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Homogenization and non existence of optimal design (1)

e Let us consider the following shape optimization prob-
lem, in the two-phase conductivity setting:

Sr;ncng(Q), where J(Q) := /DJ(UQ) dx, (50)
and j : R — R is a given, smooth function such that:
i(w)] < C(L+[uf?),
U ()l < C(1+ul) and |j"(u)] < C.

e The temperature ug € Hg(D) is the solution to:

—div(y@Vuq) = f inD,
ug = 0 ondD, D e

where the conductivity ~q is of the form:
Yo(x) = a+ xo(x)(8 —«), xe€D.

e According to the ersatz material trick, this approxi-
mates the one-phase and void problem as a — 0.
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Homogenization and non existence of optimal design (Il)

e The shape optimization problem (50) does not have a solution in general.

e The main reason is the homogenization phenomenon: there exist minimizing
sequences of shapes Q" i.e.

n— oo

J(S0) “=5 inf I(Q)

but Q, develops smaller and smaller features as n — oo, and has no limit as a
“true” shape.
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e One remedy is relaxation: enlarge the set of admissible designs so that it contain
the "limiting” or “effective behaviors” of such minimizing sequences.
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A wee bit of history

e The first investigations about effective modulus theory in averaged media dates
back to Poisson (1781-1840).

e The term “homogenization” was coined by |. Babuska.

e The variational theory of homogenization was developed by F. Murat and L. Tartar.

e An introductory reference to this theory is Chapter 7 in ; see for a more
exhaustive and technical presentation.
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Part IV

Mathematical
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© Prologue: the direct method in the calculus of variations
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The direct method in the calculus of variations (1)

Let (V,]| - ||) be a Banach space. We consider the minimization problem:
J:V — R is an objective function;

r‘peigJ(v), where { (V)

A C V is a set of admissible points.

Assume that:
@ V is a reflexive Banach space;
@ The function J “tends to infinity at infinity”:
YM >0, 3C >0 s.t. ||v|]| > C= J(v) > M.
® The function J is sequentially lower semi-continuous for the weak convergence:

If vio =222 v weakly, then J(v) < liminf J(v,).
n—o0o

@ The set A is closed for the weak topology of V, i.e. for any sequence v, € A,

v,,'H—oo>vweakIyin V=veA.

Then the problem (V1) has a minimum point.
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Proof:
e Let v, be a minimizing sequence for J(v):

n— oo

va € A, and J(v,) — im;J(v).
ve

Such a sequence exists by the very definition of the infimum.

e The sequence v, is bounded. Indeed, if it were not the case, there would exist a

subsequence v,, such that:
k— o0

[|Vag || —— 0.
Since J(v) “tends to infinity at infinity”, this would imply that:
J(vn,) 220, o,
in contradiction with the fact that v, is a minimizing sequence for J(v).

e Hence, since V is reflexive, there exists a subsequence v,, and v € V such that:

k— .
Vi, —25 v weakly in V.
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The direct method in the calculus of variations (I11)

e Since the set A is weakly closed, the limit v belongs to A.
e From the sequential lower semi-continuity of J(v), it follows:
J(v) < Ilknlglf“l(v"k) = Jrglqu(v),

and so the element v satisfies

J(v) = viEE\J(V)'
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In practice, it often happens that:
e The function J(v) fails to be lower semi-continuous;
e The admissible set A fails to be closed for the weak convergence in V.

This reflects the fact that minimizing sequences v, for J(v) “go to nowhere”, i.e. A
lacks compactness.

A natural remedy is relaxation, which consists in enlarging the set A as:
A* = {v € V is the weak * limit of some sequence v, € A},

and correspondingly extending the definition of J(v) to v € A™:
J*(v) = inf {Iim inf J(vi), v —5 v weakly} ,

with the hope to retrieve compactness.
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In typical shape optimization problems of the form
min J(Q2
Q€Uyq (),
the set of shapes is not closed in any possible sense, i.e.

Minimizing sequences of shapes converge (in an adapted sense) to “something of a
different nature.”

This raises the following questions.
e What is the set of relaxed designs?
e How can we characterize this set?
e How can we relate the relaxed problem to the original one?

e How can we take advantage of this relaxation procedure in the context of
topology optimization?
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e Let D be the unit square in R?, and n: 9D — R? be the unit normal vector to dD.

e For a given subset Q C D, we consider the unique solution uq € H'(D)/R (that
is, up to constants) to:

—div(7eVug) =0 in D, g inQ
“maai,? oy on 9D, where o(x) = { a inD\Q,

O<a<fBandn =n-e.

i

- W
€1
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We consider the shape optimization problem:
Jmin J(@) sie. Vol(2) =51D], (D] = 1), (=)
where
e The set U,q of admissible shapes is made of all measurable subsets Q C D;
e 1€ (0,1) is an imposed volume fraction for £;

e The objective function J(R2) is the compliance of Q:

J(Q):/ niug dS:/’yQVuQ~VUQ dx.
oD D

The shape optimization problem (50) does not have a global minimum point.
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Let us start with a preliminary result about an alternative, “dual” expression for J(2).

The function J(Q2) rewrites:
J(Q) = mi olood
(€2) = min /D Vo 0 -odx,

where the set ¥ is defined by:
¥ :={o € *D)? divo=0inD ando-n=ny ondD}.

e See for an elementary and interesting discussion about this trick.

e The big picture behind this result is the duality theory for the Legendre
transform; see
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Proof of the lemma:

e From the Lax-Milgram theorem, it holds:

. 1
J(Q)=-2 ugmHllrgD) (5 /D’}’QVU -Vudx — /0D nu ds) ,

where ug is the unique solution (up to constants) to the minimization problem.

e Elementary fact: For any vector £ € R?, and any symmetric, positive definite 2 x 2
matrix A € R?*2,

1 1,
A E= (60 pA o),
where the maximum is uniquely attained at o = A™2¢.
e Then J(Q) rewrites
J(Q)= max min L(u,o0),
u€H(D) o €L2(D)?

where we have defined

L(u,0) = —2/DU-Vudx+/[)'y§10-0'dx+2/6Dn1uds

2/(diva)udx—2/ ua-nds+/7§la-adx+2/ niuds.
D aD D oD
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e We know from what precedes that (u, o) = (uq, oV uq) realizes the max-min: it is
therefore a saddle point for £(u, ), and so the min and max can be interchanged:

J(2)= min  max L(u,0).

o€l?(D)2 ueH1(D)

e Now, for a given o € L*(D)?, we verify that:

71 -
max L(u,0) = /D’YQ c-odx foeX,
uEH(D) +00 otherwise.

where:
g {a € [3(D)?, divo =0in D and - n= ny on aD}.
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e Indeed, if o € X, one has immediately:
L(u,0) = / vt - o dx.
D
On the other hand, if o ¢ ¥,
e Either divo does not vanish identically on D, and so

there exists ¢ € CZ°(D) such that / (dive)p dx > 0,
D

which implies:

A—+o0
L(u,0) > L(Ap,0) 22525 4o0.
x| (u,0) = L(Ap,0) +00

e Or o - n does not coincide with n; on 9D, and by the same token:
max L(u,0) = 400.
e As a result of this discussion, J(£2) has the desired expression:
J(Q) = mi ol odx.
Q) Z“éE/DVQ oo dx
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Sketch of proof of the non existence result: We proceed in three steps.

Step 1: We derive a lower bound for J().

e When Q C D has measure Vol(Q2) =
over D is:

1
Yo ::—/fmdx:(l—n)a—l—nﬁ,
1Dl Jo

e The mean value of any o € X is exactly e, as a result of the following integration
by parts, for i = 1,2:

(ﬁ/adx—el) e,—‘D‘/ - Vx;dx =
D

(0 —e1) - nxids— /(leO’)X, dx =0.
|D\ oD [D]
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We now rely on the next lemma, which follows from a straightforward calculation.

