An introduction to shape and topology optimization

Éric Bonnetier* and Charles Dapogny†

 st Institut Fourier, Université Grenoble-Alpes, Grenoble, France † CNRS & Laboratoire Jean Kuntzmann, Université Grenoble-Alpes, Grenoble, France

Fall, 2020

Homogenization and non existence of optimal design (I)

 Let us consider the following shape optimization problem, in the two-phase conductivity setting:

$$\min_{\Omega \subset D} J(\Omega)$$
, where $J(\Omega) := \int_D j(u_\Omega) \, \mathrm{d}x$, (SO)

and $j:\mathbb{R} \to \mathbb{R}$ is a given, smooth function such that:

$$|j(u)| \le C(1+|u|^2),$$

 $|j'(u)| \le C(1+|u|) \text{ and } |j''(u)| \le C.$

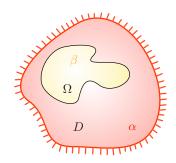
• The temperature $u_{\Omega} \in H_0^1(D)$ is the solution to:

$$\left\{ \begin{array}{rcl} -\mathrm{div}(\gamma_{\Omega}\nabla u_{\Omega}) & = & f & \text{in } D, \\ u_{\Omega} & = & 0 & \text{on } \partial D, \end{array} \right.$$

where the conductivity γ_{Ω} is of the form:

$$\gamma_{\Omega}(x) = \alpha + \chi_{\Omega}(x)(\beta - \alpha), \quad x \in D.$$

• According to the ersatz material trick, this approximates the one-phase and void problem as $\alpha \to 0$.

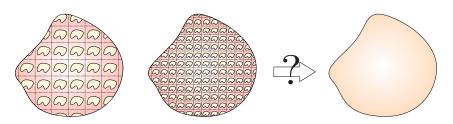


Homogenization and non existence of optimal design (II)

- The shape optimization problem (SO) does not have a solution in general.
- The main reason is the homogenization phenomenon: there exist minimizing sequences of shapes Ω^n , i.e.

$$J(\Omega_n) \xrightarrow{n \to \infty} \inf_{\Omega \subset D} J(\Omega)$$

but Ω_n develops smaller and smaller features as $n \to \infty$, and has no limit as a "true" shape.



 One remedy is relaxation: enlarge the set of admissible designs so that it contain the "limiting" or "effective behaviors" of such minimizing sequences.

A wee bit of history

- The first investigations about effective modulus theory in averaged media dates back to Poisson (1781-1840).
- The term "homogenization" was coined by I. Babuska.
- The variational theory of homogenization was developed by F. Murat and L. Tartar.

• An introductory reference to this theory is Chapter 7 in [Allc]; see [Allh] for a more exhaustive and technical presentation.

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- 3 Homogenization of the conductivity equation
- A study of composite materials
- Relaxation by homogenization

The direct method in the calculus of variations (I)

Let $(V, ||\cdot||)$ be a Banach space. We consider the minimization problem:

$$\min_{v \in A} J(v), \text{ where } \left\{ \begin{array}{l} J: V \to \mathbb{R} \text{ is an objective function;} \\ A \subset V \text{ is a set of admissible points.} \end{array} \right. \tag{M}$$

Theorem 1.

Assume that:

- V is a reflexive Banach space;
- The function J "tends to infinity at infinity":

$$\forall M > 0, \exists C > 0 \text{ s.t. } ||v|| > C \Rightarrow J(v) > M.$$

1 The function J is sequentially lower semi-continuous for the weak convergence:

If
$$v_n \xrightarrow{n \to \infty} v$$
 weakly, then $J(v) \le \liminf_{n \to \infty} J(v_n)$.

① The set A is closed for the weak topology of V, i.e. for any sequence $v_n \in A$,

$$v_n \xrightarrow{n \to \infty} v$$
 weakly in $V \Rightarrow v \in A$.

Then the problem (M) has a minimum point.

The direct method in the calculus of variations (II)

Proof:

• Let v_n be a minimizing sequence for J(v):

$$v_n \in A$$
, and $J(v_n) \xrightarrow{n \to \infty} \inf_{v \in A} J(v)$.

Such a sequence exists by the very definition of the infimum.

 The sequence v_n is bounded. Indeed, if it were not the case, there would exist a subsequence v_{nν} such that:

$$||v_{n_k}|| \xrightarrow{k \to \infty} \infty.$$

Since J(v) "tends to infinity at infinity", this would imply that:

$$J(v_{n_k}) \xrightarrow{k \to \infty} \infty$$
,

in contradiction with the fact that v_n is a minimizing sequence for J(v).

• Hence, since V is reflexive, there exists a subsequence v_{n_k} and $v \in V$ such that:

$$v_{n_k} \xrightarrow{k \to \infty} v$$
 weakly in V .

The direct method in the calculus of variations (III)

- Since the set A is weakly closed, the limit v belongs to A.
- From the sequential lower semi-continuity of J(v), it follows:

$$J(v) \leq \liminf_{k \to \infty} J(v_{n_k}) = \inf_{v \in A} J(v),$$

and so the element v satisfies

$$J(v)=\inf_{v\in A}J(v).$$

The direct method in the calculus of variations (IV)

In practice, it often happens that:

- The function J(v) fails to be lower semi-continuous;
- The admissible set A fails to be closed for the weak convergence in V.

This reflects the fact that minimizing sequences v_n for J(v) "go to nowhere", i.e. A lacks compactness.

A natural remedy is relaxation, which consists in enlarging the set A as:

$$A^* = \{v \in V \text{ is the weak * limit of some sequence } v_n \in A\},$$

and correspondingly extending the definition of J(v) to $v \in A^*$:

$$J^*(v) = \inf \left\{ \liminf J(v_n), \ v_n \xrightarrow{n \to \infty} v \text{ weakly} \right\},$$

with the hope to retrieve compactness.

The direct method in the calculus of variations (V)

In typical shape optimization problems of the form

$$\min_{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega),$$

the set of shapes is not closed in any possible sense, i.e.

Minimizing sequences of shapes converge (in an adapted sense) to "something of a different nature."

This raises the following questions.

- What is the set of relaxed designs?
- How can we characterize this set?
- How can we relate the relaxed problem to the original one?
- How can we take advantage of this relaxation procedure in the context of topology optimization?

Part IV

Mathematical homogenization

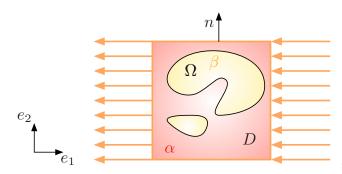
- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- 3 Homogenization of the conductivity equation
- A study of composite materials
- Relaxation by homogenization

A non existence example (I)

- Let D be the unit square in \mathbb{R}^2 , and $n: \partial D \to \mathbb{R}^d$ be the unit normal vector to ∂D .
- For a given subset $\Omega \subset D$, we consider the unique solution $u_{\Omega} \in H^1(D)/\mathbb{R}$ (that is, up to constants) to:

$$\left\{ \begin{array}{ll} -\mathrm{div}(\gamma_\Omega \nabla u_\Omega) = 0 & \text{in } D, \\ \gamma_\Omega \frac{\partial u_\Omega}{\partial n} = n_1 & \text{on } \partial D, \end{array} \right. \text{ where } \gamma_\Omega(x) = \left\{ \begin{array}{ll} \beta & \text{in } \Omega, \\ \alpha & \text{in } D \setminus \Omega, \end{array} \right.$$

 $0 < \alpha \le \beta$ and $n_1 = n \cdot e_1$.



A non existence example (II)

We consider the shape optimization problem:

$$\min_{\Omega \in \mathcal{U}_{\mathrm{ad}}} J(\Omega) \text{ s.t. } \mathrm{Vol}(\Omega) = \eta |D|, \quad (|D| = 1), \tag{SO}$$

where

- The set $\mathcal{U}_{\mathrm{ad}}$ of admissible shapes is made of all measurable subsets $\Omega \subset D$;
- $\eta \in (0,1)$ is an imposed volume fraction for Ω ;
- The objective function $J(\Omega)$ is the compliance of Ω :

$$J(\Omega) = \int_{\partial D} n_1 u_{\Omega} \, \mathrm{d}s = \int_D \gamma_{\Omega} \nabla u_{\Omega} \cdot \nabla u_{\Omega} \, \mathrm{d}x.$$

Theorem 2.

The shape optimization problem (SO) does not have a global minimum point.

A non existence example (III)

Let us start with a preliminary result about an alternative, "dual" expression for $J(\Omega)$.

Lemma 3 (Minimization of the complementary energy).

The function $J(\Omega)$ rewrites:

$$J(\Omega) = \min_{\sigma \in \Sigma} \int_{D} \gamma_{\Omega}^{-1} \sigma \cdot \sigma \, dx,$$

where the set Σ is defined by:

$$\Sigma := \left\{ \sigma \in L^2(D)^2, \operatorname{div} \sigma = 0 \text{ in } D \text{ and } \sigma \cdot n = n_1 \text{ on } \partial D \right\}.$$

Remarks:

- See [KoMi] for an elementary and interesting discussion about this trick.
- The big picture behind this result is the duality theory for the Legendre transform; see [BauCom].

A non existence example (IV)

Proof of the lemma:

From the Lax-Milgram theorem, it holds:

$$J(\Omega) = -2 \min_{u \in H^{1}(D)} \left(\frac{1}{2} \int_{D} \gamma_{\Omega} \nabla u \cdot \nabla u \, dx - \int_{\partial D} n_{1} u \, ds \right),$$

where u_{Ω} is the unique solution (up to constants) to the minimization problem.

• Elementary fact: For any vector $\xi \in \mathbb{R}^2$, and any symmetric, positive definite 2×2 matrix $A \in \mathbb{R}^{2 \times 2}$,

$$\frac{1}{2}A\xi \cdot \xi = \max_{\sigma \in \mathbb{R}^2} \Big(\xi \cdot \sigma - \frac{1}{2}A^{-1}\sigma \cdot \sigma\Big),$$

where the maximum is uniquely attained at $\sigma = A^{-1}\xi$.

• Then $J(\Omega)$ rewrites

$$J(\Omega) = \max_{u \in H^{1}(D)} \min_{\sigma \in L^{2}(D)^{2}} \mathcal{L}(u, \sigma),$$

where we have defined

$$\mathcal{L}(u,\sigma) = -2\int_{D} \sigma \cdot \nabla u \, dx + \int_{D} \gamma_{\Omega}^{-1} \sigma \cdot \sigma \, dx + 2\int_{\partial D} n_{1}u \, ds$$
$$= 2\int_{D} (\operatorname{div}\sigma)u \, dx - 2\int_{\partial D} u\sigma \cdot n \, ds + \int_{D} \gamma_{\Omega}^{-1} \sigma \cdot \sigma \, dx + 2\int_{\partial D} n_{1}u \, ds.$$

A non existence example (V)

• We know from what precedes that $(u, \sigma) = (u_{\Omega}, \gamma_{\Omega} \nabla u_{\Omega})$ realizes the max-min: it is therefore a saddle point for $\mathcal{L}(u, \sigma)$, and so the min and max can be interchanged:

$$J(\Omega) = \min_{\sigma \in L^{2}(D)^{2}} \max_{u \in H^{1}(D)} \mathcal{L}(u, \sigma).$$

• Now, for a given $\sigma \in L^2(D)^2$, we verify that:

$$\max_{u \in H^{1}(D)} \mathcal{L}(u, \sigma) = \begin{cases} \int_{D} \gamma_{\Omega}^{-1} \sigma \cdot \sigma \, \mathrm{d}x & \text{if } \sigma \in \Sigma, \\ +\infty & \text{otherwise.} \end{cases}$$

where:

$$\Sigma := \Big\{ \sigma \in L^2(D)^2, \ \operatorname{div} \sigma = 0 \ \text{in} \ D \ \text{and} \ \sigma \cdot \textbf{n} = \textbf{n}_1 \ \text{on} \ \partial D \Big\}.$$

A non existence example (VI)

• Indeed, if $\sigma \in \Sigma$, one has immediately:

$$\mathcal{L}(u,\sigma) = \int_D \gamma_{\Omega}^{-1} \sigma \cdot \sigma \, \mathrm{d}x.$$

On the other hand, if $\sigma \notin \Sigma$,

• Either $\mathrm{div}\sigma$ does not vanish identically on D, and so

there exists
$$\varphi \in \mathcal{C}_c^{\infty}(D)$$
 such that $\int_D (\operatorname{div}\sigma) \varphi \, \mathrm{d}x > 0$,

which implies:

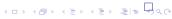
$$\max_{u \in H^{1}(D)} \mathcal{L}(u, \sigma) \geq \mathcal{L}(\lambda \varphi, \sigma) \xrightarrow{\lambda \to +\infty} +\infty.$$

• Or $\sigma \cdot n$ does not coincide with n_1 on ∂D , and by the same token:

$$\max_{\sigma} \mathcal{L}(u, \sigma) = +\infty.$$

• As a result of this discussion, $J(\Omega)$ has the desired expression:

$$J(\Omega) = \min_{\sigma \in \Sigma} \int_D \gamma_{\Omega}^{-1} \sigma \cdot \sigma \, \mathrm{d}x.$$



A non existence example (VII)

Sketch of proof of the non existence result: We proceed in three steps.

Step 1: We derive a lower bound for $J(\Omega)$.

• When $\Omega \subset D$ has measure $\operatorname{Vol}(\Omega) = \eta |D|$, the mean value of the conductivity γ_{Ω} over D is:

$$\gamma_0 := \frac{1}{|D|} \int_D \gamma_\Omega dx = (1 - \eta)\alpha + \eta\beta,$$

• The mean value of any $\sigma \in \Sigma$ is exactly e_1 , as a result of the following integration by parts, for i=1,2:

$$\begin{split} \left(\frac{1}{|D|}\int_{D}\sigma\,\mathrm{d}x - e_{1}\right)\cdot e_{i} &= \frac{1}{|D|}\int_{D}\left(\sigma - e_{1}\right)\cdot \nabla x_{i}\,\mathrm{d}x = \\ &\frac{1}{|D|}\int_{\partial D}\left(\sigma - e_{1}\right)\cdot n\,x_{i}\,\mathrm{d}s - \frac{1}{|D|}\int_{D}\left(\mathrm{div}\sigma\right)x_{i}\,\mathrm{d}x = 0. \end{split}$$

A non existence example (VIII)

We now rely on the next lemma, which follows from a straightforward calculation.

Lemma 4.

