+rα

χ(nx) dx

=

∫ ([nα]+1)/n

[nα]/n+rα

χ(nx) dx +

[nβ]∑
j=[nα]+1

∫ (j+1)/n

j/n

χ(nx) dx +

∫ [nβ]/n+rβ

[nβ]/n

χ(nx) dx

= O(
||χ||L∞

n
) +

[nβ]∑
j=[nα]+1

1
n

∫ 1

0
χ(y) dy

→
(∫ 1

0
χ(y) dy

)
(β − α) = θ

∫ b

a

1]α,β[(x) dx
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