The function 5 1
Z:(0,00) x R* = R, Z(a,0) =a "|o|

has the following exact Taylor expansion about any point (ao, 0o):

I(a, o) = (a0, 00) + ' (a0, 00)(a — a0, — 00) + T <a7 o— iao) ,

dao
2
o 2
where I/(ao, 0'0)(3 — do,0 — O’o) = —| 302‘ (a — ao) + ;Uo . (0’ — Uo).
o 0

It follows that for any measurable subset Q2 C D with Vol(Q2) = n|D|,
J(Q) = Lnéig/DI(’)/Q,O') dx

/I(fyo,el) dx—i—min/I(ny,a—ﬁel) dx
D gEY D Yo

Y]

/I(fyo,el) dx

b -1
= [DI((A=n)a+nB)"",
which is the desired lower bound for J(2).
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Second step: The lower bound is not attained.

e Let us look more carefully at the derivation of the lower bound in Step 1:

JQ) = Lneig/DI(’m,a)dx

i _ e
/DI(Vmel)dX-FUmelg/DI('m,a P e1> dx

AI(V(L 61) dx
= [DI((1—na+n8)",

e Equality is solely lost in the third line; hence, equality holds if and only if:

z (m,of lﬂel) ="
Yo

e In turn, this only happens when o = %el a.e. in D, which is impossible since then
o would not satisfy o - n = ny on 9D, as is required from elements of X.

AV

2
=0 fora.e xe€D.

o
olX)— —eé€
(x) o &

We have thus proved the strict lower bound:

VQ C D measurable with Vol(Q) = n|D|, J(Q) > |D|((1 —n)a+n8)"".
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Third step: Construction of a minimizing sequence.

e We construct a sequence of measurable shapes Q" C D such that:
Vol(2") = n|D|, and J(Q") — |D|((1 — n)a+ nfB) as n — .

e Let indeed x : (0,1) — R be the function defined by:

1 ift<n,
x(t) = { 0 otherwise,

and let Q" be the domain;
Q" = {(x1,%) € D, x(ma) =1};

roughly speaking, Q" is made of n regularly spaced horizontal strips with width 2

n
o
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e The theory of homogenization will allow to prove that
ugn =22 u* weakly in H'(D),

where u* € H*(D)/R is the solution to the homogenized problem:

—div(A*Vu®) = 0 inD,
A*Vu*-n = m ondD,
and the homogenized matrix A* reads:
A* = (1 - 77)04 + 775 0
0 (O T i R

e The function u™ can be calculated in closed form; one verifies indeed that:
A*Vu* = e, and u*(x) = ((1 — n)a +n8) *xi.
Finally, taking limits in the definition of J(Q2) yields immediately:

J(Q") = / mugnds — mu*ds = ((1—n)a+n8)"",
oD aD

which is the desired value.

O
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This example reflects a quite general situation in shape and topology optimization:

e When Q, is a minimizing sequence for J(Q2), the corresponding sequence
X, € L>(D,{0,1}) of characteristic functions is bounded (by 1).

e Hence, up to a subsequence, xq, converges weakly * to a density
6 € L>=(D, |0, 1]).

e The associated sequence uq, is bounded in H*(D), and so (up to a
subsequence) it converges weakly to some element u* € H*(D).

e How can we characterize u™ (via a PDE)?

e What does the energy
/ Ya,Vug, - Vug, dx
D

converge to?
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The two-phase conductivity setting

Let us recall our model problem:

e We consider the following shape optimization prob-
lem, in the two-phase conductivity setting:

frzncng(Q), where J(Q) := /DJ(UQ) dx, (50)
and j : R — R is a given, smooth function.

e The temperature ug € Hg(D) is the solution to:

—div(ye@Vuq) = f in D, @)
ug = 0 ondD,

where the conductivity ~q is of the form:
Yo(x) = a+ xa(x)(8—«a), xe€D.

e How to give a meaning to (C) and (50) at the “limit"
when Q develops infinitely many, infinitely small pat-
terns?
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We mainly deal with the periodic setting.

Let Y = (0,1)¢ be the unit periodicity cell.
&

The conductivity inside Y associated to the
pattern w C Y is:

[ B if yew,
A(y)_{ o ifyeD\w.

lM¢le>”

QLI

Ty
PV YNNI SN

VNNV

This pattern induces a conductivity distribu-
tion A(g) for x € D, by rescaling A(y) at
size € and periodization.
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The state u. € Hy(D) solves:

—div (A(%)Vuc) =f in D,
u-=0 on 0OD.

11

‘ What does u. look like, as ¢ — 07
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In 1d, let D = (0, L); we solve the problem: 4 Ac(z)

B ] e e e R e

x\ du) . PR E b

(A0 )= o n |
u:(0) = u:(1) =0,

where, for y € Y =(0,1),

at = = - U
o if y<b, € .
Aly) = { B otherwise. 0

We shall see in a more general context that:

e The sequence u. converges to the solution u* to the partial differential equation

d wduc) . _ -1
Cdx A dx ) FroinD, o here A" = (g + a-9 9)> .
0.(0) = (1) =0, a’ P

o The convergence is weak in H3(0, L): u. oscillates around u*

e The function u. converges to u* in L?(0, L);
e The derivative = converges only weakly in L(0,L) to 9.
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Appetizer: the 1d case (II)
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Plot of the function u.(x) for f =1, 6 = 0.3, @ = 1, 8 = 0.001 and various values of the period ¢.

=} (=) = E == 9Da
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e For given values 0 < a < 3, let us denote
Masi={MeRI, st ve e RY, al¢l® < Mg-€ < B},

where RZX9 stands for the set of symmetric d x d matrices.

e We aim to guess the limiting behavior of the solution u. € H§(D) to

{ —div (A (?) Vug) =f in D, where A(y) € L(Y, Ma,5).

u.=0 on 0D,

e To this end, we rely on the formal, heuristic two-scale expansion method.
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e We postulate an expansion of the form:
X X 2 X
us(x) = uo (X,*) + e (x,f) +e%us (X,*) + ...,
€ € 3
where each term u;(x, y)

e depends in a smooth way on the macroscopic variable x € D,

e is a periodic function of the microscopic (or “fast”) variable y € Y.

e In order to identify each term, we insert this particular structure into the equation

_div (A (g) VUE) —f,

and we identify terms with equal powers in e.
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The functions space H}(Y) of Y-periodic H' functions is defined by:
Hi(Y) = {u € HocR?), u(x+e)=u(x), i=1,...,dand ae. x € Rd},

and it is equipped with the norm || - ||1(y).

e The subset C3*(Y) of smooth Y -periodic functions is dense in Hy(Y).

dx =0.

e For any function u € Hy(Y), it holds: / Ou

y OXi

Hint of proof:
e The first point is proved by a classical approximation and truncation argument.

e The second point follows from the first one by density: for u € C3°(Y), Green's
formula implies:

Ou dx:/ un;ds = 0.
y Oxi oy

O
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We shall use repeatedly the following lemma:

Let g € L?(Y) with [, g dy = 0; then the equation

—div(A(y)Vu)=g inY,
y = u(y) is Y -periodic,

has a unique solution in H;(Y)/R (i.e. up to constants).

Proof: A variational formulation for this problem is:

Search for u € Hi(Y)/R s.t. / A(y)Vu-Vvdy = / gvdy.
Y 14
e The mapping
(u,v) — / A(y)Vu-Vvdy
4
is a continuous, coercive bilinear form on H(Y)/R.

e v [, gvdy is a continuous linear form on Hy(Y)/R because [, g dy = 0.