The function

$$\mathcal{I}: (0,\infty) \times \mathbb{R}^2 \to \mathbb{R}, \ \mathcal{I}(a,\sigma) = a^{-1}|\sigma|^2$$

has the following exact Taylor expansion about any point (a_0, σ_0) :

$$\mathcal{I}(\mathsf{a},\sigma) = \mathcal{I}(\mathsf{a}_0,\sigma_0) + \mathcal{I}'(\mathsf{a}_0,\sigma_0)(\mathsf{a}-\mathsf{a}_0,\sigma-\sigma_0) + \mathcal{I}\left(\mathsf{a},\sigma-\frac{\mathsf{a}}{\mathsf{a}_0}\sigma_0\right),$$

where

$$\mathcal{I}'(a_0, \sigma_0)(a - a_0, \sigma - \sigma_0) = -\frac{|\sigma_0|^2}{a_0^2}(a - a_0) + \frac{2}{a_0}\sigma_0 \cdot (\sigma - \sigma_0).$$

It follows that for any measurable subset $\Omega \subset D$ with $Vol(\Omega) = \eta |D|$,

$$J(\Omega) = \min_{\sigma \in \Sigma} \int_{D} \mathcal{I}(\gamma_{\Omega}, \sigma) dx$$

$$= \int_{D} \mathcal{I}(\gamma_{0}, e_{1}) dx + \min_{\sigma \in \Sigma} \int_{D} \mathcal{I}\left(\gamma_{\Omega}, \sigma - \frac{\gamma_{\Omega}}{\gamma_{0}} e_{1}\right) dx$$

$$\geq \int_{D} \mathcal{I}(\gamma_{0}, e_{1}) dx$$

$$= |D| ((1 - \eta)\alpha + \eta\beta)^{-1},$$

which is the desired lower bound for $J(\Omega)$.

A non existence example (IX)

Second step: The lower bound is not attained.

Let us look more carefully at the derivation of the lower bound in Step 1:

$$J(\Omega) = \min_{\sigma \in \Sigma} \int_{D} \mathcal{I}(\gamma_{\Omega}, \sigma) dx$$

$$= \int_{D} \mathcal{I}(\gamma_{0}, e_{1}) dx + \min_{\sigma \in \Sigma} \int_{D} \mathcal{I}\left(\gamma_{\Omega}, \sigma - \frac{\gamma_{\Omega}}{\gamma_{0}} e_{1}\right) dx$$

$$\geq \int_{D} \mathcal{I}(\gamma_{0}, e_{1}) dx$$

$$= |D| ((1 - \eta)\alpha + \eta\beta)^{-1},$$

• Equality is solely lost in the third line; hence, equality holds if and only if:

$$\mathcal{I}\left(\gamma_{\Omega}, \sigma - \frac{\gamma_{\Omega}}{\gamma_{0}}e_{1}\right) = \gamma_{\Omega}^{-1}\left|\sigma(x) - \frac{\gamma_{\Omega}}{\gamma_{0}}e_{1}\right|^{2} = 0 \text{ for a.e. } x \in D.$$

• In turn, this only happens when $\sigma = \frac{\gamma_{\Omega}}{\gamma_0} e_1$ a.e. in D, which is impossible since then σ would not satisfy $\sigma \cdot n = n_1$ on ∂D , as is required from elements of Σ .

We have thus proved the strict lower bound:

$$\forall \Omega \subset D$$
 measurable with $\operatorname{Vol}(\Omega) = \eta |D|, \quad J(\Omega) > |D| \left((1-\eta)\alpha + \eta\beta \right)^{-1}$.

A non existence example (X)

Third step: Construction of a minimizing sequence.

• We construct a sequence of measurable shapes $\Omega^n \subset D$ such that:

$$\operatorname{Vol}(\Omega^n) = \eta |D|, \text{ and } J(\Omega^n) \to |D|((1-\eta)\alpha + \eta\beta) \text{ as } n \to \infty.$$

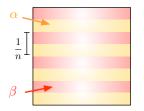
• Let indeed $\chi:(0,1)\to\mathbb{R}$ be the function defined by:

$$\chi(t) = \left\{ egin{array}{ll} 1 & ext{if } t \leq \eta, \ 0 & ext{otherwise}, \end{array}
ight.$$

and let Ω^n be the domain;

$$\Omega^n = \{(x_1, x_2) \in D, \ \chi(nx_2) = 1\};$$

roughly speaking, Ω^n is made of *n* regularly spaced horizontal strips with width $\frac{\eta}{n}$.



. . .

A non existence example (XI)

The theory of homogenization will allow to prove that

$$u_{\Omega^n} \xrightarrow{n \to \infty} u^*$$
 weakly in $H^1(D)$,

where $u^* \in H^1(D)/\mathbb{R}$ is the solution to the homogenized problem:

$$\begin{cases} -\operatorname{div}(A^*\nabla u^*) &= 0 & \text{in } D, \\ A^*\nabla u^* \cdot n &= n_1 & \text{on } \partial D, \end{cases}$$

and the homogenized matrix A* reads:

$$A^* = \begin{pmatrix} (1-\eta)\alpha + \eta\beta & 0 \\ 0 & ((1-\eta)\alpha^{-1} + \eta\beta^{-1})^{-1} \end{pmatrix}.$$

• The function u^* can be calculated in closed form; one verifies indeed that:

$$A^* \nabla u^* = e_1$$
, and $u^*(x) = ((1 - \eta)\alpha + \eta\beta)^{-1} x_1$.

Finally, taking limits in the definition of $J(\Omega)$ yields immediately:

$$J(\Omega^n) = \int_{\partial D} n_1 u_{\Omega^n} ds \longrightarrow \int_{\partial D} n_1 u^* ds = ((1 - \eta)\alpha + \eta\beta)^{-1},$$

which is the desired value.

Non existence in shape and topology optimization

This example reflects a quite general situation in shape and topology optimization:

- When Ω_n is a minimizing sequence for $J(\Omega)$, the corresponding sequence $\chi_{\Omega_n} \in L^{\infty}(D, \{0, 1\})$ of characteristic functions is bounded (by 1).
- Hence, up to a subsequence, χ_{Ω_n} converges weakly * to a density $\theta \in L^{\infty}(D, [0, 1])$.
- The associated sequence u_{Ω_n} is bounded in $H^1(D)$, and so (up to a subsequence) it converges weakly to some element $u^* \in H^1(D)$.
- How can we characterize u^* (via a PDE)?
- What does the energy

$$\int_{D} \gamma_{\Omega_{n}} \nabla u_{\Omega_{n}} \cdot \nabla u_{\Omega_{n}} \, \mathrm{d}x$$

converge to?

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- 3 Homogenization of the conductivity equation
 - Formal two-scale asymptotic expansions
 - Convergence results
 - Beyond the periodic case and beyond conductivity
- A study of composite materials
- Relaxation by homogenization

The two-phase conductivity setting

Let us recall our model problem:

 We consider the following shape optimization problem, in the two-phase conductivity setting:

$$\min_{\Omega \subset D} J(\Omega)$$
, where $J(\Omega) := \int_{D} j(u_{\Omega}) dx$, (SO)

and $j: \mathbb{R} \to \mathbb{R}$ is a given, smooth function.

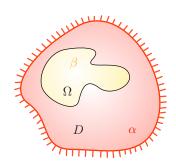
• The temperature $u_{\Omega} \in H_0^1(D)$ is the solution to:

$$\begin{cases}
-\operatorname{div}(\gamma_{\Omega}\nabla u_{\Omega}) &= f & \text{in } D, \\
u_{\Omega} &= 0 & \text{on } \partial D,
\end{cases}$$

where the conductivity γ_{Ω} is of the form:

$$\gamma_{\Omega}(x) = \alpha + \chi_{\Omega}(x)(\beta - \alpha), \quad x \in D.$$

 How to give a meaning to (C) and (SO) at the "limit" when Ω develops infinitely many, infinitely small patterns?



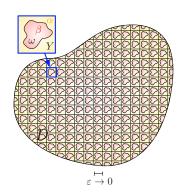
Periodic homogenization

- We mainly deal with the periodic setting.
- Let $Y = (0,1)^d$ be the unit periodicity cell.
- The conductivity inside Y associated to the pattern $\omega \subset Y$ is:

$$A(y) = \begin{cases} \beta & \text{if } y \in \omega, \\ \alpha & \text{if } y \in D \setminus \overline{\omega}. \end{cases}$$

- This pattern induces a conductivity distribution $A\left(\frac{\kappa}{\varepsilon}\right)$ for $\kappa \in D$, by rescaling A(y) at size ε and periodization.
- The state $u_{\varepsilon} \in H_0^1(D)$ solves:

$$\left\{ \begin{array}{cc} -\mathrm{div}\left(A\left(\frac{x}{\varepsilon}\right)\nabla u_{\varepsilon}\right) = f & \text{in } D, \\ u_{\varepsilon} = 0 & \text{on } \partial D. \end{array} \right.$$



What does u_{ε} look like, as $\varepsilon \to 0$?

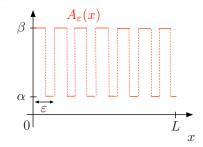
Appetizer: the 1d case (I)

In 1d, let D = (0, L); we solve the problem:

$$\begin{cases} -\frac{\mathrm{d}}{\mathrm{d}x} \left(A \left(\frac{x}{\varepsilon} \right) \frac{\mathrm{d}u_{\varepsilon}}{\mathrm{d}x} \right) = f & \text{in } D, \\ u_{\varepsilon}(0) = u_{\varepsilon}(1) = 0, \end{cases}$$

where, for $y \in Y = (0,1)$,

$$A(y) = \begin{cases} \alpha & \text{if } y < \theta, \\ \beta & \text{otherwise.} \end{cases}$$



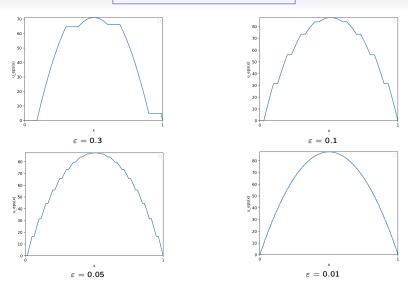
We shall see in a more general context that:

• The sequence u_{ε} converges to the solution u^* to the partial differential equation

$$\left\{ \begin{array}{l} -\frac{\mathrm{d}}{\mathrm{d}x} \left(A^* \frac{\mathrm{d}u_\varepsilon}{\mathrm{d}x} \right) = f \quad \text{in } D, \\ u_\varepsilon(0) = u_\varepsilon(1) = 0, \end{array} \right. \text{ where } A^* = \left(\frac{\theta}{\alpha} + \frac{(1-\theta)}{\beta} \right)^{-1}.$$

- The convergence is weak in $H_0^1(0, L)$: u_{ε} oscillates around u^* :
 - The function u_{ε} converges to u^* in $L^2(0,L)$;
 - The derivative $\frac{\mathrm{d}u_{\varepsilon}}{\mathrm{d}x}$ converges only weakly in $L^2(0,L)$ to $\frac{\mathrm{d}u^*}{\mathrm{d}x}$.

Appetizer: the 1d case (II)



Plot of the function $u_{\varepsilon}(x)$ for f=1, $\theta=0.3$, $\alpha=1$, $\beta=0.001$ and various values of the period ε .

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- 2 Non existence in shape optimization problems
- 3 Homogenization of the conductivity equation
 - Formal two-scale asymptotic expansions
 - Convergence results
 - Beyond the periodic case and beyond conductivity
- A study of composite materials
- Relaxation by homogenization

Formal two-scale expansions: rationale (I)

• For given values $0 < \alpha < \beta$, let us denote

$$\mathcal{M}_{\alpha,\beta}:=\left\{\textit{M}\in\mathbb{R}_{s}^{\textit{d}\times\textit{d}},\text{ s.t. }\forall \xi\in\mathbb{R}^{\textit{d}},\text{ }\alpha|\xi|^{2}\leq\textit{M}\xi\cdot\xi\leq\beta|\xi|^{2}\right\},$$

where $\mathbb{R}^{d \times d}_s$ stands for the set of symmetric $d \times d$ matrices.

• We aim to guess the limiting behavior of the solution $u_{\varepsilon} \in H^1_0(D)$ to

$$\left\{ \begin{array}{ccc} -\mathrm{div}\left(A\left(\frac{x}{\varepsilon}\right)\nabla u_{\varepsilon}\right) = f & \text{in } D, \\ u_{\varepsilon} = 0 & \text{on } \partial D, \end{array} \right. \text{ where } A(y) \in L^{\infty}(Y,\mathcal{M}_{\alpha,\beta}).$$

• To this end, we rely on the formal, heuristic two-scale expansion method.

Formal two-scale expansions: rationale (II)

· We postulate an expansion of the form:

$$u_{\varepsilon}(x) = u_0\left(x, \frac{x}{\varepsilon}\right) + \varepsilon u_1\left(x, \frac{x}{\varepsilon}\right) + \varepsilon^2 u_2\left(x, \frac{x}{\varepsilon}\right) + \ldots,$$

where each term $u_i(x, y)$

- depends in a smooth way on the macroscopic variable $x \in D$,
- is a periodic function of the microscopic (or "fast") variable $y \in Y$.

• In order to identify each term, we insert this particular structure into the equation

$$-\mathrm{div}\left(A\left(\frac{x}{\varepsilon}\right)\nabla u_{\varepsilon}\right)=f,$$

and we identify terms with equal powers in ε .

The Sobolev space $H^1_\#(Y)$ of Y-periodic functions (I)

The functions space $H^1_\#(Y)$ of Y-periodic H^1 functions is defined by:

$$H^1_\#(Y):=\left\{u\in H^1_{\text{loc}}(\mathbb{R}^d),\ u(x+e_i)=u(x),\ i=1,\dots,d\ \text{and a.e.}\ x\in\mathbb{R}^d\right\},$$
 and it is equipped with the norm $||\cdot||_{H^1(Y)}.$

Proposition 5.

- The subset $C^{\infty}_{\#}(Y)$ of smooth Y-periodic functions is dense in $H^{1}_{\#}(Y)$.
- For any function $u \in H^1_\#(Y)$, it holds: $\int_Y \frac{\partial u}{\partial x_i} dx = 0$.

Hint of proof:

- The first point is proved by a classical approximation and truncation argument.
- The second point follows from the first one by density: for u ∈ C[∞]_#(Y), Green's formula implies:

$$\int_{\mathcal{X}} \frac{\partial u}{\partial x_i} \, \mathrm{d}x = \int_{\partial \mathcal{X}} u n_i \, \mathrm{d}s = 0.$$

The Sobolev space $H^1_\#(Y)$ of Y-periodic functions (II)

We shall use repeatedly the following lemma:

Lemma 6.

Let $g \in L^2(Y)$ with $\int_Y g \, dy = 0$; then the equation

$$\left\{ \begin{array}{ll} -\mathrm{div}(A(y)\nabla u) = g & \text{in } Y, \\ y \mapsto u(y) & \text{is } Y\text{-periodic}, \end{array} \right.$$

has a unique solution in $H^1_\#(Y)/\mathbb{R}$ (i.e. up to constants).

<u>Proof:</u> A variational formulation for this problem is:

Search for
$$u \in H^1_\#(Y)/\mathbb{R}$$
 s.t. $\int_Y A(y) \nabla u \cdot \nabla v \, dy = \int_Y gv \, dy$.

The mapping

$$(u,v)\mapsto \int_{V} A(y)\nabla u\cdot\nabla v\,\mathrm{d}y$$

is a continuous, coercive bilinear form on $H^1_\#(Y)/\mathbb{R}$.