The result then follows from the Lax-Milgram theorem.
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For any of the terms u; (x, g) the chain rule yields:

V(o (% 2)) = (V) + 19,ux0)

(en)=(x.%)

and so

—div[A(2) ¥ (u (. 2))] = -5 (v, A0V ux ) )|

13

(e)=(x%)

=divy (AV, ;) (x, %)

- é (divx(A(y)Vyu,-(x, y))) ‘ divy (A(y)Vaeui(x, y))) ]

=y
(n=(x2) 2

Gy)=(x%)
:=div X(AV;/L/,)(XA f) :*(M"J/(AVX“')(X' %)
— (leX(A(y)Vx Ui(X, .y))) ‘ x\
on)=(x%)

=divy(AVx u,)(x. = )



Inserting the expansion

into the conductivity equation
—div(A (g) Vu.) = f in D,
results in:
1 . X
fx) = —div, (AV,u0) (x, g)

X

—é (v (AT, o) + v, (A(Vto + V1)) (. %)

_ Z el <diVX(A(VXu,' + VyU;+1))
i=0
X

+div, (A(Vuis1 + Vin+2))> (X7 g) .
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Identification of the terms of order e 2.

e We obtain:
—div, (A(y)V,yuo(x,y)) =0, xe€D, yeY.

e We have seen that for any g € L*(Y) with Jy g(y) dy = 0, the equation

{ —divy (A(y)Vyv(y)) = g(y) inY,
y = v(y) is Y — periodic,

has a unique solution in H;(Y), up to constants.

e For fixed x € D, 0 is one solution y — uo(x,y) to
—divy (A(y)Vyuo(x,y)) =0, yeY.

e Hence, uo(x,y) is a function of x only, that we rewrite up(x).
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Identification of the terms of order e 1.

e We obtain:
—divy (A(y)(Vxto(x) + Vyui(x,y))) =0, x€D, yeY.

e Let us introduce the cell functions x; € Hy(Y)/R, i =1,...,d, solutions to:
—divy (A(y)(Vyxi(y) +€)) =0 inY,
y = xi(y) is Y-periodic,

d
e Since Vup(x) = %e;, we obtain by linearity, owing to the well-posedness
i=1

d

ny) = 3 T2 0I) + 1),

i=1

where r(x) is a function of x only.
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Identification of the terms of order €°.

e We obtain:

— divi(A(y)(Vxto(x) + Vyui(x, y)))
— divy (AY)(Vxun(x, y) + Vyua(x, ) = £(x).

Y —periodic

e Integrating over y € Y yields:
—/ dive(A(y)(Vxuo(x) + Vyui(x,y))) dy = f(x), xe€D.
1%

e Now using the expression for ui(x,y), we obtain:

—diva <Z ([ e+ voutray) 2‘2(@) — ()

Jj=1
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Identification of the terms of order €° (continued).

e This rewrites:
~div(A"Tu) = £, where A7 = [ Aly)(+ V() - e dy,
= /YA(Y)(EJ+VYXJ(y)) (e + Vyxi(y)) dy
where we have used the variational formulation for x;.
e By linearity, it holds:
veeR:, A€-€= [ AWIEF V) €+ Vo) dy,
where

{ —divy, (A(y)(Vyxe(y) +£)) =0 inY,
y = xe(y) is Y-periodic,

e One may prove that the matrix A* is symmetric, positive definite.
e Using the same type of expansion on 9D yields uo(x) =0 on dD.
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The function u.(x) has the expansion:

us(x) = uo(x) + e (X, g) + 2wy (X, g) +...

e The function up(x) is the solution to the equation

—div(A*Vu) =f inD,
u =20 on 0D.

The symmetric, positive definite homogenized tensor A* is defined by:
Aj = / A(y)(ef + VyXf(y)) ; (ej + Vij(y)) dy,
14
where the cell functions x; € H(Y)/R are the solutions to

—div(A(y)(e,- + Vx,-)) -0 inD,
y = xi(y) is Y — periodic.

e The first-order term ui(x, y) is “smooth” in x, and Y-periodic in y:

Z O () xily) + r(x):
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|

For given values 0 < o < 8 of the conductivity, let us recall the definition

Mapi={MeRI, st ve e R, alel® < ME-€ < BlEl}

where RZX9 stands for the set of symmetric d x d matrices.

A sequence A°(x) in L°(D, Mq,p) H-converges to A*(x) € L°°(D, Maq,p) if for any
f € HY(D), the sequence u. € Hy(D) of solutions to:

{ —div(A®(x)Vue(x)) = f(x) in D,
u.=20 on 0D,

satisfies
u. — u* weakly in Hy(D), and A*Vu. — A*Vu* weakly in L*(D)?,
where u* is the unique solution to the homogenized equation

{ —div(A*(x)Vu*(x)) = f(x) in D,
u" =0 on 0D.
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The convergence result (1)

e This course deals mainly with periodic homogenization.

e In this context, the following result about the weak convergence of periodized
functions is crucial.

Let f € L3(Y), and let f. be the sequence in L}, .(R?) defined by:
fo(x) =1 (g) , ae xR’

Then for any bounded set D C R?, f.(x) converges weakly in L?(D) to the constant
function with value equal to the average [, f(y)dy:

Vg € L3(D), /D)‘E(X)g(x) dx =% (/Y F(y) dy)/Dg(x)dx.
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Let A(y) € LiZ(Y, Ma,p) be a periodic matrix field on the unit cell, and define
A(x) = A (g) ., ae xeD.
The sequence A®(x) H-converges to the constant matrix A* € M,z with entries
A= [ A+ Vo)) (o + V) dy. =1, d.

where the xi € H3(Y)/R are the cell functions, solution to:

—div(A(y)(ei + Vxi(y))) =0 in Y,
y = xi(y) is Y — periodic.

Sketch of proof: Let u. € H5(D) be the unique solution to the conductivity equation:

{ —div(A®(x)Vue(x)) = f(x) in D,
u=20 on 0D,

and let 0. := A*Vu. € L>(D)? be the associated flux.
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Step 1: we derive a priori estimates for u. and o..

e The variational formulation for u. reads:

Vv € Hy(D), /AE(X)VUE-Vvdx:/fvdx. (Vr)
D D

e Taking v = u. in the above identity, we obtain:

2
IV uellizpye < |[Flli-2(pylluelH2(D)-
Thanks to the Poincaré inequality, this yields:

HUE||H1(D) S C, and so HO'EHLz(D)d < C.

e Hence, there exists a subsequence (still labelled by ¢) and u* € H'(D),
o* € L*(D)? such that:

ue — u* weakly in HY(D), and strongly in L?(D) by the Rellich theorem,
0. — o weakly in L*(D).

e In particular, taking limits in (V) yields:
Vv € Ho (D), / ot Vvdx = / fv dx.
D D
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Our aim is then to prove that ¢* and u™ are related as:
o (x) = A"Vu"(x),

where A* is the homogenized matrix.

Step 2: we construct judicious test functions for the variational formulation of u..

e Fori=1,...,d, let us recall the cell functions x; € HL(Y)/R:

{ —div(A(y)(ei+ Vxi)) =0 inY, (

y = xi(y) is Y — periodic,

and let us define: '
w'(y) =xi(y)ty, yeY.

e We thence construct functions on D by e-periodization of the w':

wl(x) :=ew' (g) , xebD.

e As a consequence of the definition (CF), it holds that

—div(A°(x)Vw.) =0 in H (D).
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e It is easily seen that:

wl(x) = exi (g) + x =% x; strongly in L*(D).

e Likewise, using the Lemma about weak convergence of periodized functions,

VW (x) = e + (Vxi) (g) 20 et /YVx,-(y) dy  weakly in L2(D)?,

=0 by Green's formula
since x;(y) is Y —periodic

and so,
Vw!(x) =2% e weakly in L2(D)?.
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Step 3: “Compensated compactness”.

Main idea: use “clever” test functions in the variational formulation (/) of w. in
order to compensate the oscillations of the conductivity A.