• $v \mapsto \int_Y gv \, dy$ is a continuous linear form on $H^1_\#(Y)/\mathbb{R}$ because $\int_Y g \, dy = 0$.

The result then follows from the Lax-Milgram theorem.

Formal two-scale expansions (I)

For any of the terms $u_i\left(x,\frac{x}{\varepsilon}\right)$, the chain rule yields:

$$\nabla\left(u_i\left(x,\frac{x}{\varepsilon}\right)\right) = \left.\left(\nabla_x u_i(x,y) + \frac{1}{\varepsilon}\nabla_y u_i(x,y)\right)\right|_{(x,y)=\left(x,\frac{x}{\varepsilon}\right)},$$

and so

$$-\operatorname{div}\left[A\left(\frac{x}{\varepsilon}\right)\nabla\left(u_{i}\left(x,\frac{x}{\varepsilon}\right)\right)\right] = -\frac{1}{\varepsilon^{2}}\underbrace{\left(\operatorname{div}_{y}\left(A(y)\nabla_{y}u_{i}(x,y)\right)\right)\Big|_{(x,y)=\left(x,\frac{x}{\varepsilon}\right)}}_{::=\operatorname{div}_{y}(A\nabla_{y}u_{i})\left(x,\frac{x}{\varepsilon}\right)}$$

$$-\frac{1}{\varepsilon}\underbrace{\left(\operatorname{div}_{x}(A(y)\nabla_{y}u_{i}(x,y))\right)\Big|_{(x,y)=\left(x,\frac{x}{\varepsilon}\right)}}_{:=\operatorname{div}_{x}(A\nabla_{y}u_{i})\left(x,\frac{x}{\varepsilon}\right)} - \underbrace{\left(\operatorname{div}_{y}\left(A(y)\nabla_{x}u_{i}(x,y)\right)\right)\Big|_{(x,y)=\left(x,\frac{x}{\varepsilon}\right)}}_{:=\operatorname{div}_{x}(A\nabla_{x}u_{i})\left(x,\frac{x}{\varepsilon}\right)} - \underbrace{\left(\operatorname{div}_{x}(A(y)\nabla_{x}u_{i}(x,y))\right)\Big|_{(x,y)=\left(x,\frac{x}{\varepsilon}\right)}}_{:=\operatorname{div}_{x}(A\nabla_{x}u_{i})\left(x,\frac{x}{\varepsilon}\right)}.$$

Formal two-scale expansions (II)

Inserting the expansion

$$u_{\varepsilon}(x) = \sum_{i=0}^{\infty} u_i\left(x, \frac{x}{\varepsilon}\right)$$

into the conductivity equation

$$-\mathrm{div}(A\left(\frac{x}{\varepsilon}\right)\nabla u_{\varepsilon})=f \text{ in } D,$$

results in:

$$\begin{split} f(x) &= -\frac{1}{\varepsilon^2} \mathrm{div}_y \left(A \nabla_y u_0 \right) \left(x, \frac{x}{\varepsilon} \right) \\ &- \frac{1}{\varepsilon} \left(\mathrm{div}_x (A \nabla_y u_0) + \mathrm{div}_y (A (\nabla_x u_0 + \nabla_y u_1)) \right) \left(x, \frac{x}{\varepsilon} \right) \\ &- \sum_{i=0}^{\infty} \varepsilon^i \left(\mathrm{div}_x (A (\nabla_x u_i + \nabla_y u_{i+1})) \right. \\ &\left. + \mathrm{div}_y (A (\nabla_x u_{i+1} + \nabla_y u_{i+2})) \right) \left(x, \frac{x}{\varepsilon} \right). \end{split}$$

Formal two-scale expansions (III)

Identification of the terms of order ε^{-2} .

• We obtain:

$$-{\rm div}_y(A(y)\nabla_y u_0(x,y))=0,\quad x\in D,\ y\in Y.$$

• We have seen that for any $g \in L^2(Y)$ with $\int_Y g(y) dy = 0$, the equation

$$\left\{ \begin{array}{ll} -{\rm div}_y(A(y)\nabla_y v(y)) = g(y) & \text{in } Y, \\ y \mapsto v(y) & \text{is } Y - \text{periodic}, \end{array} \right.$$

has a unique solution in $H^1_\#(Y)$, up to constants.

• For fixed $x \in D$, 0 is one solution $y \mapsto u_0(x, y)$ to

$$-{\rm div}_y(A(y)\nabla_y u_0(x,y))=0,\quad y\in Y.$$

• Hence, $u_0(x, y)$ is a function of x only, that we rewrite $u_0(x)$.

Formal two-scale expansions (IV)

Identification of the terms of order ε^{-1} .

• We obtain:

$$-\mathrm{div}_y(A(y)(\nabla_x u_0(x) + \nabla_y u_1(x,y))) = 0, \quad x \in D, \ y \in Y.$$

• Let us introduce the cell functions $\chi_i \in H^1_\#(Y)/\mathbb{R}$, $i=1,\ldots,d$, solutions to:

$$\left\{ \begin{array}{ll} -{\rm div}_y(A(y)(\nabla_y \chi_i(y) + e_i)) = 0 & \text{in } Y, \\ y \mapsto \chi_i(y) & \text{is } Y\text{-periodic,} \end{array} \right.$$

• Since $\nabla u_0(x) = \sum_{i=1}^d \frac{\partial u_0}{\partial x_i} e_i$, we obtain by linearity, owing to the well-posedness Lemma 6:

$$u_1(x,y) = \sum_{i=1}^d \frac{\partial u_0}{\partial x_i}(x)\chi_i(y) + r(x),$$

where r(x) is a function of x only.

Formal two-scale expansions (V)

Identification of the terms of order ε^{0} .

• We obtain:

$$-\operatorname{div}_{x}(A(y)(\nabla_{x}u_{0}(x) + \nabla_{y}u_{1}(x,y))) \\ -\operatorname{div}_{y}(\underbrace{A(y)(\nabla_{x}u_{1}(x,y) + \nabla_{y}u_{2}(x,y))}_{Y-\operatorname{periodic}}) = f(x).$$

• Integrating over $y \in Y$ yields:

$$-\int_{Y}\operatorname{div}_{x}(A(y)(\nabla_{x}u_{0}(x)+\nabla_{y}u_{1}(x,y)))\,\mathrm{d}y=f(x),\quad x\in D.$$

• Now using the expression for $u_1(x, y)$, we obtain:

$$-\mathrm{div}_{x}\left(\sum_{i=1}^{d}\left(\int_{Y}(A(y)(e_{j}+\nabla_{y}\chi_{j}(y))\,\mathrm{d}y\right)\frac{\partial u_{0}}{\partial x_{j}}(x)\right)=f(x).$$

Formal two-scale expansions (VI)

Identification of the terms of order ε^{0} (continued).

This rewrites:

$$\begin{aligned} -\mathrm{div}(A^*\nabla u_0) &= f, \text{ where } A_{ij}^* &= \int_{\Upsilon} A(y)(e_j + \nabla_y \chi_j(y)) \cdot e_i \, \mathrm{d}y, \\ &= \int_{\Upsilon} A(y)(e_j + \nabla_y \chi_j(y)) \cdot (e_i + \nabla_y \chi_i(y)) \, \mathrm{d}y \end{aligned}$$

where we have used the variational formulation for χ_i .

By linearity, it holds:

$$\forall \xi \in \mathbb{R}^d, \quad A^* \xi \cdot \xi = \int_Y A(y)(\xi + \nabla_y \chi_{\xi}(y)) \cdot (\xi + \nabla_y \chi_{\xi}(y)) \, \mathrm{d}y,$$

where

$$\left\{ \begin{array}{ll} -{\rm div}_y(A(y)(\nabla_y\chi_\xi(y)+\xi))=0 & \text{in } Y, \\ y\mapsto \chi_\xi(y) & \text{is } Y\text{-periodic}, \end{array} \right.$$

- One may prove that the matrix A* is symmetric, positive definite.
- Using the same type of expansion on ∂D yields $u_0(x) = 0$ on ∂D .

Formal two-scale expansions: summary

The function $u_{\varepsilon}(x)$ has the expansion:

$$u_{\varepsilon}(x) = u_0(x) + \varepsilon u_1\left(x, \frac{x}{\varepsilon}\right) + \varepsilon^2 u_2\left(x, \frac{x}{\varepsilon}\right) + \dots$$

• The function $u_0(x)$ is the solution to the equation

$$\begin{cases} -\operatorname{div}(A^*\nabla u_0) = f & \text{in } D, \\ u_0 = 0 & \text{on } \partial D. \end{cases}$$

The symmetric, positive definite homogenized tensor A^* is defined by:

$$A_{ij}^* = \int_Y A(y) \Big(e_i + \nabla_y \chi_i(y) \Big) \cdot \Big(e_j + \nabla_y \chi_j(y) \Big) dy,$$

where the cell functions $\chi_i \in H^1_\#(Y)/R$ are the solutions to

$$\left\{ \begin{array}{ll} -\mathrm{div}\Big(A(y)(e_i+\nabla\chi_i)\Big)=0 & \text{in } D, \\ y\mapsto\chi_i(y) & \text{is } Y-\text{periodic.} \end{array} \right.$$

• The first-order term $u_1(x, y)$ is "smooth" in x, and Y-periodic in y:

$$u_1(x,y) = \sum_{i=1}^d \frac{\partial u_0}{\partial x_i}(x)\chi_i(y) + r(x).$$

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- Homogenization of the conductivity equation
 - Formal two-scale asymptotic expansions
 - Convergence results
 - Beyond the periodic case and beyond conductivity
- A study of composite materials
- Relaxation by homogenization

H-Convergence

For given values 0 < $\alpha < \beta$ of the conductivity, let us recall the definition

$$\mathcal{M}_{\alpha,\beta} := \left\{ M \in \mathbb{R}_s^{d \times d}, \text{ s.t. } \forall \xi \in \mathbb{R}^d, \ \alpha |\xi|^2 \leq M \xi \cdot \xi \leq \beta |\xi|^2 \right\},$$

where $\mathbb{R}^{d \times d}_s$ stands for the set of symmetric $d \times d$ matrices.

Definition 1.

A sequence $A^{\varepsilon}(x)$ in $L^{\infty}(D, \mathcal{M}_{\alpha,\beta})$ H-converges to $A^{*}(x) \in L^{\infty}(D, \mathcal{M}_{\alpha,\beta})$ if for any $f \in H^{-1}(D)$, the sequence $u_{\varepsilon} \in H^{1}_{0}(D)$ of solutions to:

$$\left\{ \begin{array}{ll} -\mathrm{div}(A^{\varepsilon}(x)\nabla u_{\varepsilon}(x)) = f(x) & \text{in } D, \\ u_{\varepsilon} = 0 & \text{on } \partial D, \end{array} \right.$$

satisfies

 $u_{\varepsilon} \to u^*$ weakly in $H^1_0(D)$, and $A^{\varepsilon} \nabla u_{\varepsilon} \to A^* \nabla u^*$ weakly in $L^2(D)^d$,

where u* is the unique solution to the homogenized equation

$$\begin{cases} -\operatorname{div}(A^*(x)\nabla u^*(x)) = f(x) & \text{in } D, \\ u^* = 0 & \text{on } \partial D. \end{cases}$$

The convergence result (I)

- This course deals mainly with periodic homogenization.
- In this context, the following result about the weak convergence of periodized functions is crucial.

Lemma 7.

Let $f \in L^2_\#(Y)$, and let f_ε be the sequence in $L^2_{\mathrm{loc}}(\mathbb{R}^d)$ defined by:

$$f_{\varepsilon}(x) := f\left(\frac{x}{\varepsilon}\right), \text{ a.e. } x \in \mathbb{R}^d.$$

Then for any bounded set $D \subset \mathbb{R}^d$, $f_{\varepsilon}(x)$ converges weakly in $L^2(D)$ to the constant function with value equal to the average $\int_Y f(y) \, \mathrm{d}y$:

$$\forall g \in L^2(D), \quad \int_D f_{\varepsilon}(x)g(x) dx \xrightarrow{\varepsilon \to 0} \left(\int_X f(y) dy \right) \int_D g(x) dx.$$

The convergence result (II)

Theorem 8.

Let $A(y) \in L^{\infty}_{\#}(Y, \mathcal{M}_{\alpha,\beta})$ be a periodic matrix field on the unit cell, and define

$$A^{\varepsilon}(x) := A\left(\frac{x}{\varepsilon}\right), \quad a.e. \quad x \in D.$$

The sequence $A^{\varepsilon}(x)$ H-converges to the constant matrix $A^* \in \mathcal{M}_{\alpha,\beta}$ with entries

$$A_{ij}^* = \int_Y A(y)(e_i + \nabla \chi_i(y)) \cdot (e_j + \nabla \chi_j(y)) \, \mathrm{d}y, \quad i, j = 1, \dots, d,$$

where the $\chi_i \in H^1_\#(Y)/\mathbb{R}$ are the cell functions, solution to:

$$\left\{ \begin{array}{ll} -\mathrm{div}(A(y)(e_i + \nabla \chi_i(y))) = 0 & \text{in } Y, \\ y \mapsto \chi_i(y) & \text{is } Y - \textit{periodic}. \end{array} \right.$$

Sketch of proof: Let u_{ε} ∈ $H_0^1(D)$ be the unique solution to the conductivity equation:

$$\begin{cases} -\operatorname{div}(A^{\varepsilon}(x)\nabla u_{\varepsilon}(x)) = f(x) & \text{in } D, \\ u_{\varepsilon} = 0 & \text{on } \partial D, \end{cases}$$

and let $\sigma_{\varepsilon} := A^{\varepsilon} \nabla u_{\varepsilon} \in L^{2}(D)^{d}$ be the associated flux.

Tartar's energy method (I)

Step 1: we derive a priori estimates for u_{ε} and σ_{ε} .

• The variational formulation for u_{ε} reads:

$$\forall v \in H_0^1(D), \quad \int_D A^{\varepsilon}(x) \nabla u_{\varepsilon} \cdot \nabla v \, dx = \int_D fv \, dx. \tag{VF}$$

• Taking $v = u_{\varepsilon}$ in the above identity, we obtain:

$$||\nabla u_{\varepsilon}||_{L^{2}(D)^{d}}^{2} \leq ||f||_{H^{-1}(D)}||u_{\varepsilon}||_{H^{1}(D)}.$$

Thanks to the Poincaré inequality, this yields:

$$||u_{\varepsilon}||_{H^{1}(D)} \leq C$$
, and so $||\sigma_{\varepsilon}||_{L^{2}(D)^{d}} \leq C$.

• Hence, there exists a subsequence (still labelled by ε) and $u^* \in H^1(D)$, $\sigma^* \in L^2(D)^d$ such that:

$$u_{\varepsilon} \to u^*$$
 weakly in $H^1(D)$, and strongly in $L^2(D)$ by the Rellich theorem, $\sigma_{\varepsilon} \to \sigma^*$ weakly in $L^2(D)^d$.

• In particular, taking limits in (VF) yields:

$$\forall v \in H_0^1(D), \quad \int_D \sigma^* \cdot \nabla v \, \mathrm{d}x = \int_D f v \, \mathrm{d}x.$$

Tartar's energy method (II)

Our aim is then to prove that σ^* and u^* are related as:

$$\sigma^*(x) = A^* \nabla u^*(x),$$

where A^* is the homogenized matrix.

Step 2: we construct judicious test functions for the variational formulation of u_{ϵ} .

• For i = 1, ..., d, let us recall the cell functions $\chi_i \in H^1_\#(Y)/\mathbb{R}$:

$$\begin{cases} -\operatorname{div}(A(y)(e_i + \nabla \chi_i)) = 0 & \text{in } Y, \\ y \mapsto \chi_i(y) & \text{is } Y - \text{periodic}, \end{cases}$$
 (CF)

and let us define:

$$w^i(y) = \chi_i(y) + y_i, \quad y \in Y.$$

• We thence construct functions on D by ε -periodization of the w^i :

$$w_{\varepsilon}^{i}(x) := \varepsilon w^{i}\left(\frac{x}{\varepsilon}\right), \quad x \in D.$$

• As a consequence of the definition (CF), it holds that

$$-\mathrm{div}(A^{\varepsilon}(x)\nabla w_{\varepsilon}^{i})=0 \text{ in } H^{-1}(D).$$

Tartar's energy method (III)

• It is easily seen that:

$$w_{\varepsilon}^{i}(x) = \varepsilon \chi_{i}\left(\frac{x}{\varepsilon}\right) + x_{i} \xrightarrow{\varepsilon \to 0} x_{i} \text{ strongly in } L^{2}(D).$$

• Likewise, using the Lemma about weak convergence of periodized functions,

$$\nabla w_{\varepsilon}^{i}(x) = e_{i} + (\nabla \chi_{i}) \left(\frac{x}{\varepsilon}\right) \xrightarrow{\varepsilon \to 0} e_{i} + \underbrace{\int_{Y} \nabla \chi_{i}(y) \, \mathrm{d}y}_{\text{ence 's formula since } \chi_{i}(y) \text{ is } Y - \text{periodic}}_{\text{ence 'x formula since } \chi_{i}(y) \text{ is } Y - \text{periodic}}$$

and so.

$$\nabla w_{\varepsilon}^{i}(x) \xrightarrow{\varepsilon \to 0} e_{i}$$
 weakly in $L^{2}(D)^{d}$.

Tartar's energy method (IV)

Step 3: "Compensated compactness".

- Main idea: use "clever" test functions in the variational formulation (VF) of u_{ε} in order to compensate the oscillations of the conductivity A_{ε} .
- The functions w_εⁱ are used to "modulate" test functions in the variational formulation (VF).
- Let $\phi \in \mathcal{C}_c^{\infty}(D)$ be an arbitrary function. We insert $v(x) = \phi(x)w_{\varepsilon}^i(x)$ in $(\vee F)$.
- This yields:

$$\begin{split} \int_{D} f \phi w_{\varepsilon}^{i} \, \mathrm{d}x &= \int_{D} A^{\varepsilon}(x) \nabla u_{\varepsilon} \cdot \nabla (\phi w_{\varepsilon}^{i}) \, \mathrm{d}x, \\ &= \int_{D} \phi A^{\varepsilon}(x) \nabla u_{\varepsilon} \cdot \nabla w_{\varepsilon}^{i} \, \mathrm{d}x + \int_{D} w_{\varepsilon}^{i} A^{\varepsilon}(x) \nabla u_{\varepsilon} \cdot \nabla \phi \, \mathrm{d}x, \\ &= \underbrace{\int_{D} A^{\varepsilon}(x) \nabla w_{\varepsilon}^{i} \cdot \nabla (\phi u_{\varepsilon}) \, \mathrm{d}x - \int_{D} u_{\varepsilon} A^{\varepsilon}(x) \nabla \phi \cdot \nabla w_{\varepsilon}^{i} \, \mathrm{d}x}_{=\mathbf{0} \text{ since } \operatorname{div}(A^{\varepsilon} \nabla w_{\varepsilon}^{i}) = \mathbf{0}} \\ &+ \int_{D} w_{\varepsilon}^{i} A^{\varepsilon}(x) \nabla u_{\varepsilon} \cdot \nabla \phi \, \mathrm{d}x. \end{split}$$

Tartar's energy method (V)

• We are left with the following identity, in which we expect to take limits:

$$\int_D f \phi w_\varepsilon^i \, \mathrm{d} x = \underbrace{-\int_D u_\varepsilon A^\varepsilon(x) \nabla \phi \cdot \nabla w_\varepsilon^i \, \mathrm{d} x}_{=:I_\varepsilon^1} + \underbrace{\int_D w_\varepsilon^i A^\varepsilon(x) \nabla u_\varepsilon \cdot \nabla \phi \, \mathrm{d} x}_{=:I_\varepsilon^2}.$$

• The integral I_{ε}^{1} rewrites:

$$I_{\varepsilon}^{1} = -\int_{D} (A \nabla w^{j}) \left(\frac{x}{\varepsilon}\right) \cdot (u_{\varepsilon} \nabla \phi) dx$$

Since

$$\left\{ \begin{array}{ll} \left(A\nabla w^i\right)\left(\frac{\mathbf{x}}{\varepsilon}\right) \xrightarrow{\varepsilon \to 0} A(y)\nabla w^i(y) & \text{ weakly in } L^2(D)^d, \\ u_\varepsilon \nabla \phi \xrightarrow{\varepsilon \to 0} u^* \nabla \phi & \text{ strongly in } L^2(D), \end{array} \right.$$

this yields:

$$I_{\varepsilon}^{1} \xrightarrow{\varepsilon \to 0} - \left(\int_{D} A(y) \nabla w^{i}(y) \, \mathrm{d}y \right) \cdot \int_{D} u^{*} \nabla \phi \, \mathrm{d}x.$$

• By the same token we prove the convergence:

$$I_{\varepsilon}^2 \xrightarrow{\varepsilon \to 0} \int_D x_i \sigma^* \cdot \nabla \phi \, \mathrm{d}x.$$

Tartar's energy method (VI)

• All things considered, we have the identity:

$$\int_D f \phi x_i \, \mathrm{d} x = -\left(\int_D A(y) \nabla w^i(y) \, \mathrm{d} y\right) \cdot \int_D u^* \nabla \phi \, \mathrm{d} x + \int_D x_i \sigma^* \cdot \nabla \phi \, \mathrm{d} x.$$

• On a different note, the variational formulation for σ^* implies that:

$$\int_{D} x_{i} \sigma^{*} \cdot \nabla \phi \, dx = \int_{D} \sigma^{*} \cdot \nabla (x_{i} \phi) \, dx - \int_{D} (\sigma^{*} \cdot e_{i}) \phi \, dx$$
$$= \int_{D} f \phi x_{i} \, dx - \int_{D} \sigma_{i}^{*} \phi \, dx.$$

• As a result, it follows from integration by parts that:

$$\int_D \sigma_i^* \phi \, \mathrm{d} x = \int_D \left(\left(\int_D A(y) \nabla w^i(y) \, \mathrm{d} y \right) \cdot \nabla u^* \right) \phi \, \mathrm{d} x.$$

Tartar's energy method (VII)

• Since this identity holds for any test function $\phi \in \mathcal{C}_c^{\infty}(D)$, this entails:

$$\sigma_i^*(x) = \left(\int_D A(y) \nabla w^i(y) \, \mathrm{d}y\right) \cdot \nabla u^*(x)$$
 a.e. $x \in D$.

· After inspection, this is the expected result:

$$\sigma^*(x) = A^* \nabla u(x).$$

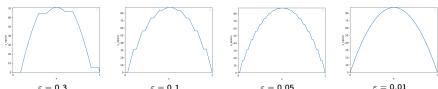
Remark Strictly speaking, we have proved that for a subsequence of the ε , it holds:

$$\begin{cases} u_{\varepsilon}(x) \to u^*(x) & \text{weakly in } H^1_0(D), \\ \text{and } (A^{\varepsilon} \nabla u_{\varepsilon})(x) \to A^* \nabla u^*(x) & \text{weakly in } L^2(D). \end{cases}$$

Actually, a classical argument based on the uniqueness of the limit reveals that the above convergence holds for the whole sequence ε .

Correctors (I)

- We have only proved the weak $H_0^1(D)$ convergence of u_{ε} to the solution u^* to the homogenized equation.
- In particular, the gradient ∇u_{ε} does not converge to ∇u^* strongly in $L^2(D)$ (and not pointwise).
- This is due to the fact that u_{ε} converges to u^* by "oscillating around u^* ".



Behavior of the solution u_{ε} in a one-dimensional problem.

 In order to improve this convergence result (i.e. get strong H¹ convergence), we have to introduce correctors to capture this oscillating behavior.

Correctors (II)

The following result captures the oscillatory nature of the gradient ∇u_{ε} .

Theorem 9.

Let u_{ε} , $u^* \in H_0^1(D)$ be as before, and suppose that u^* is more regular: $u^* \in H^2(D)$. Then the following corrector result holds:

$$\left\| u_{\varepsilon}(x) - u^{*}(x) - \sum_{i=1}^{d} \frac{\partial u^{*}}{\partial x_{i}}(x) \chi_{i}\left(\frac{x}{\varepsilon}\right) \right\|_{H^{1}(D)} \xrightarrow{\varepsilon \to 0} 0.$$

Remarks

- See for instance [All2s] for a proof.
- The assumption that $u^* \in H^2(D)$ is not very restrictive in practice. For instance, by elliptic regularity, it holds as soon as Ω is regular and $f \in L^2(D)$.

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- Momogenization of the conductivity equation
 - Formal two-scale asymptotic expansions
 - Convergence results
 - Beyond the periodic case and beyond conductivity
- A study of composite materials
- Relaxation by homogenization

- We have hitherto considered the periodic homogenization setting, but the theory may consider much more general situations.
- We have the following general sequential compactness result about H-convergence.

Theorem 10.

For any sequence $A^{\varepsilon}(x) \in L^{\infty}(D, \mathcal{M}_{\alpha,\beta})$, there exists a subsequence of indices (still denoted by ε) and a homogenized matrix field $A^*(x) \in L^{\infty}(D, \mathcal{M}_{\alpha,\beta})$ such that $A^{\varepsilon}(x)$ H-converges to $A^*(x)$.

Remarks

- Contrary to the periodic setting, we cannot expect that the *whole* sequence $A^{\varepsilon}(x)$ H-converges.
- See [Allh], Th. 1.2.4.2 for a proof of this result, based on the compensated compactness technique.

- H-convergence was defined as the weak convergence of the solution (and the flux of) u_ε to the conductivity equation with homogeneous Dirichlet B.C..
- H-convergence actually does not depend on the boundary conditions featured by the considered problem.

Theorem 11.

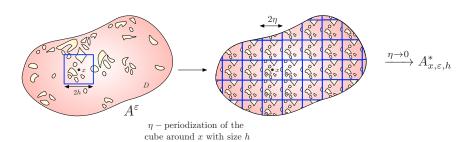
Let $A^{\varepsilon}(x)$ be any sequence of matrices in $L^{\infty}(D, \mathcal{M}_{\alpha,\beta})$ which H-converges to $A^{*}(x) \in L^{\infty}(D, \mathcal{M}_{\alpha,\beta})$. Let z_{ε} be any sequence in $H^{1}(D)$ such that:

$$\left\{ \begin{array}{ll} -\mathrm{div} \left(A^{\varepsilon} \nabla z_{\varepsilon} \right) = f_{\varepsilon} \xrightarrow{\varepsilon \to 0} f & \text{strongly in $H^{-1}_{\mathrm{loc}}(D)$,} \\ z_{\varepsilon} \xrightarrow{\varepsilon \to 0} z & \text{weakly in $H^{1}_{\mathrm{loc}}(D)$;} \end{array} \right.$$

then it holds:

$$A^{\varepsilon} \nabla z_{\varepsilon} \xrightarrow{\varepsilon \to 0} A^* \nabla z$$
 weakly in $L^2_{loc}(D)^d$.

The H-convergence of a general matrix sequence $A^{\varepsilon}(x) \in L^{\infty}(D, \mathcal{M}_{\alpha,\beta})$ can be understood locally as the limit predicted by periodic homogenization.



For fixed ε and h, let $A_{x,\varepsilon,h}$ be the tensor obtained by homogenization of the periodic pattern given by $y\mapsto A^\varepsilon(x+hy)$, i.e. induced by the values of A^ε on a small cube with size h around x, periodized.

The following theorem is proved in [Allh], Th. 1.3.4.6.

Theorem 12.

Let A_{ε} be a sequence of matrices in $L^{\infty}(D, \mathcal{M}_{\alpha,\beta})$ which H-converges to some limit $A^*(x)$. For any $x \in D$ and h > 0 small enough, let us define

$$(A_{x,\varepsilon,h}^*)_{ij} = \int_Y A^{\varepsilon}(x+hy)(e_i + \nabla w_{x,\varepsilon,h}^i) \cdot (e_j + \nabla w_{x,\varepsilon,h}^j) dy,$$

where $\nabla w_{x,\varepsilon,h}^i$ is the solution to the cell problem:

$$\left\{ \begin{array}{ll} -\mathrm{div}(A(x+hy)(e_i+\nabla w_{x,\varepsilon,h}^i))=0 & \text{in } Y, \\ y\mapsto w_{x,\varepsilon,h}^i & \text{is } Y-\text{periodic}. \end{array} \right.$$

Then there exists a subsequence $h \rightarrow 0$ such that:

$$\lim_{h\to 0}\lim_{\varepsilon\to 0}A_{x,\varepsilon,h}^*=A^*(x) \text{ for a.e. } x\in D.$$

Other homogenization techniques: two-scale convergence

- The notion of two-scale convergence is very well-suited to the study of periodic homogenization problems.
- It gives a rigorous meaning to the convergence of an oscillating function $u_{\varepsilon}(x)$ to a function of both macroscopic and microscopic variables $x \in D$ and $y \in Y$.
- For instance, in the periodic homogenization context, it holds:

$$u_{\varepsilon}(x) \rightarrow u_0(x)$$
 weakly in $H_0^1(D)$

and

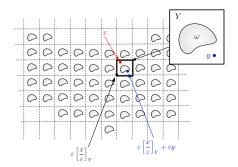
"
$$\nabla u_{\varepsilon}(x) \xrightarrow{2-\text{scale}} \nabla u_0(x) + \nabla_y u_1(x,y)$$
."

• See [Ngue] and [All2s] for further explanations.

Other homogenization techniques: periodic unfolding

The periodic unfolding method [CioDaGr] features an extension procedure of a function $v:D\to\mathbb{R}$ to both macroscopic and microscopic scales:

$$v(x) \rightsquigarrow v(x,y) = v\left(\varepsilon\left[\frac{x}{\varepsilon}\right] + \varepsilon y\right).$$



It allows to compare $u_{\varepsilon}:D\to\mathbb{R}$ with oscillatory expansions of the form

$$u_0(x) + \varepsilon u_1\left(x, \frac{x}{\varepsilon}\right) + \dots$$

Extension to the context of linear elasticity (I)

Consider the counterpart of the previous situation in the realm of linear elasticity.