The functions w/ are used to “modulate” test functions in the variational
formulation (\V/F).

Let ¢ € C°(D) be an arbitrary function. We insert v(x) = ¢(x)w/(x) in (V).
This yields:
/Df¢wg dx = / A*(x)Vu. - V(pwl) dx,
= /D(ﬁAE(X)Vug'VWé dx+/Dw5"AE(x)Vug~V¢dx,

fAf(x)vW;-V(¢us)dx—/ uA*(x)V¢ - Vw! dx
D D

=0 since div(A®Vwl)=0

+/ W.A®(X)Vu. - Vo dx.
D
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e We are left with the following identity, in which we expect to take limits:

/f¢w; dx = —/ uA*(x)V - Vw! dx+/ WLA® (X)Vu. - Vg dx.
D D D

7'/51 7:/52

e The integral I} rewrites:

i :_/D(Avwf) (%) (wve) ax

Since
(AVw') (%) 29, A(y)Vw/(y)  weakly in L2(D)?,
u:Vo 20 u*Veo strongly in L*(D),
this yields:

=0 (/D Aly)Vw'(y) dy) ~/Du*v¢ dx.

e By the same token we prove the convergence:

e—0

2 —>/x,a* -V dx.
D
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e All things considered, we have the identity:

/Df‘f”‘f dx=— (/D A)VWw'(y) dy) v/Du*w) der/DX,-g* Védx.

e On a different note, the variational formulation for o* implies that:

/Dx,-a* -Vodx = / o - V(xi¢)dx — /D (c" - e)gdx

ffqu,-dx/ai*qﬁdx.
D D

e As a result, it follows from integration by parts that:

/Da;‘qsdx:/D«/DA(y)Vw"(y) dy) .VU*)qsdx.
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e Since this identity holds for any test function ¢ € C°(D), this entails:
o (x) = (/ Aly)Vw'(y) dy) -Vu*(x) ae x€eD.
D

e After inspection, this is the expected result:
" (x) = A"Vu(x).
O

Strictly speaking, we have proved that for a subsequence of the ., it holds:

us(x) = u*(x) weakly in H3 (D),
and (A°Vu.)(x) = A*Vu*(x)  weakly in L2(D).

Actually, a classical argument based on the uniqueness of the limit reveals that the
above convergence holds for the whole sequence ¢.
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e We have only proved the weak Hg(D) convergence of u. to the solution u* to the
homogenized equation.

In particular, the gradient Vu. does not converge to Vu* strongly in L>(D) (and
not pointwise).

e This is due to the fact that u. converges to u™ by “oscillating around u™".

e =0.05 e =0.01

Behavior of the solution us in a one-dimensional problem.

In order to improve this convergence result (i.e. get strong H* convergence), we
have to introduce correctors to capture this oscillating behavior.
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The following result captures the oscillatory nature of the gradient Vu..

Let ue, u* € H3(D) be as before, and suppose that u* is more regular: u* € H*(D).
Then the following corrector result holds:

d
« ou” X e
u:(x) = u" () = > S (£) :
i=1

H(D)

e See for instance for a proof.

e The assumption that u* € H?(D) is not very restrictive in practice. For
instance, by elliptic regularity, it holds as soon as Q is regular and f € L?(D).
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Part IV

Mathematical
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© Homogenization of the conductivity equation

@ Beyond the periodic case and beyond conductivity




e We have hitherto considered the periodic homogenization setting, but the theory
may consider much more general situations.

e We have the following general sequential compactness result about H-convergence.

For any sequence A°(x) € L°°(D, Ma,g), there exists a subsequence of indices (still
denoted by ¢) and a homogenized matrix field A*(x) € L>(D, Ma.g) such that

A®(x) H-converges to A™(x).

e Contrary to the periodic setting, we cannot expect that the whole sequence
A®(x) H-converges.

e See , Th. 1.2.4.2 for a proof of this result, based on the compensated
compactness technique.
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e H-convergence was defined as the weak convergence of the solution (and the flux
of) u. to the conductivity equation with homogeneous Dirichlet B.C..

e H-convergence actually does not depend on the boundary conditions featured by
the considered problem.

Let A°(x) be any sequence of matrices in L°°(D, Mq,g) which H-converges to
A*(x) € L®(D, Ma,p). Let z. be any sequence in H*(D) such that:
—div (A°Vz) = fo 2% £ strongly in H_ (D),
z 2% 2 weakly in H.(D);
then it holds:

e—=0

AVz. =22 A*Vz weakly in L} (D).
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The H-convergence of a general matrix sequence A°(x) € L°°(D, Ma,3) can be
understood locally as the limit predicted by periodic homogenization.

2
TR (R0 R0 1R
/( o o o o o o
30 Q“b Q“v Q“v Q“v %v Q“v n—0 *
o o Uo. "o 4 o o I,S,h
Q“v Q“v w“vf @“v Q“w Q.Ow Q“v(V
o o o o o (]
S 1S 80 186 R0 18 >
L A e

1 — periodization of the
cube around z with size h

For fixed € and h, let Ay ., be the tensor obtained by homogenization of the periodic
pattern given by y — A°(x + hy), i.e. induced by the values of A® on a small cube
with size h around x, periodized.
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The following theorem is proved in , Th. 1.3.4.6.

Let A. be a sequence of matrices in L>°(D, M, g) which H-converges to some limit
A*(x). For any x € D and h > 0 small enough, let us define

(AL )5 = / A (x+ hy)(er+ Vo) - (6 + V) dy,
Y

where VWL’E’ , is the solution to the cell problem:

—div(A(x + hy)(ei + Vwji.4) =0 in Y,
Y W is Y — periodic.
Then there exists a subsequence h — 0 such that:

lim lim A% ., = A"(x) for a.e. x € D.

h—0e—0
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The notion of two-scale convergence is very well-suited to the study of periodic
homogenization problems.

It gives a rigorous meaning to the convergence of an oscillating function u.(x) to a
function of both macroscopic and microscopic variables x € D and y € Y.

For instance, in the periodic homogenization context, it holds:
u:(x) = uo(x) weakly in Hg(D)
and

2—scale

" Viue(x) —— Vuo(x) + Vyui(x,y)."

See and for further explanations.

59 /129



Other homogenization techniques: periodic unfolding

The periodic unfolding method features an extension procedure of a
function v : D — R to both macroscopic and microscopic scales:

v(x) ~ v(x,y) = v(& E] + sy).

Y
oo \ o @
cccoecoe e s
coecooeoalee
coocooedgoeceoe
coocooporRoo
coolccdeoe
o
H“V

It allows to compare u. : D — R with oscillatory expansions of the form
X
uo(x) + ewr (X, g) +...
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Consider the counterpart of the previous situation in the realm of linear elasticity.

e The Hooke's law inside Y induced by the pat-
ternw C Y is:

B if yew
an={ 5 155 D
A ifyeD\w. v

e This pattern induces a Hooke's law A (%) for
x € D, by rescaling A(y) at size £ and peri-
odization.

lMle>

(M AVIRva,
QLI
QQQIRQQTIVTY
Py NN SN

QLI

o The displacement u. € H3(D)? of D solves:

—div (A (%) e(u:)) =f in D,
ue=20 on 0D,

NNV NN NSNS

QRURLLRLRCCCRRRRY

[NV NI ) () T T OO

QQIVVVVVVVVVD
AQIQRIQQIQLILIQI
PIQQIOQRQQQCQQQIQ

11
o

where the strain tensor e(u) is:

e(u) = %(VU +vuT).