• The Hooke's law inside Y induced by the pattern $\omega \subset Y$ is:

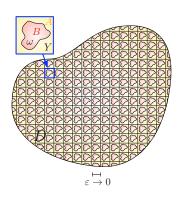
$$A(y) = \begin{cases} B & \text{if } y \in \omega, \\ A & \text{if } y \in D \setminus \overline{\omega}. \end{cases}$$

- This pattern induces a Hooke's law A (^x/_ε) for x ∈ D, by rescaling A(y) at size ε and periodization.
- The displacement $u_{\varepsilon} \in H_0^1(D)^d$ of D solves:

$$\begin{cases} -\operatorname{div}\left(A\left(\frac{x}{\varepsilon}\right)\operatorname{e}(u_{\varepsilon})\right) = f & \text{in } D, \\ u_{\varepsilon} = 0 & \text{on } \partial D, \end{cases}$$

where the strain tensor e(u) is:

$$e(u) = \frac{1}{2}(\nabla u + \nabla u^T).$$



What does u_{ε} look like, as $\varepsilon \to 0$?

Extension to the context of linear elasticity (II)

 The formal two-scale asymptotic expansion argument reveals that the effective behavior u₀ ∈ H₀¹(D)^d of u_ε satisfies:

$$\begin{cases} -\operatorname{div}(A^*e(u_0)) = f & \text{in } D, \\ u_0 = 0 & \text{on } \partial D, \end{cases}$$

where the homogenized tensor A^* is defined by:

$$\forall \xi \in \mathbb{R}_s^{d \times d}, \quad A^* \xi : \xi = \int_Y A(y)(\xi + \chi_{\xi}(y)) : (\xi + \chi_{\xi}(y)) \, \mathrm{d}y,$$

involving the cell function $\chi_{\xi} \in H^1_{\#}(Y)$, solution to:

$$\left\{ \begin{array}{ll} -\mathrm{div}(A(y)(\xi+e(\chi_{\xi}(y))))=0 & \text{in } Y, \\ y\mapsto \chi_{\xi}(y) & \text{is } Y-\text{periodic.} \end{array} \right.$$

- The general properties of H-convergence remain true in this context, namely:
 - The compactness of $\mathcal{M}_{\alpha,\beta}$ for H-convergence;
 - The corrector result to obtain strong $H^1(D)$ convergence of u_{ε} ;
 - The irrelevance of boundary conditions in the definition of H-convergence;
 - The genericity of periodic configurations to describe the nature of H-convergent sequences.

Towards shape optimization (I)

Let us recall the shape optimization problem of interest.

The problem reads

$$\min_{\Omega \subset D} J(\Omega)$$
, where $J(\Omega) := \int_{D} j(u_{\Omega}) dx$, (SO)

and $j: \mathbb{R} \to \mathbb{R}$ is a given, smooth function.

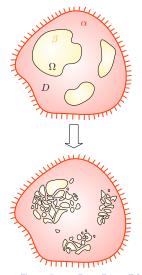
 The temperature u_Ω ∈ H₀¹(D) is the solution to the two-phase conductivity equation:

$$\left\{ \begin{array}{rcl} -\mathrm{div}(\gamma_{\Omega}\nabla u_{\Omega}) & = & f & \text{in } D, \\ u_{\Omega} & = & 0 & \text{on } \partial D, \end{array} \right.$$

where γ_{Ω} reads:

$$\gamma_{\Omega}(x) = \alpha + \chi_{\Omega}(x)(\beta - \alpha), \quad x \in D.$$

 We aim to allow "limits of classical designs" in (SO), showing increasingly many small features.



Towards shape optimization (II)

We have seen that a periodic conductivity distribution $A^{\varepsilon}(x)$, defined by:

$$A^{\varepsilon}(x) := A_{\omega}\left(\frac{x}{\varepsilon}\right), \quad x \in D,$$

where $A_{\omega}(y)$ is made from a pattern $\omega \subset Y$:

$$A_{\omega}(y) := \left\{ egin{array}{ll} eta & ext{if } y \in \omega, \ lpha & ext{if } y \in Y \setminus \omega \end{array}
ight. \quad y \in Y,$$

has an effective behavior described by the homogenized tensor A_{ω}^* .

Definition 2.

For $\theta \in [0,1]$, G_{θ} is the set of all conductivity matrices obtained by homogenization of the phases α and β in proportions $(1-\theta)$ and θ :

$$G_\theta = \overline{\{A_\omega^*, \ \omega \subset Y\}} \subset \mathcal{M}_{\alpha,\beta}.$$

Towards shape optimization (III)

This gives us a hint of how to relax the shape optimization problem (SO):

$$\min_{(\theta,A)\in\mathcal{CD}} J(\theta,A)$$
, where $J(\theta,A) = \int_D j(u_{\theta,A}) dx$,

where the set $\mathcal{C}\mathcal{D}$ of composite designs is defined by:

$$\mathcal{CD}:=\Big\{(\theta,A^*)\in L^\infty(D,[0,1])\times L^\infty(D,\mathcal{M}_{\alpha,\beta}),\ A^*(x)\in G_{\theta(x)}\ \text{a.e.}\ x\in D\Big\}.$$

This program raises (at least!) three questions:

- How to characterize more explicitly (e.g. to parametrize) the set G_{θ} ?
- How to justify this procedure?
- How to use this in a numerical method?

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- Homogenization of the conductivity equation
- A study of composite materials
 - The G-closure problem
 - Laminate composite structures
 - ullet Towards a characterization of the set $G_{ heta}$
- Relaxation by homogenization

The G-closure problem (I)

On first step towards characterizing G_{θ} is the following lemma.

Proposition 13 (Voigt-Reuss bounds).

Let $A(y) \in L^{\infty}(Y, \mathcal{M}_{\alpha,\beta})$ be a matrix field; then the matrix A^* obtained by periodic homogenization satisfies the following bounds:

$$\forall \xi \in \mathbb{R}^d, \quad , \underline{A}\xi \cdot \xi \leq A^*\xi \cdot \xi \leq \overline{A}\xi \cdot \xi,$$

where \underline{A} and \overline{A} are respectively the harmonic and arithmetic means of A(y), namely:

$$\underline{A} := \left(\int_Y A^{-1}(y) \, \mathrm{d}y \right)^{-1} \text{ and } \overline{A} := \int_Y A(y) \, \mathrm{d}y.$$

Proof of the upper bound: We recall the variational principle satisfied by A^* :

$$\forall \xi \in \mathbb{R}^d, \quad A^* \xi \cdot \xi = \min_{w \in H^1_{\omega}(Y)/\mathbb{R}} \int_Y A(y) \Big(\xi + \nabla w(y) \Big) \cdot \Big(\xi + \nabla w(y) \Big) \, \mathrm{d}y.$$

Choosing in particular w = 0 in the latter minimization yields, for $\xi \in \mathbb{R}^d$:

$$A^*\xi \cdot \xi \le \left(\int_Y A(y) \, \mathrm{d}y\right) \xi \cdot \xi,$$

which is the desired upper bound.

The G-closure problem (II)

Proof of the lower bound: We use the same duality trick as in the proof of Lemma 3.

• For all $\xi \in \mathbb{R}^d$, and positive definite $d \times d$ matrix $A \in \mathbb{R}^{d \times d}$,

$$\frac{1}{2} A \xi \cdot \xi = \max_{\sigma \in \mathbb{R}^d} \Big(\xi \cdot \sigma - \frac{1}{2} A^{-1} \sigma \cdot \sigma \Big),$$

where the maximum is uniquely attained at $\sigma = A^{-1}\xi$.

• It follows that, for a.e. $y \in Y$,

$$A(y)\Big(\xi+\nabla w(y)\Big)\cdot\Big(\xi+\nabla w(y)\Big)\geq \max_{\sigma\in\mathbb{R}^d}\Big(2\Big(\xi+\nabla w(y)\Big)\cdot\sigma-A^{-1}\sigma\cdot\sigma\Big).$$

The G-closure problem (III)

Hence, we obtain,

$$\begin{array}{ll} A^*\xi \cdot \xi & \geq & \displaystyle \min_{w \in H^1_\#(Y)/\mathbb{R}} \int_Y \max_{\sigma(y) \in \mathbb{R}^d} \left(2 \Big(\xi + \nabla w(y) \Big) \cdot \sigma(y) - A^{-1} \sigma(y) \cdot \sigma(y) \right) \, \mathrm{d}y \\ & \geq & \displaystyle \min_{w \in H^1_\#(Y)/\mathbb{R}} \max_{\sigma \in \mathbb{R}^d} \int_Y \left(2 \Big(\xi + \underbrace{\nabla w(y)}_{\int_Y \nabla w(y) \, \mathrm{d}y = \mathbf{0}} \right) \cdot \sigma - A^{-1} \sigma \cdot \sigma \right) \, \mathrm{d}y \\ & = & \displaystyle \max_{\sigma(y) \in \mathbb{R}^d} \left(2 \xi \cdot \sigma - \left(\int_Y A^{-1}(y) \, \mathrm{d}y \right) \sigma \cdot \sigma \right), \end{array}$$

where the second line follows by taking the supremum over constant fluxes $\sigma(y) \equiv \sigma$, and not over any matrix fields $y \mapsto \sigma(y) \in \mathbb{R}^d$.

• An explicit calculation of the last maximum value yields

$$A^*\xi \cdot \xi \ge \left(\int_Y A^{-1}(y) dy\right) \xi \cdot \xi,$$

as desired.

The G-closure problem (IV)

• The lemma shows, in particular, that all matrices $A^* \in G_\theta$ satisfy the Voigt-Reuss bounds:

$$\forall \xi \in \mathbb{R}^d, \quad \lambda_{\theta}^- |\xi|^2 \le A^* \xi \cdot \xi \le \lambda_{\theta}^+ |\xi|^2,$$

where $\lambda_{\theta}^{-}, \lambda_{\theta}^{+}$ are defined by:

$$\lambda_{ heta}^- = \left(rac{1- heta}{lpha} + rac{ heta}{eta}
ight)^{-1}, ext{ and } \lambda_{ heta}^+ = (1- heta)lpha + hetaeta.$$

- Unfortunately, all the matrices satisfying Voigt-Reuss bounds are not in G_{θ} .
- The characterization of G_θ (e.g. by means of inequalities over eigenvalues of matrices A*) is a difficult problem, known as the G-closure problem.
- We study one particular subset of tensors in G_{θ} , that of laminates. Their effective tensors can be computed explicitly, and this comes in handy in characterizing further G_{θ} .

Part IV

Mathematical homogenization

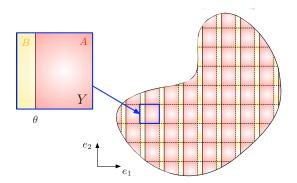
- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- Homogenization of the conductivity equation
- A study of composite materials
 - The G-closure problem
 - Laminate composite structures
 - ullet Towards a characterization of the set $G_{ heta}$
- Relaxation by homogenization

Rank 1 laminates (I)

- Let A and B be two (possibly anisotropic) symmetric, positive definite matrices.
- ullet We consider the periodic homogenization induced by the following pattern in Y:

$$A(y) = \chi(y_1)B + (1 - \chi(y_1))A$$
, where $\chi(t) = \begin{cases} 1 & \text{if } t \leq \theta, \\ 0 & \text{otherwise,} \end{cases}$

where e_1 is the lamination direction.



Rank 1 laminates (II)

Notation

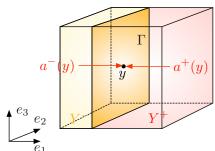
• $\Gamma := \{ y = (y_1, \dots, y_d) \in Y, y_1 = \theta \}$ is the interface between the two phases:

$$Y^- := \{ y = (y_1, \dots, y_d) \in Y, \ y_1 < \theta \} \text{ and } Y^+ := \{ y = (y_1, \dots, y_d) \in Y, \ y_1 > \theta \}.$$

• When a(y) is a discontinuous quantity across Γ , we denote by:

$$a^{-}(y) := \lim_{\substack{t \to 0 \\ t > 0}} a(y - te_1) \text{ and } a^{+}(y) := \lim_{\substack{t \to 0 \\ t > 0}} a(y + te_1)$$

the one-sided limits of a(y) across Γ .



Rank 1 laminates (III)

Lemma 14.

The homogenized tensor A^* associated with the pattern A(y) is given by the lamination formula:

$$A^* = \theta B + (1-\theta)A - \theta(1-\theta)\frac{(B-A)e_1\otimes(B-A)e_1}{(1-\theta)Be_1\cdot e_1 + \theta Ae_1\cdot e_1}.$$

Assuming that (B - A) is invertible, this rewrites:

$$\theta(A^* - A)^{-1} = (B - A)^{-1} + \frac{1 - \theta}{Ae_1 \cdot e_1} e_1 \otimes e_1.$$

Proof: Let $\xi \in \mathbb{R}^d$ be given; the explicit formula for A^* reads:

$$A^*\xi = \int_{\mathcal{X}} A(y)(\xi + \nabla w(y)) \, \mathrm{d}y,$$

where w is the unique solution in $H^1_\#(Y)/\mathbb{R}$ to the cell problem:

$$\begin{cases} -\operatorname{div}(A(y)(\xi + \nabla w(y))) = 0 & \text{in } Y, \\ y \mapsto w(y) & \text{is } Y - \text{periodic.} \end{cases}$$
 (CP)

Rank 1 laminates (IV)

• Letting $u(y) = \xi \cdot y + w(y)$, the particular structure of (CP) suggests to search for u(y) so that it is affine in Y^- and Y^+ :

$$u(y) = (b \cdot y + c_b)\chi(y_1) + (a \cdot y + c_a)(1 - \chi(y_1)),$$

for some constants $c_a, c_b \in \mathbb{R}$ and vectors $a, b \in \mathbb{R}^d$ to be found.

- u(y) complies with (CP) if and only if it satisfies (see the transmission conditions):
 - $\operatorname{div}(A(y)\nabla u) = 0$ in both phases Y^- , Y^+ .
 - u(y) is continuous across Γ;
 - The flux of u(y) through Γ is continuous: $B\nabla u \cdot e_1^- = A\nabla u \cdot e_1^+$;
 - The function $y \mapsto u(y) \xi \cdot y$ is Y periodic.
- With such a definition, it holds:

$$\nabla u(y) = \chi(y_1)b + (1 - \chi(y_1))a$$
, and $A(y)\nabla u(y) = \chi(y_1)Bb + (1 - \chi(y_1))Aa$.

Rank 1 laminates (V)

ullet From the form of u, it holds automatically that

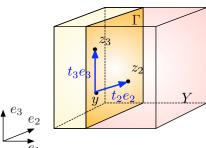
$$-\mathrm{div}(A(y)\nabla u)=0 \text{ in } Y^- \text{ and } Y^+.$$

• The continuity of u(y) across Γ imposes that:

$$\forall y, z \in \Gamma$$
, $(a-b) \cdot y = (a-b) \cdot z$.

Since for all $i=2,\ldots,d$, there exists $t\neq 0$ and $y,z\in \Gamma$ such that $(y-z)=te_i$, the previous identity implies that there exists $t\in \mathbb{R}$ such that

$$a-b=te_1$$
.



Rank 1 laminates (VI)

• The continuity of fluxes across Γ implies that:

$$Bb \cdot e_1 = Aa \cdot e_1$$
;

inserting $a - b = te_1$ and rearranging yields:

$$t = \frac{(B-A)e_1 \cdot e_1}{Ae_1 \cdot e_1}$$
, and so $a - b = \frac{(B-A)e_1 \cdot e_1}{Ae_1 \cdot e_1}e_1$.

• On a different note, the Y-periodicity of $y \mapsto u(y) - \xi \cdot y$ imposes that:

$$\int_{Y} \nabla u(y) \, dy = \xi, \quad \Rightarrow \quad \theta b + (1 - \theta)a = \xi.$$

- Combining both expressions yields the explicit expression of u.
- Finally,

$$A^*\xi = \int_Y A(y)\nabla u(y) dy = \theta Bb + (1-\theta)Aa,$$

which yields, after calculation:

$$A^*\xi = \theta B\xi + (1-\theta)A\xi - \theta(1-\theta)\frac{(B-A)\xi \cdot e_1}{(1-\theta)Be_1 \cdot e_1 + \theta Ae_1 \cdot e_1}(B-A)e_1,$$

as desired.

Rank 1 laminates: the isotropic case

The previous result has a particularly nice expression when A and B are isotropic:

$$A = \alpha I$$
 and $B = \beta I$ for some $\alpha, \beta > 0$.

Corollary 15.

The homogenized matrix A* reads:

$$\mathbf{A}^* = \left(\begin{array}{ccc} \lambda_{\theta}^- & & & \\ & \lambda_{\theta}^+ & & 0 \\ 0 & & \ddots & \\ & & & \lambda_{\theta}^+ \end{array} \right),$$

where λ_{θ}^{-} and λ_{θ}^{+} are defined by:

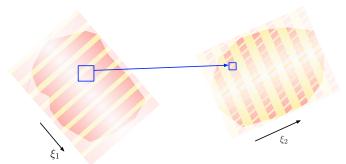
$$\lambda_{ heta}^- = \left(rac{ heta}{eta} + rac{1- heta}{lpha}
ight)^{-1} \; ext{and} \; hetaeta + (1- heta)lpha.$$

Sequential laminates (I)

The previous lamination procedure can be iterated:

- At first, the pure phase B is mixed with A with direction ξ_1 and proportions θ_1 , $(1 \theta_1)$ to give the rank 1 laminate A_1^* .
- The pure phase B is then mixed with the rank-1 laminate A_1^* with direction ξ_2 and proportions θ_2 , $(1 \theta_2)$ to produce a rank 2-laminate.
- The pure phase *B* is mixed with a rank-2 laminate to produce a rank 3 laminate.

• ...



Sequential laminates (II)

Iterating the lamination formula yields the following conclusion.

Proposition 16.

Let ξ_i and θ_i , $i=1,\ldots,p$ be p unitary directions in \mathbb{R}^d and p volume fractions in [0,1]. The rank p sequential laminate A_p^* with inclusion A and matrix B, in respective proportions

$$1- heta:=\prod_{i=1}^p (1- heta_i)$$
 and $heta,$

resulting from the previous procedure is given by:

$$(1-\theta)(A_p^*-B)^{-1} = (A-B)^{-1} + \sum_{i=1}^{p} \left(\theta_i \prod_{j=1}^{i-1} (1-\theta_j)\right) \frac{\xi_i \otimes \xi_i}{B\xi_i \cdot \xi_i}.$$

- The materials resulting from this procedure are called sequential laminates.
- For a given volume fraction θ of matrix B, we denote by $L_{\theta} \subset G_{\theta}$ the set of all sequential laminates.

Sequential laminates (III)

Sequential laminates are often characterized by:

- The total volume fraction θ of matrix B;
- The rank p of the material;
- The lamination directions $\xi_i \in \mathbb{R}^d$, $i = 1, \dots, p$;
- Lamination parameters $m_i \in [0, 1]$ accounting for the volume fractions θ_i .

Proposition 17.

Let $\xi_i \in \mathbb{R}^d$ and let $\theta \in [0,1]$ be a volume fraction. Let $m_i \in [0,1]$, $i=1,\ldots,p$ be lamination parameters, satisfying:

$$\sum_{i=1}^p m_i = 1.$$

Then there exists a rank p sequential laminate A_p^* with matrix B and inclusion A in respective proportions θ and $(1 - \theta)$, such that:

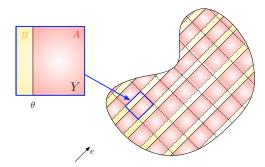
$$(1-\theta)(A_p^*-B)^{-1} = (A-B)^{-1} + \theta \sum_{i=1}^p m_i \frac{\xi_i \otimes \xi_i}{B\xi_i \cdot \xi_i}.$$

Laminated structures in elasticity (I)

Let A and B be two isotropic Hooke's tensors:

$$\forall \xi \in \mathbb{R}_s^{d \times d}, \quad A\xi = 2\mu_A \xi + \lambda_A \mathrm{tr}(\xi) \mathrm{I}, \quad B\xi = 2\mu_B \xi + \lambda_B \mathrm{tr}(\xi) \mathrm{I},$$
 and let $\kappa_A = \lambda_A + \frac{2}{d} \mu_A$, $\kappa_B = \lambda_B + \frac{2}{d} \mu_B$ be the bulk moduli of A and B .

• We consider the periodic homogenization of A and B in proportions $(1 - \theta)$, θ , in the lamination direction $e \in \mathbb{R}^d$.



Laminated structures in elasticity (II)

 A similar (yet more technical) calculation to that conducted in the conductivity setting yields the effective tensor A* obtained by homogenization of this pattern:

$$(1-\theta)(A^{*-1}-B^{-1})^{-1}=(A^{-1}-B^{-1})^{-1}+\theta f_B(e),$$

where the symmetric bilinear form $f_B(e)$ over matrices is defined by:

$$\forall \xi \in \mathbb{R}_s^{d \times d}, \quad f_B(e)\xi : \xi = B\xi : \xi - \frac{1}{\mu_B} |B\xi e|^2 + \frac{\mu_B + \lambda_B}{\mu_B (2\mu_B + \lambda_B)} ((B\xi)e \cdot e)^2.$$

• Likewise, the rank p sequential laminate A^* obtained by mixing the matrix B with inclusions A in proportions θ and $(1-\theta)$, with lamination directions e_i and lamination parameters m_i , $i=1,\ldots,p$, reads:

$$(1-\theta)(A^{*-1}-B^{-1})^{-1}=(A^{-1}-B^{-1})^{-1}+\theta\sum_{i=1}^{p}m_{i}f_{B}(e_{i}).$$

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- Homogenization of the conductivity equation
- A study of composite materials
 - The G-closure problem
 - Laminate composite structures
 - ullet Towards a characterization of the set $G_{ heta}$
- Relaxation by homogenization

Optimal bounds in the two-phase conductivity case (I)

In the two-phase conductivity setting, the set G_{θ} can be characterized explicitly; see [Allh], Th. 2.2.3.1 for a proof.

Theorem 18.

The set G_{θ} of all composites obtained by a mixture of α and β in proportions $(1 - \theta)$ and θ is the set of all symmetric $d \times d$ matrices whose eigenvalues $\lambda_1, \ldots, \lambda_d$ satisfy:

$$\alpha \leq \lambda_{\theta}^{-} \leq \lambda_{i} \leq \lambda_{\theta}^{+} \leq \beta, \quad i = 1, \dots, d,$$

$$\sum_{i=1}^{d} \frac{1}{\lambda_i - \alpha} \le \frac{1}{\lambda_{\theta}^{-} - \alpha} + \frac{d-1}{\lambda_{\theta}^{+} - \alpha},$$

and

$$\sum_{i=1}^{a} \frac{1}{\beta - \lambda_i} \le \frac{1}{\beta - \lambda_{\theta}^-} + \frac{d-1}{\beta - \lambda_{\theta}^+},$$

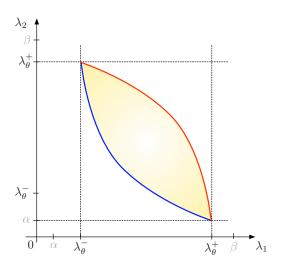
where

$$\lambda_{ heta}^- = \left(rac{1- heta}{lpha} + rac{ heta}{eta}
ight)^{-1} \; ext{and} \; \lambda_{ heta}^+ = (1- heta)lpha + hetaeta.$$

These bounds are optimal, as that they are realized by a rank d laminate.

Optimal bounds in the case of conductivity (II)

The first set of inequalities describes lower bounds for the λ_i , while the second accounts for upper bounds.



The situation in linear elasticity

 Unfortunately, no such exact characterization of the set G_θ is available in the context of linearized elasticity.

• Only bounds over tensors $A^* \in G_\theta$ are available, such as the Hashin-Shtrikman bounds over isotropic tensors in G_θ .

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- 3 Homogenization of the conductivity equation
- A study of composite materials
- Relaxation by homogenization
 - Justification of relaxation by homogenization
 - A homogenization-based topology optimization method

Justification of relaxation by homogenization (I)

Let us recall the shape optimization problem of interest.

The problem reads

$$\min_{\Omega \subset D} J(\Omega), \text{ where } J(\Omega) := \int_{D} j(u_{\Omega}) \, \mathrm{d}x + \ell \mathrm{Vol}(\Omega),$$
(SO)

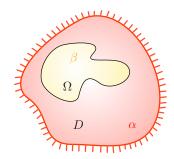
and $j:\mathbb{R}\to\mathbb{R}$ is a given, smooth function.

 The temperature u_Ω ∈ H₀¹(D) is the solution to the two-phase conductivity equation:

$$\begin{cases}
-\operatorname{div}(\gamma_{\Omega}\nabla u_{\Omega}) &= f & \text{in } D, \\
u_{\Omega} &= 0 & \text{on } \partial D,
\end{cases}$$

where γ_{Ω} reads:

$$\gamma_{\Omega}(x) = \alpha + \chi_{\Omega}(x)(\beta - \alpha), \quad x \in D.$$



Justification of relaxation by homogenization (II)

The relaxed formulation of this problem reads:

$$\min_{(\theta, A^*) \in \mathcal{CD}} J^*(\theta, A^*), \tag{H}$$

where

CD is the set of composite designs:

$$\mathcal{CD}:=\left\{(\theta,A^*)\in L^\infty(D,[0,1])\times L^\infty(D,\mathcal{M}_{\alpha,\beta}),\ A^*(x)\in G_{\theta(x)}\ \text{a.e.}\ x\in D\right\};$$

• The relaxed functional $J(\theta, A^*)$ reads:

$$J(\theta, A^*) = \int_D j(u_{\theta, A^*}) dx + \ell \int_D \theta(x) dx,$$

• $u_{\theta,A^*} \in H_0^1(D)$ is the unique solution to the homogenized equation:

$$\begin{cases} -\operatorname{div}(A^*(x)\nabla u_{\theta,A^*}) = f & \text{in } D, \\ u_{\theta,A^*} = 0 & \text{on } \partial D. \end{cases}$$

Justification of relaxation by homogenization (III)

The following result is Th.3.2.1.1 in [Allh].

Theorem 19.

The problem (H) is a relaxation of the shape optimization problem (SO), i.e.:

- The problem (H) has at least one global minimizer.
- **9** For every minimizing sequence Ω_n of classical designs for (SO), there exists a subsequence (still labeled by $_n$) such that
 - The functions χ_{Ω_n} converge weakly * to a density $\theta \in L^{\infty}(D, [0, 1])$,
 - The conductivity $\left(\alpha\chi_{\Omega_n} + (1-\chi_{\Omega_n})\beta\right)$ I H-converges to a matrix $A^*(x)$,
 - and $(\theta, A^*) \in \mathcal{CD}$ is a minimizer for (H).
- **®** Conversely, for every minimizer (θ, A^*) ∈ CD of (H), there exists a sequence $Ω_n$ of shapes such that:
 - $\chi_{\Omega_n} \to \theta$ weakly * in $L^{\infty}(D,[0,1])$;
 - $\alpha \chi_{\Omega_n} + (1 \chi_{\Omega_n})\beta$ H-converges to A^* ;
 - Ω_n is a minimizing sequence for $J(\Omega)$.

Part IV

Mathematical homogenization

- Prologue: the direct method in the calculus of variations
- Non existence in shape optimization problems
- 3 Homogenization of the conductivity equation
- A study of composite materials
- Relaxation by homogenization
 - Justification of relaxation by homogenization
 - A homogenization-based topology optimization method

Numerical homogenization: the conductivity case (I)

In the two-phase conductivity setting, the set G_θ is characterized exactly by a set
of inequalities over matrix eigenvalues.

 In practice, it is not trivial to use this characterization in the resolution of the problem

$$\min_{(\theta,A^*)\in\mathcal{CD}}J(\theta,A^*),$$

since the constraint that $A^*(x)$ should belong to $G_{\theta(x)}$ for a.e. $x \in D$ is quite difficult to enforce.

 Fortunately, the following result, which is very particular to the conductivity context, allows for a simpler parametrization of the set CD.

Numerical homogenization: the conductivity case (II)

Theorem 20.

Let $(\theta, A^*) \in \mathcal{CD}$ be a minimizer of (H). Then there exists another minimizer $(\tilde{\theta}, \tilde{A}^*) \in \mathcal{CD}$ of (H) such that

$$\tilde{A}^*(x)$$
 is a rank one laminate in $G_{\tilde{\theta}(x)}$ for a.e. $x \in D$.

Sketch of proof:

• The derivative of the partial mapping $A^* \mapsto J(\theta, A^*)$ reads:

$$\forall H \in \mathbb{R}_{s}^{d \times d}, \quad \frac{\partial J}{\partial A^{*}}(\theta, A^{*})(H) = \int_{D} H \nabla u_{\theta, A^{*}} \cdot \nabla p_{\theta, A^{*}} \, dx,$$

where the adjoint state $p_{\theta,A^*} \in H_0^1(D)$ is the solution to

$$\begin{cases} -\mathrm{div}(A^*\nabla p_{\theta,A^*}) = -j'(u_{\theta,A^*}) & \text{in } D, \\ p_{\theta,A^*} = 0 & \text{on } \partial D. \end{cases}$$

• The set G_{θ} is convex, and so, for fixed $\theta \in L^{\infty}(D,[0,1])$, the optimality condition for A^* reads:

$$orall A^0(x) \in L^\infty(D,\mathcal{M}_{lpha,eta}) ext{ s.t. } A^0(x) \in G_{ heta(x)} ext{ a.e. } x \in D,$$

$$\int_D (A^0 - A^*) \nabla u_{ heta,A^*} \cdot \nabla p_{ heta,A^*} \, \mathrm{d}x \geq 0.$$

Numerical homogenization: the conductivity case (III)

• Considering perturbations $A^0(x)$ of $A^*(x)$ about any point $x \in D$, it follows that $A^*(x)$ necessarily satisfies, for a.e. $x \in D$:

$$(A^*\nabla u_{\theta,A^*}\cdot\nabla p_{\theta,A^*})(x)=\min_{A^0\in G_a(x)}(A^0\nabla u_{\theta,A^*}\cdot\nabla p_{\theta,A^*})(x).$$

We now extract information about A^* from this requirement.