‘ What does u. look like, as ¢ — 07

61/129



Extension to the context of linear elasticity (Il)

e The formal two-scale asymptotic expansion argument reveals that the effective
behavior up € Hy(D)? of u. satisfies:

—div (A*e(w)) =f in D,
u =20 on 0D,

where the homogenized tensor A* is defined by:
vEE R AEe= [ AWIEF X)) (€ xe) dy,
1%

involving the cell function xe € H4(Y), solution to:

{ —div(A(y)(§ +e(xe(y)))) =0 in Y,
y = xe(y) is Y — periodic.

e The general properties of H-convergence remain true in this context, namely:
e The compactness of M, 3 for H-convergence;
e The corrector result to obtain strong H'(D) convergence of u:;

e The irrelevance of boundary conditions in the definition of H-convergence;

e The genericity of periodic configurations to describe the nature of
H-convergent sequences.
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Towards shape optimization (1)

Let us recall the shape optimization problem of interest.

e The problem reads >
Sr)ncigJ(Q), where J(Q) := /Dj(UQ) dx, (50) @ D
4

and j : R — R is a given, smooth function.

e The temperature ug € Hg(D) is the solution to the
two-phase conductivity equation:
—div(yaVug) = f inD,
ug = 0 ondD,

where vq reads:
Yo(x) = a+ xa(x)(8—«a), xe€D.

e We aim to allow “limits of classical designs” in (50),
showing increasingly many small features.
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Towards shape optimization (I1)

We have seen that a periodic conductivity distribution A(x), defined by:
e L X
A% (x) = A, (a) x € D,

where A, (y) is made from a pattern w C Y:

| B ifyew,
Aw(y)'_{a ifyeY\w yevy,

has an effective behavior described by the homogenized tensor AJ.

Definition 2.

For 6 € [0,1], Gy is the set of all conductivity matrices obtained by homogenization
of the phases a and f3 in proportions (1 — 6) and 0:

Gy ={A5, wC Y}C Map.

=} (=) = = == DA
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This gives us a hint of how to relax the shape optimization problem (50):

min _J(6,A), where J(0, A) z/j(ua,A) dx,

(6,A)eCD D

where the set CD of composite designs is defined by:

CD = {(e,A*) € L%(D,[0,1]) x L®(D, Mag), A*(x) € Go) ace. x € D}.

This program raises (at least!) three questions:
e How to characterize more explicitly (e.g. to parametrize) the set Gy?
e How to justify this procedure?

e How to use this in a numerical method?
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Mathematical
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O A study of composite materials
@ The G-closure problem




On first step towards characterizing Gy is the following lemma.

Let A(y) € L*(Y, Maq,3) be a matrix field; then the matrix A* obtained by periodic
homogenization satisfies the following bounds:

VEERY, |Ac-E<AYE-€ <AL-E,

where A and A are respectively the harmonic and arithmetic means of A(y), namely:

A ( [ A7) dy)l and A:= [ Ay)ay.

Proof of the upper bound: We recall the variational principle satisfied by A*:

veeR, ace= min [ A)(s+Vun) - (6 +Tw() ay.

weH(Y)/R

Choosing in particular w = 0 in the latter minimization yields, for £ € R
wees([ana)ee
1%

which is the desired upper bound.
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Proof of the lower bound: We use the same duality trick as in the proof of

e For all £ € RY, and positive definite d x d matrix A € RY*,

266 g (60— 3470 0),
where the maximum is uniquely attained at o = A71¢.

o It follows that, for a.e. y € Y,
AW (6+ VW) - (64 Vw(y) = max (2(6+ Vw(y) -0 = A0 -0).
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Hence, we obtain,

AE€ > min / “max (2(¢+Vw(y)) o) = A0() o) dy

WGHL(Y)/]R (y)ERd

min max/y (2(5 +  Vw(y) ) o—A'o- 0') dy

WEH;'&(Y)/IR oERY

\%

Jy Vwl(y) dy=0
since we HY, (Y)/R

1
e (e ([ war)oo).

where the second line follows by taking the supremum over constant fluxes
o(y) = o, and not over any matrix fields y — o(y) € R%.

An explicit calculation of the last maximum value yields

AEg > (/YA*(y)dy)es,

as desired.

O
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e The lemma shows, in particular, that all matrices A* € Gy satisfy the Voigt-Reuss

bounds:
VEERT, g l€)? < AYE-€ < AIE

where A\, , A} are defined by:

—1
Ao = (%*%) ,and AJ = (1 - 6)a + 68,

e Unfortunately, all the matrices satisfying Voigt-Reuss bounds are not in Gy.

e The characterization of Gy (e.g. by means of inequalities over eigenvalues of
matrices A*) is a difficult problem, known as the G-closure problem.

e We study one particular subset of tensors in Gp, that of laminates. Their effective
tensors can be computed explicitly, and this comes in handy in characterizing
further Gy.
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e Let A and B be two (possibly anisotropic) symmetric, positive definite matrices.
e We consider the periodic homogenization induced by the following pattern in Y:

1 ift<o,
A = X8 + (L= xOnDA where x() = { o Bl

where e; is the lamination direction.

€1 —~—i] il
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o N'={y=0n,...,¥4) €Y, y1 =0} is the interface between the two phases:

Y i={y=01-ya) €Y, y1 <0} and Y :={y = (n,...

e When a(y) is a discontinuous quantity across I, we denote by:

Ya) €Y, y1 >0},

a (y):= lim a(y — ter) and at(y) := lim a(y + te1)

t>0

the one-sided limits of a(y) across .

es
T4§2

€1

t>0

Y)

—a

Y)
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The homogenized tensor A* associated with the pattern A(y) is given by the
lamination formula:

(B — A)e1 [ (B — A)e1
(1 — 9)361 -e1 +0Ae - e ’

Assuming that (B — A) is invertible, this rewrites:

A" =60B + (1—0)A—06(1—6)

(A" —A) = (B-A) '+

e1 R er.
Ae1 - e

Proof: Let ¢ € RY be given; the explicit formula for A* reads:
¢ = [ Ap)E+Twin) dy,
14

where w is the unique solution in H4(Y)/R to the cell problem:

{ —div(A(y)(€ + Vw(y))) =0 in Y,
y = w(y) is Y — periodic.
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Letting u(y) = £ -y + w(y), the particular structure of (CP) suggests to search for
u(y) so that it is affine in Y~ and Y™:

u(y) = (b-y+a)x(n) +(a-y +c)(l = x(n)),

for some constants ¢,, ¢, € R and vectors a, b € R? to be found.

u(y) complies with (CP) if anf only if it satisfies (see the transmission conditions):

div(A(y)Vu) = 0 in both phases Y, Y.

u(y) is continuous across [;

The flux of u(y) through I is continuous: BVu-e; = AVu - ef;

The function y — u(y) — & -y is Y periodic.

With such a definition, it holds:
Vu(y) = x(y1)b + (1 — x(y1))a, and A(y)Vu(y) = x(y1)Bb + (1 — x(y1))Aa.
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e From the form of u, it holds automatically that
—div(A(y)Vu) =0in Y~ and Y*.
e The continuity of u(y) across I imposes that:
Vy,zel, (a—b)-y=(a—b)-z

Since for all i = 2,...,d, there exists t # 0 and y,z € I such that (y — z) = te,
the previous identity implies that there exists t € R such that

a— b= te.
I
23
t3ep #2
_»
y it2€2 Y.

€3
T462

€1
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The continuity of fluxes across ' implies that:

Bb-e; = Aa- eg;
inserting a — b = te; and rearranging yields:
poB-Aere s B A
Ae; - e Ae; - e1

On a different note, the Y-periodicity of y — u(y) — & - y imposes that:
/ Vu(y)dy=¢, = 0b+(1—-0)a=¢.
%

Combining both expressions yields the explicit expression of u.
Finally,

ATE = / A(y)Vu(y)dy = 6Bb+ (1 — 0)Aa,
which yields, after calculatign:

(B — A)§ - er
(1 — 9)361 -e1+ 0Ae - er

A€ = 0BE + (1 — 0)A€ — 0(1 — 0) (B — A)er,

as desired.
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Rank 1 laminates: the isotropic case

The previous result has a particularly nice expression when A and B are isotropic:
A = al and B = I for some a, 3 > 0.
Corollary 15.
The homogenized matrix A* reads:
Ao
>\+
A* — O 0 .

where A, and N} are defined by:

Ay
0 1-0\"
=] (=)

DA
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The previous lamination procedure can be iterated:

e At first, the pure phase  is mixed with A with direction &1 and proportions 61,
(1 — 61) to give the rank 1 laminate A7.

e The pure phase  is then mixed with the rank-1 laminate A7 with direction &
and proportions 62, (1 — 6>) to produce a rank 2-laminate.

e The pure phase ' is mixed with a rank-2 laminate to produce a rank 3 laminate.
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Iterating the lamination formula yields the following conclusion.

Let & and 0;, i = 1,...,p be p unitary directions in RY and p volume fractions in
[0,1]. The rank p sequential laminate Ay with inclusion A and matrix B, in

respective proportions
P

1-6:= H(l —6;) and 6,

i=1

resulting from the previous procedure is given by:

(1=0)(A;—B) = (A=B) *+3_ (9"_1:[(1 B 9f)> e

e The materials resulting from this procedure are called sequential laminates.

e For a given volume fraction 6 of matrix B, we denote by Ly C Gy the set of all
sequential laminates.
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Sequential laminates (I11)

Sequential laminates are often characterized by:
e The total volume fraction 0 of matrix B;
e The rank p of the material;
e The lamination directions & € RY, i=1,...,p;

e Lamination parameters m; € [0, 1] accounting for the volume fractions 6;.

Let & € R? and let 6 € [0,1] be a volume fraction. Let m; € [0,1], i=1,...,p be
lamination parameters, satisfying:

Zp: m; = 1.
i=1

Then there exists a rank p sequential laminate A, with matrix B and inclusion A in
respective proportions 6 and (1 — ), such that:

E®E
B - &

(1-6)As—B) '*=(A-B) '+ ei m;

v
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Laminated structures in elasticity (1)

e Let A and B be two isotropic Hooke's tensors:
VE € R, AL =2ual + Matr(§)L,  BE = 28 + Aptr(E)L,
and let ka4 = \a + %,LLA, KB = \g + %MB be the bulk moduli of A and B.

e We consider the periodic homogenization of A and B in proportions (1 — 0), 6, in
the lamination direction e € R9.

82/129



e A similar (yet more technical) calculation to that conducted in the conductivity
setting yields the effective tensor A* obtained by homogenization of this pattern:

(L=0)A T =BT = (A7 = BT 4 0fe(e)

where the symmetric bilinear form fg(e) over matrices is defined by:

uet s ((eye. e)?.

dxd . . 7i E o ERAL A
VE e RS, fa(e) =B ¢ UB‘B€e| +MB(2MB+>\B)

o Likewise, the rank p sequential laminate A* obtained by mixing the matrix B with
inclusions A in proportions 6 and (1 — 0), with lamination directions e and
lamination parameters m;, i =1,...,p, reads:

A-0)AT—B )y T=A1-B )Y+ 9i mifs(e;).

i=1
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Optimal bounds in the two-phase conductivity case (1)

In the two-phase conductivity setting, the set Gy can be characterized explicitly; see
[Allh], Th. 2.2.3.1 for a proof.

Theorem 18.

The set Gy of all composites obtained by a mixture of o and 8 in proportions (1 — 6)

and 0 is the set of all symmetric d x d matrices whose eigenvalues A1, ..., \q satisfy:
G SN A 0, i=1,...,d,
d
1 1 d—1
<
2N —aSN —a N-a
and
S 1 d—1
Z X — -+ +7
l=1ﬂ_ ! ﬁ_Ag B_)‘G
where .
A\ = (%’H%) and \j = (1—0)a+068.

These bounds are optimal, as that they are realized by a rank d laminate.

=} (=) = E == DA
85/120



Optimal bounds in the case of conductivity (Il)

The first set of inequalities describes lower bounds for the A;, while the second
accounts for upper bounds.

Ao A
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e Unfortunately, no such exact characterization of the set Gy is available in the
context of linearized elasticity.

e Only bounds over tensors A* € Gy are available, such as the Hashin-Shtrikman
bounds over isotropic tensors in Gp.
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Justification of relaxation by homogenization (1)

Let us recall the shape optimization problem of interest.
e The problem reads
min J(2), where J(Q) := /j(un) dx + £Vol(Q),
Qch b
(59)

and j : R — R is a given, smooth function.

e The temperature ug € Hg(D) is the solution to the
two-phase conductivity equation:

—div(yeVuq) = f in D,
uq 0 ondD, D «

where vq reads:

Ya(x) = a+ xa(x)(B— ), xeD.
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Justification of relaxation by homogenization (I1)

The relaxed formulation of this problem reads:

(e,Arr*])IQCDJ (6,47, ()

where
e CD is the set of composite designs:
CD = {(0,4) € L(D, [0,1]) x L™(D, Ma5), A"(x) € Gogyy ae. x € DJ;
e The relaxed functional J(8, A*) reads:
J(O,A") = /Dj(uf;,A*) dx +£/D 0(x) dx,

e ug A+ € H3(D) is the unique solution to the homogenized equation:

—div(A*(x)Vug,ax) =f in D,
ug.ax =0 on 9D.
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The following result is Th.3.2.1.1 in

The problem () is a relaxation of the shape optimization problem (50), i.e.:
The problem () has at least one global minimizer.

For every minimizing sequence Q,, of classical designs for (50), there exists a
subsequence (still labeled by ) such that
e The functions xq, converge weakly * to a density § € L*>°(D, [0, 1]),

e The conductivity (axgn + (1 - xa, )B)I H-converges to a matrix A*(x),

and (8, A*) € CD is a minimizer for (H).

Conversely, for every minimizer (6, A™) € CD of (1), there exists a sequence Q,
of shapes such that:

® xq, — 6 weakly * in L*°(D, [0, 1]);

e axq, + (1 — xa,)B H-converges to A*;

e Q, is a minimizing sequence for J(2).

v
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e In the two-phase conductivity setting, the set Gy is characterized exactly by a set
of inequalities over matrix eigenvalues.

e In practice, it is not trivial to use this characterization in the resolution of the

problem
min _ J(6,A),
(6,A*)eCD

since the constraint that A*(x) should belong to Gy, for a.e. x € D is quite
difficult to enforce.

e Fortunately, the following result, which is very particular to the conductivity
context, allows for a simpler parametrization of the set CD.
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Let (0,A") € CD be a minimizer of (). Then there exists another minimizer
(0,A*) € CD of (H) such that

A*(x) is a rank one laminate in Gjiy forae xeD.

Sketch of proof:
e The derivative of the partial mapping A* — J(6, A") reads:

8J

VH e RI*, (9 A Y(H) = / HV ug ax - Vpp,a- dx,
D

where the adjoint state pg,A* 6 H5 (D) is the solution to
7diV(A*Vp9,A*) = 7j’(U97A*) in D7
po,ax =0 on 0D.
e The set Gy is convex, and so, for fixed § € L>(D, [0, 1]), the optimality condition
for A* reads:
VA%(x) € L(D, Ma,p) st. A°(x) € Gy(xy a.e. x € D,
(AO — A*)VUQ’A* - Vpo a= dx > 0.
D
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Considering perturbations A%(x) of A*(x) about any point x € D, it follows that
A*(x) necessarily satisfies, for a.e. x € D:

(A*VU(;’A* . Vpg,A*)(X) = urencm( (A Vug a« - Vpe, A*)( )

We now extract information about A* from this requirement.