- Let $x \in D$ be fixed. We assume that $\nabla u_{\theta,A^*}(x) \neq 0$ and $\nabla p_{\theta,A^*}(x) \neq 0$; see [Allh], Th. 3.2.2.3 for the proof in the general case.
- Denoting $e = \frac{\nabla u_{\theta,A^*}(x)}{|\nabla u_{\theta,A^*}(x)|}$ and $e' = \frac{\nabla p_{\theta,A^*}(x)}{|\nabla p_{\theta,A^*}(x)|}$, it holds:

$$\forall A^0 \in G_{\theta(x)}, \quad 4A^0e \cdot e' = A^0(e+e') \cdot (e+e') - A^0(e-e') \cdot (e-e').$$

• Hence, we obtain the lower bound:

$$\begin{array}{ll} \min_{A^0 \in G_{\theta(x)}} 4A^0 e \cdot e' & \geq & \min_{A^0 \in G_{\theta(x)}} A^0 (e + e') \cdot (e + e') - \max_{A^0 \in G_{\theta(x)}} A^0 (e - e') \cdot (e - e') \\ & = & \lambda_{\theta(x)}^- |e + e'|^2 - \lambda_{\theta(x)}^- |e - e'|^2. \end{array}$$

Numerical homogenization: the conductivity case (IV)

• Conversely, since (e+e') and (e-e') are orthogonal, there exists a rank 1 laminate $A^1 \equiv A^1(x) \in G_{\theta(x)}$ in direction (e+e') satisfying:

$$\text{$A^{1}(e+e')=\lambda_{\theta(x)}^{-}(e+e')$, and $A^{1}(e-e')=\lambda_{\theta(x)}^{+}(e-e')$.}$$

• Thus, we have proved that:

$$\min_{A^0 \in \mathcal{G}_{\theta(x)}} 4A^0 e \cdot e' = 4A^1 e \cdot e' = \lambda_{\theta(x)}^- |e + e'|^2 - \lambda_{\theta(x)}^- |e - e'|^2.$$

• Actually, from the Voigt-Reuss bounds on homogenized tensors, any tensor $A^0 \in G_{\theta(x)}$ realizing the above minimum necessarily satisfies:

$$A^0(e+e') = A^1(e+e') = \lambda_{\theta(x)}^-(e+e') \text{ and } A^0(e-e') = A^1(e-e') = \lambda_{\theta(x)}^+(e-e').$$

• Hence, the matrix field A1(x) is such that:

$$A^*\nabla u_{\theta,A^*}=A^1\nabla u_{\theta,A^*}$$
 and $A^*\nabla p_{\theta,A^*}=A^1\nabla p_{\theta,A^*}$, a.e. $x\in D$.

Numerical homogenization: the conductivity case (V)

• The functions u_{θ,A^*} and $p_{\theta,A^*} \in H^1_0(D)$ satisfy:

$$\left\{ \begin{array}{ll} -\mathrm{div}(A^1(x)\nabla u_{\theta,A^*}) = f & \text{in } D, \\ u_{\theta,A^*} = 0 & \text{on } \partial D, \end{array} \right.$$

and

$$\left\{ \begin{array}{ll} -\mathrm{div}(A^{1}(x)\nabla p_{\theta,A^{*}}) = -j'(u_{\theta,A^{*}}) & \text{in } D, \\ p_{\theta,A^{*}} = 0 & \text{on } \partial D. \end{array} \right.$$

From the well-posedness of both problems, we infer:

$$u_{\theta,A^1}=u_{\theta,A^*}$$
 and $p_{\theta,A^1}=p_{\theta,A^*}$ on D .

• As a result, the matrix field $A^1(x) \in G_{\theta(x)}$ satisfies:

$$J(\theta,A^1)=J(\theta,A^*)=\int_D j(u_{\theta,A^*})\,\mathrm{d}x,$$

and so $(\theta, A^1) \in \mathcal{CD}$ is also optimal for the problem (H).

Numerical homogenization: the conductivity case (VI)

By virtue of this theorem, the minimization problem (H) is equivalent to:

$$\min_{(\theta,A)\in\mathcal{L}^{\mathbf{1}}\mathcal{D}}J(\theta,A), \text{ where } J(\theta,A)=\int_{D}j(u_{\theta,A})\,\mathrm{d}x+\ell\int_{D}\theta(x)\,\mathrm{d}x,$$

where $\mathcal{L}^1\mathcal{D}\subset\mathcal{C}\mathcal{D}$ is the set of rank 1 laminated composites:

$$\mathcal{L}^1\mathcal{D}:=\Big\{(\theta,A^*)\in L^\infty(D,[0,1])\times L^\infty(D,\mathcal{M}_{\alpha,\beta}), A^*(x) \text{ is a rank 1 laminate of}\\$$

$$\alpha \text{ and } \beta \text{ in proportions } (1-\theta(x)) \text{ and } \theta(x) \text{ a.e. } x\in D\Big\}.$$

• In 2d, for any $\theta \in [0,1]$, any matrix $A^* \in G_\theta$ can be written as:

$$A^* \equiv A^*(\theta, \phi) = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \lambda_{\theta}^- & 0 \\ 0 & \lambda_{\theta}^+ \end{pmatrix} \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

Numerical homogenization: the conductivity case (VII)

• Then, in 2d, (H) rewrites as a parametric optimization problem:

$$\min_{(\theta,\phi)\in\mathcal{U}_{\mathrm{ad}}} J(\theta,\phi), \quad J(\theta,\phi) = \int_D j(u_{\theta,\phi}) \,\mathrm{d}x + \ell \int_D \theta(x) \,\mathrm{d}x,$$

where $u_{\theta,\phi} \in H_0^1(D)$ is the solution to

$$\begin{cases} -\operatorname{div}(A(\theta(x),\phi(x))\nabla u_{\theta,\phi}) = f & \text{in } D, \\ u_{\theta,\phi} = 0 & \text{on } \partial D. \end{cases}$$

and

$$\mathcal{U}_{\mathrm{ad}} = \Big\{ (heta, \phi) \in L^{\infty}(D, [0, 1]) imes L^{\infty}(D, [0, \pi]) \Big\}.$$

 All the numerical methods developed in the context of parametric optimization (gradient algorithm, etc.) can be readily applied to this problem.

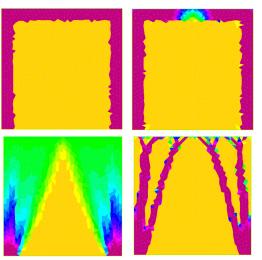
Numerical example: the optimal radiator (I)

• We minimize the compliance of a thermal chamber *D*, which equals in this case the mean temperature where heating occurs:

$$\min_{(\theta,A^*)\in\mathcal{CD}} J(u_{\theta,A^*}), \text{ where } J(u_{\theta,A^*}) = \int_{\Gamma_N} u_{\theta,A^*} \, \mathrm{d}s.$$

• A volume constraint is added by means of a fixed Lagrange multiplier.

Numerical example: the optimal radiator (II)



(From left to right, top to bottom) Initialization and several iterations of the optimization of the compliance in a thermal chamber; reprinted from [Allc].

Numerical homogenization: the linear elasticity case

We consider the homogenized problem:

$$\min_{(\theta,A^*)\in\mathcal{CD}} J(\theta,A^*), \text{ where } J(\theta,A^*) = \int_D j(u_{\theta,A^*}) \, \mathrm{d}x + \ell \int_D \theta(x) \, \mathrm{d}x, \quad (\mathsf{H})$$

and $u_{\theta,A^*} \in H_0^1(D)^d$ is the unique solution to the homogenized elasticity system:

$$\begin{cases} -\operatorname{div}(A^*e(u_{\theta,A^*})) = f & \text{in } D, \\ u_{\theta,A^*} = 0 & \text{on } \partial D, \end{cases}$$

- The set G_{θ} (and that of composite desgin \mathcal{CD}) is not explicitly known!
- Fortunately, when the objective function is the compliance (plus volume), i.e.

$$J(\theta, A^*) = \int_D f \cdot u_{\theta, A^*} \, \mathrm{d}x + \ell \int_D \theta(x) \, \mathrm{d}x,$$

the following result allows to cast the resolution of (H) within a set which is explicitly parametrized.

Theorem 21.

When the minimized function $J(\theta, A^*)$ is the compliance, the problem (H) has one global minimizer (θ, A^*) in which is a rank d laminated composite.

Minimization of the compliance of a 2d cantilever (I)

We minimize the compliance of a 2d cantilever:

$$\min_{(\theta,A^*)\in\mathcal{CD}} J(u_{\theta,A^*}), \text{ where } J(u_{\theta,A^*}) = \int_{\Gamma_N} g \cdot u_{\theta,A^*} \, \mathrm{d}s.$$

• A volume constraint is added by means of a fixed Lagrange multiplier.

Minimization of the compliance of a 2d cantilever (II)

Credits: [Allaire2]

Minimization of the compliance of a 2d cantilever (III)

Credits: [Allaire2]

Beyond compliance: partial relaxation

- When the objective function $J(\theta, A^*)$ is no longer the compliance, the previous strategy can no longer be employed.
- Nevertheless, one may perform a formal partial relaxation of the original shape optimization problem.
- This amounts to searching for the minimizer of $J(\theta, A^*)$ over the subset $\mathcal{LD} \subset \mathcal{CD}$ of laminated composites:

$$\min_{(\theta, A^*) \in \mathcal{LD}} J(\theta, A^*), \text{ where } J(\theta, A^*) = \int_D j(u_{\theta, A^*}) \, \mathrm{d}x + \ell \int_D \theta(x) \, \mathrm{d}x, \qquad (PR)$$

and the set $\mathcal{L}\mathcal{D}$ is defined by:

$$\mathcal{L}\mathcal{D}:=\Big\{(\theta,A^*)\in L^\infty(D,[0,1])\times L^\infty(D,\mathcal{M}_{\alpha,\beta}),\ A^*(x) \text{ is a laminate of}$$

$$A \text{ and } B \text{ in proportions } (1-\theta(x)) \text{ and } \theta(x) \text{ a.e. } x\in D\Big\}.$$

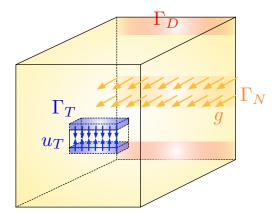
- Laminated composites $(\theta, A^*) \in \mathcal{LD}$ can be parametrized explicitly.
- Of course, there is no guarantee that solving (PR) will yield the global minimizer
 of (H).

Example: optimization of a 3d grip (II)

We minimize the least-square criterion:

$$\min_{(\theta,A^*)\in\mathcal{CD}} J(u_{\theta,A^*}), \text{ where } J(u_{\theta,A^*}) = \int_{\Gamma_{\mathcal{T}}} \left|u_{\theta,A^*} - u_{\mathcal{T}}\right|^2 \mathrm{d}s,$$

where $u_T: D \to \mathbb{R}^d$ is a target displacement.



Example: optimization of a 3d grip (II)

Credits: [Allaire2]

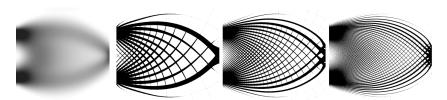
Post-processing and deshomogenization

• From the optimal composite design $(\theta^*, A^*) \in \mathcal{CD}$, a true, "black-and-white" shape Ω is easily recovered by thresholding:

$$\Omega := \left\{ x \in D, \ \theta^*(x) > c \right\},\,$$

where $c \in [0,1]$ is chosen so that, e.g. Ω satisfies a desired volume constraint.

• More elaborate strategies are available, which do use the optimal microstructure tensor A^* to generate minimizing sequences Ω^n for $J(\Omega)$; see for instance the deshomogenization method from [PanTra, GroSig].



The "deshomogenization" method allows to infer minimizing sequences for the shape functional $J(\Omega)$ from the datum of the optimal composite design (θ, A^*) (picture from [?]).

Appendix

The dual space

Let V be a Banach space, equipped with the norm $||\cdot||$.

Definition 3.

The dual space V^* of V is the Banach space of linear continuous forms $\varphi:V\to\mathbb{R}$ of V, that is:

$$\exists C > 0, \quad \forall v \in V, \ |\langle \varphi, v \rangle| \le C||v||.$$

The norm $||\varphi||$ of an element $\varphi \in V^*$ is:

$$||\varphi|| = \sup_{v \in V, v \neq 0} \frac{|\langle \varphi, v \rangle|}{||v||}.$$

Examples

- For $1 , the dual space of <math>L^p(\Omega)$ is $L^q(\Omega)$, where $\frac{1}{p} + \frac{1}{q} = 1$:
- The dual space of $L^1(\Omega)$ can be identified with $L^{\infty}(\Omega)$.

Strong and weak convergence in Banach spaces

Let V be a Banach space, equipped with the norm $||\cdot||$.

• A sequence of elements $u_n \in V$ converges strongly to some $u \in V$ if:

$$||u_n-u||\xrightarrow{n\to\infty} 0.$$

• A sequence of elements $u_n \in V$ converges weakly to some $u \in V$ if:

For all
$$\varphi \in V^*$$
, $\langle \varphi, u_n \rangle \xrightarrow{n \to \infty} \langle \varphi, u \rangle$.

Of course, strong convergence implies weak convergence.

Weak * convergence in Banach spaces

Let V be a Banach space, with dual space V^* ; we denote the duality pairing by

$$\langle \varphi, v \rangle_{V^*, V}$$
 or simply $\langle \varphi, v \rangle$,

when the context is clear.

One third notion of convergence is available in V^* .

Definition 4.

A sequence φ_n in the dual space V^* converges weakly * to some element $\varphi \in V^*$ if:

For all
$$u \in V$$
, $\langle \varphi_n, u \rangle \xrightarrow{n \to \infty} \langle \varphi, u \rangle$.

The following fundamental result is a consequence of the Banach-Alaoglu theorem.

Theorem 22.

Let φ_n be a bounded sequence in V^* ; then there exists a subsequence φ_{n_k} of φ_n and an element $\varphi \in V^*$ such that:

$$\varphi_{n_k} \xrightarrow{k \to \infty} \varphi$$
 weakly * in V*.

Weak * convergence: an instructive example

Let $D \subset \mathbb{R}^d$ be a bounded domain.

- As we have just seen, $L^{\infty}(D)$ is the dual of $L^{1}(D)$.
- Let χ_n be a sequence of characteristic functions of subset Ω_n :

$$\chi_n(x) = \begin{cases} 1 & \text{if } x \in \Omega_n, \\ 0 & \text{if } x \in D \setminus \Omega_n. \end{cases}$$

- Since χ_n is bounded (by 1) in $L^{\infty}(D)$, a subsequence χ_{n_k} converges weakly * to some function $\theta \in L^{\infty}(D)$.
- It is easy to prove that θ is a density function, i.e. $\theta(x) \in [0,1]$ for a.e. $x \in D$, but θ is not a characteristic function.
- Actually, every density function $\theta \in L^{\infty}(D, [0, 1])$ can be realized as the weak * limit of a sequence χ_n of characteristic functions.

Reflexive Banach spaces and Hilbert spaces

Let V be a Banach space. There is a canonical injection $J:V\to V^{**}$: for any $x\in V$, J(x) is the element in V^{**} defined by:

$$\langle J(x), \varphi \rangle_{V^{**}, V^{*}} := \langle \varphi, x \rangle_{V^{*}, V}.$$

This mapping is injective as a corollary of the Hahn-Banach theorem, and it allows to see V as a subspace of V^{**} .

Definition 5.

The Banach space V is reflexive if the mapping J is an isomorphism.

In reflexive Banach spaces, weak and weak* convergence are identical notions.

Proposition 23.

Let v_n be a bounded sequence in a reflexive Banach space; then there exists a subsequence v_{n_k} which converges weakly to some $v \in V$.

Reflexive Banach spaces and Hilbert spaces

In particular, Hilbert spaces are reflexive.

It follows that every bounded sequence in a Hilbert space converges weakly.

Proposition 24.

Let u_n and v_n be two sequences in a Hilbert space H such that:

$$u_n \xrightarrow{n \to \infty} u$$
 strongly in H , and $v_n \xrightarrow{n \to \infty} v$ weakly in H .

Then

$$\langle u_n, v_n \rangle \xrightarrow{n \to \infty} \langle u, v \rangle.$$

A useful lemma in periodic homogenization

The following lemma characterizes the weak convergence of a sequence of functions obtained by ε -rescaling and periodization of a function $f \in L^2(Y)$.

Lemma 25.

Let $f \in L^2_\#(Y)$, and let f_ε be the sequence in $L^2_{\mathrm{loc}}(\mathbb{R}^d)$ defined by:

$$f_{\varepsilon}(x) := f\left(\frac{x}{\varepsilon}\right), \text{ a.e. } x \in \mathbb{R}^d.$$

Then for any bounded set $D \subset \mathbb{R}^d$, f_{ε} converges weakly in $L^2(D)$ to the average $m(f) := \int_Y f(y) \, \mathrm{d}y$.

$$\forall g \in L^2(D), \quad \int_D f_\varepsilon(x) g(x) \, \mathrm{d} x \xrightarrow{\varepsilon \to 0} m(f) \int_D g(x) \, \mathrm{d} x.$$

Proof: The proof proceeds within two steps.

A useful lemma

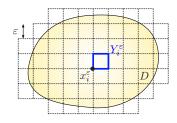
Step 1. We prove that the sequence f_{ε} is bounded in $L^2(D)$.

• Let $\{Y_i^{\varepsilon}\}_{i=1,\dots,n(\varepsilon)}$ be the covering of D defined by ε -rescaling and translation of the unit cell Y:

$$Y_i^{\varepsilon} = x_i^{\varepsilon} + \varepsilon Y, \quad i = 1, \dots, n(\varepsilon).$$

• The number $n(\varepsilon)$ of such cells is:

$$n(\varepsilon) = \frac{|D|}{\varepsilon^d}(1 + o(1)).$$



• For each $i = 1, ..., n(\varepsilon)$ a change of variables yields:

$$\int_{Y_i^{\varepsilon}} f_{\varepsilon}^2(x) \, \mathrm{d}x = \varepsilon^d \int_Y f^2(y) \, \mathrm{d}y.$$

It follows that:

$$||f_{\varepsilon}||_{L^2(D)}^2 = \sum_{i=1}^{n(\varepsilon)} \int_{Y_i^{\varepsilon} \cap D} f_{\varepsilon}^2(x) dx = |D| \left(\int_Y f^2(y) dy \right) (1 + o(1)),$$

and so f_{ε} is indeed a bounded sequence in $L^{2}(D)$.

A useful lemma

<u>Step 2.</u> Thanks to the density of $C_c^{\infty}(D)$ in $L^2(D)$, it is enough to prove that:

$$\forall \phi \in \mathcal{C}_c^{\infty}(D), \ \int_D f_{\varepsilon}(x)\phi(x) \, \mathrm{d}x \xrightarrow{\varepsilon \to 0} m(f) \int_D \phi(x) \, \mathrm{d}x.$$

• For a given function $\phi \in \mathcal{C}_c^{\infty}(D)$ and for each cell $i = 1, \dots, n(\varepsilon)$, it holds:

$$\left| \int_{Y_i^{\varepsilon}} f_{\varepsilon}(x) \phi(x) \, \mathrm{d}x - m(f) \varepsilon^d \phi(x_i^{\varepsilon}) \right| \leq \varepsilon^d m(|f|) \max_{x, x' \in Y_i^{\varepsilon}} |\phi(x) - \phi(x')|.$$

Thanks to the triangle inequality, this entails:

$$\left| \int_{D} f_{\varepsilon}(x) \phi(x) \, \mathrm{d}x - m(f) \varepsilon^{d} \sum_{i=1}^{n(\varepsilon)} \phi(x_{i}^{\varepsilon}) \right| \leq \underbrace{n(\varepsilon) \varepsilon^{d}}_{\leq \textit{Cste}} m(|f|) \underbrace{\max_{\substack{x, x' \in D \\ |x-x'| \leq d\varepsilon}}}_{=o(1) \, \mathsf{since} \, \phi \in \mathcal{C}^{\infty}_{c}(D)} |\phi(x) - \phi(x')|.$$

• In addition, since $\phi \in \mathcal{C}_c^{\infty}(D)$, the Riemann sum theory yields:

$$\int_{D} \phi(x) dx = \varepsilon^{d} \sum_{i=1}^{n(\varepsilon)} \phi(x_{i}^{\varepsilon}) + o(1).$$

Combining both estimates allows to conclude.

Compact embedding: The Rellich theorem

Theorem 26.

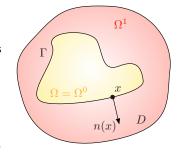
Let $D \subset \mathbb{R}^d$ be a bounded, Lipschitz domain. Then the injection $H^1(D) \subset L^2(D)$ is compact, i.e. for every sequence $v_n \in H^1(D)$,

If $v_n \xrightarrow{n \to \infty} v$ weakly in $H^1(D)$, then $v_n \xrightarrow{n \to \infty} v$ strongly in $L^2(D)$.

Transmission boundary conditions (I)

- Let $D \subset \mathbb{R}^d$ be a bounded Lipschitz domain.
- A Lipschitz subdomain $\Omega \in D$ delimits two phases within D:

$$\Omega_0:=\Omega, \text{ and } \Omega_1:=D\setminus\overline{\Omega},$$
 separated by the interface $\Gamma=\partial\Omega.$



- *n* is the unit normal vector to Γ , pointing outward $\partial \Omega$.
- We consider the two-phase conductivity equation:

$$\left\{ \begin{array}{ccc} -\mathrm{div}(A(x)\nabla u) = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{array} \right. \text{ where } A(x) := \left\{ \begin{array}{ccc} \alpha_0 & \text{in } \Omega_0, \\ \alpha_1 & \text{in } \Omega_1, \end{array} \right.$$

Transmission boundary conditions (II)

Theorem 27 (Transmission conditions).

• Let u be the unique solution to (TP) in $H_0^1(D)$, and let the restrictions

$$u_0 := u|_{\Omega_0} \in H^1(\Omega_0)$$
 and $u|_{\Omega_1} \in H^1(\Omega_1)$.

Then, u_0 and u_1 are solutions to the coupled system

$$-\mathrm{div}(\alpha_0\nabla u_0)=f\quad\text{in}\quad\Omega_0,\quad\text{and}\quad\left\{\begin{array}{ccc} -\mathrm{div}(\alpha_1\nabla u_1)=f & \text{in }D,\\ u_1=0 & \text{on }\partial D, \end{array}\right. \tag{C}$$

supplemented with the transmission conditions at the interface Γ :

$$u_0 = u_1$$
 and $\alpha_0 \frac{\partial u_0}{\partial n} = \alpha_1 \frac{\partial u_1}{\partial n}$ on Γ . (TC)

• Conversely, if $u_0 \in H^1(\Omega_0)$ and $u_1 \in H^1(\Omega_1)$ are solutions to (C) (TC), then the function

$$u(x) = \begin{cases} u_0(x) & \text{for } x \in \Omega_0, \\ u_1(x) & \text{for } x \in \Omega_1, \end{cases}$$

is the unique solution to (TP) in $H_0^1(D)$.

Transmission boundary conditions (III)

Hint of the proof:

We only prove the implication " $(TP) \Rightarrow (C) + (TC)$ " (the converse being analogous).

• Since $u \in H_0^1(D)$, the trace theorem directly implies the first condition in (TC):

$$u_0 = u_1$$
 on Γ .

• The variational formulation for u reads: for any $\phi \in \mathcal{C}^\infty_c(D)$,

$$\int_{D} f \phi \, dx = \int_{D} A(x) \nabla u \cdot \nabla \phi \, dx$$

$$= \int_{\Omega_{\mathbf{0}}} \alpha_{\mathbf{0}} \nabla u_{\mathbf{0}} \cdot \nabla \phi \, dx + \int_{\Omega_{\mathbf{1}}} \alpha_{\mathbf{1}} \nabla u_{\mathbf{1}} \cdot \nabla \phi \, dx.$$

Applying Green's formula to both integrals in the above right-hand side yields:

$$\begin{split} \int_{D} f \phi \, \mathrm{d}x &= -\int_{\Omega_{\mathbf{0}}} \mathrm{div}(\alpha_{\mathbf{0}} \nabla u_{\mathbf{0}}) \phi \, \mathrm{d}x - \int_{\Omega_{\mathbf{1}}} \mathrm{div}(\alpha_{\mathbf{1}} \nabla u_{\mathbf{1}}) \phi \, \mathrm{d}x \\ &+ \int_{\Gamma} \left(\frac{\partial u_{\mathbf{0}}}{\partial n} - \frac{\partial u_{\mathbf{1}}}{\partial n} \right) \phi \, \mathrm{d}s, \end{split}$$

where the - sign in front of $\frac{\partial u_1}{\partial n}$ follows from the fact that the unit normal vector to Γ pointing outward Ω_1 is -n.

Transmission boundary conditions (IV)

• Taking arbitrary $\phi \in \mathcal{C}_c^{\infty}(\Omega_0)$ with support inside Ω_0 yields:

$$-\mathrm{div}(\alpha_0 \nabla u_0) = f \text{ in } \Omega_0,$$

and likewise:

$$-\mathrm{div}(\alpha_1 \nabla u_1) = f \text{ in } \Omega_1.$$

• There remains: for any $\phi \in \mathcal{C}^\infty_c(D)$,

$$\int_{\Gamma} \left(\frac{\partial u_0}{\partial n} - \frac{\partial u_1}{\partial n} \right) \phi \, \mathrm{d}s = 0.$$

Since the trace of ϕ on Γ is arbitrary, the second transmission condition follows:

$$\alpha_0 \frac{\partial u_0}{\partial n} = \alpha_1 \frac{\partial u_1}{\partial n}$$
 on Γ .

Remark This principle extends to many other physical situations, such as that of linearized elasticity.

The "uniqueness of the limit argument" (I)

In a very general Hausdorff topological space X,

- Assume that we aim to prove that a sequence $x_n \in X$ converges to some element $\ell \in X$.
- In practice, it often happens that we can only prove that a subsequence x_{np} converges to ℓ.
- Actually, quite often, what we are able to prove is that
 - "From any subsequence x_{n_p} of x_n we can extract a further subsequence $x_{n_{p_q}}$ of x_{n_p} which converges to ℓ ".
- Then, a simple argument reveals that the whole sequence x_n converges to ℓ .

The "uniqueness of the limit argument" (II)

Lemma 28.

Let X be a Hausdorff topological space, and let $x_n \in X$ be a sequence. Assume that there exists $\ell \in X$ such that

For all subsequence $\{x_{n_p}\}_{p\in\mathbb{N}}$, there exists a further subsequence

$$\left\{x_{n_{p_q}}\right\}_{q\in\mathbb{N}}$$
 converging to ℓ .

Then the whole sequence x_n converges to ℓ as $n \to \infty$.

<u>Proof:</u> Assume that x_n does not converge to ℓ . Then there exists an open subset $U \subset X$ containing ℓ and a subsequence $\{x_{n_p}\}_{p\in\mathbb{N}}$ such that:

$$\forall p \in \mathbb{N}, \quad x_{n_p} \in X \setminus U.$$

From the assumption, one may then extract a subsequence $\left\{x_{n_{p_q}}\right\}_{q\in\mathbb{N}}$ from $\left\{x_{n_p}\right\}_{p\in\mathbb{N}}$ such that:

$$X_{n_{p_q}} \xrightarrow{q \to \infty} \ell.$$

In particular, there exists $p \in \mathbb{N}$ large enough such that $x_{n_p} \in U$, which is a contradiction.

Bibliography

References I

- [AllaireWeb] Grégoire Allaire's web page, http://www.cmap.polytechnique.fr/ allaire/.
- [All2s] G. Allaire, *Homogenization and two-scale convergence*, SIAM Journal on Mathematical Analysis, 23(6), (1992), pp. 1482–1518.
- [Allc] G. Allaire, *Conception optimale de structures*, Mathématiques & Applications, **58**, Springer Verlag, Heidelberg (2006).
- [Allh] G. Allaire, Shape optimization by the homogenization method, Springer Verlag, (2012).
- [BauCom] H. H. Bauschke and P. L. Combettes, *Convex analysis and monotone operator theory in Hilbert spaces* (Vol. 408), New York: Springer, (2011).
- [Bre] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer Science & Business Media, (2010).

References II

- [CioDaGr] D. Cioranescu, A. Damlamian and G. Griso, *The periodic unfolding method in homogenization*, SIAM Journal on Mathematical Analysis, 40(4), (2008), pp. 1585–1620.
- [GroSig] J.P. Groen and O. Sigmund, *Homogenization-based topology optimization for high-resolution manufacturable microstructures*, Internat. J. Numer. Methods Engrg., 113 (8), pp. 1148–1163.
- [KoMi] R. V. Kohn and G. W. Milton, *On bounding the effective conductivity of anisotropic composites*, in Homogenization and effective moduli of materials and media, Springer, (1986), pp. 97–125.
- [Ngue] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20(3), (1989), pp. 608–623.
- [PanTra] O. Pantz and K. Trabelsi, *A post-treatment of the homogenization method for shape optimization*, SIAM Journal on Control and Optimization, 47 (3), pp. 1380–1398.