Let x € D be fixed. We assume that Vug a=(x) # 0 and Vpg, a=(x) # 0; see
, Th. 3.2.2.3 for the proof in the general case.

Vo ax
and & = —PeA ) olds:

. Vg ax(x)
Denoting e = I ho.a- ()"

Vg ax (x)|

VA® € Go(x), 4A% . = A(e+€)-(e+€)—A%e—¢é) (e—¢).

Hence, we obtain the lower bound:
min 4A%-¢ > min A’(e+e')-(e+e€)— max A’(e—€)-(e—¢)
A%€ Gy () A®E€Gy ) A%E€Gy(y)
2 - 2
0x)‘e+e/‘ —)‘e(x)|e—el| .
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Conversely, since (e + €') and (e — €’) are orthogonal, there exists a rank 1
laminate A* = A'(x) € Gy(x) in direction (e + €) satisfying:

Alle+¢€) = Ao (e + '), and Al(e —¢') = /\g(x)(e —€').

Thus, we have proved that:
. 0 I Al I - 2 - /2
Aorgg;(x)4A e =4A%e-e = Ny ylet+e|” = Ay le— €

Actually, from the Voigt-Reuss bounds on homogenized tensors, any tensor
A e Gy(x) realizing the above minimum necessarily satisfies:

Al(e+e') = Al(e+e) = A;(X)(eJre') and A°(e—¢€') = Al(e—¢) = )\;(X)(efe/).

Hence, the matrix field Al(x) is such that:
A*VUQ’A* = A1VUQ,A* and A*VPQYA* = Alvpe,A*, a.e. xe€D.
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o The functions ug,a~ and pp a« € Hy(D) satisfy:

—div(AY(x)Vug,ar) =f in D,
ug,ax =0 on 0D,

—diV(Al(X)VpgyA*) = —j'(ue,A*) in D7
Po.Ax = 0 on 8D.

From the well-posedness of both problems, we infer:

Ug a1 = Ug A* and Po,a1 = Po,A* ON D.

o As a result, the matrix field A*(x) € Gy(x) satisfies:
50,4 = 90,4°) = [ jun a0} dx,
D

and so (0, A') € CD is also optimal for the problem (H).
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e By virtue of this theorem, the minimization problem (1) is equivalent to:

min_ J(0,A), where J(9,A):/j(ua’A) dx+£/€(x) dx,
D

(0,A)€LID D
where £1D C CD is the set of rank 1 laminated composites:
LD = {(H,A*) € L=(D,[0,1])x L=(D, Ma,g), A*(x) is a rank 1 laminate of
a and 3 in proportions (1 — 6(x)) and 6(x) a.e. x € D}.

e In 2d, for any 6 € [0, 1], any matrix A* € Gy can be written as:

x _ ax - cos¢  sing A, O cos¢ —sing
A=A (0’¢)_( —sing cosqﬁ) ( 09 Ay ) ( sing  cos¢ )
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Then, in 2d, (H) rewrites as a parametric optimization problem:

min  J(0, ¢), J(97¢):/Dj(ue,¢) dX-l—Z/DG(X) dx,

(0,¢)EUaq

where up 4 € H3(D) is the solution to

—div(A(0(x), ¢(x))Vug,¢) =f in D,
ug,p =0 on OD.

and

Ung = {(9,¢>) € L>(D,[0,1]) x L=(D, [O,Tr])}

All the numerical methods developed in the context of parametric optimization
(gradient algorithm, etc.) can be readily applied to this problem.
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Numerical example: the optimal radiator (1)

e We minimize the compliance of a thermal chamber D, which equals in this case
the mean temperature where heating occurs:

min  J(ug,a=), where J(ug ax) :/ ug A+ ds.
(6,A*)eCD ry

e A volume constraint is added by means of a fixed Lagrange multiplier.

I'p
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Numerical example: the optimal radiator (Il)

(From left to right, top to bottom) Initialization and several iterations of the optimization of the compliance in
a thermal chamber; reprinted from
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Numerical homogenization: the linear elasticity case‘

e We consider the homogenized problem:

min  J(0,A%), where J(@,A*):/Dj(ua,A*)dx—i—K/DQ(x) dx, (1)

(6,A%)eCD
and ug A« € H3(D)9 is the unique solution to the homogenized elasticity system:

—div(A*e(ug,ax))=f in D,
up.ax =0 on 9D,

e The set Gy (and that of composite desgin CD) is not explicitly known!

e Fortunately, when the objective function is the compliance ( ), i.e.

/f ueA*dXJrZ/OX)dX

the following result allows to cast the resolution of (1) within a set which is
explicitly parametrized.

When the minimized function J(0, A*) is the compliance, the problem (1) has one
global minimizer (0, A*) in which is a rank d laminated composite.
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Minimization of the compliance of a 2d cantilever (I)

e We minimize the compliance of a 2d cantilever:

e A volume constraint is added by means of a fixed Lagrange multiplier.

I'p

min  J(ug a+), where J(ug a+) = - ug A= ds.
oA (uo,a) (uo,a) /rNg 0.4

I'n
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Minimization of the compliance of a 2d cantilever (II)

Credits:
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Minimization of the compliance of a 2d cantilever (lII)

Credits:
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e When the objective function J(0, A*) is no longer the compliance, the previous
strategy can no longer be employed.

e Nevertheless, one may perform a formal partial relaxation of the original shape
optimization problem.

e This amounts to searching for the minimizer of J(6, A*) over the subset LD C CD
of laminated composites:

min DJ(6?,A*)7 where J(0, A™) Z/j(ue,A*)dx—i—Z/ 6(x) dx, (PR)
D D

(6,A%)eL
and the set £D is defined by:
LD = {(e,A*) € L%(D,[0,1]) x L®(D, Ma.s), A*(x)is a laminate of
A and B in proportions (1 — 0(x)) and 0(x) a.e. x € D}.
e Laminated composites (6, A") € LD can be parametrized explicitly.

e Of course, there is no guarantee that solving (PR) will yield the global minimizer

of (H).
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Example: optimization of a 3d grip (II)‘

We minimize the least-square criterion:

min  J(ug,a~), where J(ug ax) :/ |ug,ax — uT|2 ds,
(0,A*)eCD ry

where ur : D — RY is a target displacement.

hml
I

D

7 g
wr E _______________ =
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Example: optimization of a 3d grip (II)\

Credits:
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e From the optimal composite design (6%, A*) € CD, a true, "black-and-white"
shape Q is easily recovered by thresholding:

Q:={xeD, 6°(x)>c},
where ¢ € [0, 1] is chosen so that, e.g. Q satisfies a desired volume constraint.
e More elaborate strategies are available, which do use the optimal microstructure

tensor A* to generate minimizing sequences Q" for J(2); see for instance the
deshomogenization method from

The “deshomogenization” method allows to infer minimizing sequences for the shape functional J(Q2) from
the datum of the optimal composite design (0, A*) (picture from [7]).
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Let V be a Banach space, equipped with the norm || - ||.

The dual space V* of V is the Banach space of linear continuous forms ¢ : V. — R
of V, that is:

3C >0, VeV, [(p,v)<Clv|.

The norm ||p|| of an element ¢ € V* is:

[{e, V)

llell = sup
vevazo |[VI|

e For 1< p < oo, the dual space of LP(Q) is L7(R), where  + 1 = L:

o The dual space of L'(Q) can be identified with L*°(Q).
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Let V be a Banach space, equipped with the norm || - ||.

e A sequence of elements u, € V converges strongly to some u € V if:

n—oo

[lun — | 0.

e A sequence of elements u, € V converges weakly to some u € V if:

Forall o € V*, (o, un) === (¢, u).

Of course, strong convergence implies weak convergence.
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Weak * convergence in Banach spaces

Let V be a Banach space, with dual space V*; we denote the duality pairing by
(@, v)v=,v or simply (¢, v),
when the context is clear.

One third notion of convergence is available in V*.

Definition 4.

A sequence , in the dual space V* converges weakly * to some element o € V* if:

oo

Forallue V, (pnu) 2%, (0, u).

The following fundamental result is a consequence of the Banach-Alaoglu theorem.

Let @, be a bounded sequence in V*; then there exists a subsequence ¢, of ¢,
an element ¢ € V* such that:

©ny 52000 weakly * in V*.

u]
)
1l
[
it
n

DAy
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Let D C RY be a bounded domain.

e As we have just seen, L>(D) is the dual of L*(D).

e Let x, be a sequence of characteristic functions of subset Q,:

(x) = 1 if xeQ,,
XoXI=1 0 if xe D\ Q.

e Since ), is bounded (by 1) in L°°(D), a subsequence xn, converges weakly * to
some function § € L*°(D).

e It is easy to prove that 6 is a density function, i.e. 6(x) € [0,1] for a.e. x € D, but
0 is not a characteristic function.

e Actually, every density function § € L>(D, [0, 1]) can be realized as the weak *
limit of a sequence , of characteristic functions.
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Reflexive Banach spaces and Hilbert spaces

Let V be a Banach space. There is a canonical injection J : V — V**: for any
x € V, J(x) is the element in V** defined by:
(J(x), @hvee v = (p, x)v=,v.

This mapping is injective as a corollary of the Hahn-Banach theorem, and it allows to
see V as a subspace of V**.

Definition 5.

The Banach space V is reflexive if the mapping J is an isomorphism.

In reflexive Banach spaces, weak and weak* convergence are identical notions.

Proposition 23.

Let v, be a bounded sequence in a reflexive Banach space; then there exists a
subsequence v,, which converges weakly to some v € V.

=} (=) = E El= DAl
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Reflexive Banach spaces and Hilbert spaces

In particular, Hilbert spaces are reflexive.
It follows that every bounded sequence in a Hilbert space converges weakly.

Proposition 24.

Let u, and v, be two sequences in a Hilbert space H such that:

up === y strongly in H, and v, ==>2 v weakly in H.
Then

(Un, va) =225 (u, v).

El= DAl
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A useful lemma in periodic homogenization

The following lemma characterizes the weak convergence of a sequence of functions
obtained by e-rescaling and periodization of a function f € L2(Y).

Let f € Li(Y), and let f. be the sequence in L%

RY) defined by:
(x):="f (;—() , ae xR’
m(f) == [y f(y) dy-

Then for any bounded set D C RY, f. converges weakly in L>(D) to the average

vg € 12(D), / £ ()g(x)

Proof: The proof proceeds within two steps.

e—0
dx — m

() / £(x) dx.

DAy
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|

Step 1. We prove that the sequence f: is bounded in L*(D).

o Let {Yi"},_; ) be the covering of D defined by L
e-rescaling and’ translatlon of the unit cell Y: € I
YP=xi +eY, i=1,...,n(e). / Y \}
e The number n(e) of such cells is: \ 5 D
D
n(e) = L—J(l + o(1)). — L

e Foreach i=1,...,n(e) a change of variables yields:

fgz(x) dX:Ed/Yfz(y)dy.

YE
i

o |t follows that:

n(e)

810 =3 [ Eeax=pl ([ Pe)ay) arou)
and so f. is indeed a bounded sequence in L?(D).
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| |

Step 2. Thanks to the density of C°(D) in L?*(D), it is enough to prove that:

Vo € (D), /ng(x) (x) dx ==2% m( f)/ng(x)dx.

e For a given function ¢ € C2°(D) and for each cell i =1,..., n(e), it holds:

‘ [ #6000 dx = ()=o)

< adm(|f|)xpg§f |p(x) — o(x)|.

Thanks to the triangle inequality, this entails:

/ f-(x)p(x) dx — m(f)e Z¢(X < n(e)e m(|f|) max |#(x) — o(x')] .

< Cste \x x’|<ds

=0(1) since p€C2°(D)

In addition, since ¢ € CZ°(D), the Riemann sum theory yields:

n(e)
/D¢(x) dx =& Z (xF) 4 o(1)

Combining both estimates allows to conclude.
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Compact embedding: The Rellich theorem

Theorem 26.

compact, i.e. for every sequence v, € Hl(D),

Let D C RY be a bounded, Lipschitz domain. Then the injection H*(D) C L*(D) is

If vo 2225 v weakly in H(D), then v, ~=25 v strongly in L*(D).

DA
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Let D C RY be a bounded Lipschitz domain.

A Lipschitz subdomain Q € D delimits two phases
within D:

Qo = Q, and Q]_ = D\ﬁ,

separated by the interface I' = 09.

n is the unit normal vector to I, pointing outward 9.

We consider the two-phase conductivity equation:

{

—div(A(x)Vu) = f
u=20

in D,
on 9D,

where A(x) :

. ap in Qo,
_{ a1 in Q, ()
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o Let u be the unique solution to (TF) in Hy(D), and let the restrictions
uo := ulg,€ H'(Qo) and ulo, € H* ().

Then, ug and uy are solutions to the coupled system

. . . —div(e1Vu) =f in D,
div(aoVuw) =f in Qo, and { b =0 on AD, ()
supplemented with the transmission conditions at the interface I':
0 0
Upg = u1 and ao% = 051% onl. ( )

o Conversely, if up € H*(Qo) and ur € H*(Q) are solutions to (C) (TC), then the
function )
| w(x) forx e Qo,
u(x) = { ui(x) forx € Qu,

is the unique solution to (TF) in Hy(D).
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Hint of the proof:
We only prove the implication “(T7) = (C) 4+ (TC)" (the converse being analogous).
e Since u € H3(D), the trace theorem directly implies the first condition in (TC):

u=uon I.

e The variational formulation for u reads: for any ¢ € CZ°(D),
/ fodx = / A(x)Vu - V¢ dx
D D

/ aoVup - Vo dx +/ a1Vur - Vo dx.
Qo

Qy

e Applying Green's formula to both integrals in the above right-hand side yields:

/Df¢ dx = — /QO div(aoVuo)p dx — /Ql div(a1 Vi) dx

8Uo 8U1
+ /r (E_E) ¢ds,

where the - sign in front of % follows from the fact that the unit normal vector
to I pointing outward Q1 is —n.
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e Taking arbitrary ¢ € CZ°(€20) with support inside Qg yields:
7diV(CM0VU0) = f in Qo,

and likewise:
—div(aaVur) = f in Qs.

e There remains: for any ¢ € CZ°(D),

8”0 8“1 o
/F(W‘W)“S—O‘

Since the trace of ¢ on I is arbitrary, the second transmission condition follows:
8U0 8u1

= =1 r.
o on o on on

This principle extends to many other physical situations, such as that of

linearized elasticity.
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In a very general Hausdorff topological space X,

e Assume that we aim to prove that a sequence x, € X converges to some element
le X.

e In practice, it often happens that we can only prove that a subsequence x,,
converges to /.

Actually, quite often, what we are able to prove is that

“From any subsequence x,, of x, we can extract a further subsequence X, of xa,
which converges to £

e Then, a simple argument reveals that the whole sequence x, converges to /.
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Let X be a Hausdorff topological space, and let x, € X be a sequence. Assume that
there exists £ € X such that

For all subsequence {x,,p} there exists a further subsequence

peEN’

{x,,pq } converging to .
qeN

Then the whole sequence x, converges to £ as n — oo.

Proof: Assume that x, does not converge to £. Then there exists an open subset
U C X containing ¢ and a subsequence {X”P}peN such that:

VpeEN, x,, € X\U.

From the assumption, one may then extract a subsequence {x,,pq }qu from {X"P}peN

such that:
q— o0
Xnp, — L.

In particular, there exists p € N large enough such that x,, € U, which is a
contradiction.
4
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