’ Elementary partial differential equations: partial correction of Homework 4

Exercise 2

We consider the solution u(t, z) to the wave equation:
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(1) Let us define the function v(¢, z) as: v(t,x) = u(t,z—y), and let us compute its partial derivatives, owing
to the chain rule:
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and v is also a solution to the wave equation (with different initial data, of course !).

Thus:

(2) Let us define the function v(¢,x) as: v(t,x) = ax L(t,x), we have:
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and v is also a solution to the wave equation.
(3) Let us define the function v(t, z) as: v(t,x) = u(at, ax), and let us compute its partial derivatives, owing
to the chain rule:

Thus:
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£(t,x) = a%(at,ax), w(t,x) =a ?(at,ax).
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and v is also a solution to the wave equation.

Thus:

Exercise 4

Let us consider the PDE:
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(1) 38t2+ Oa 8t+35‘2 sin(x + t),

(1) This is a simple computation which resembles very much the factorization of second-order polynomial
equations; for any function u(t, x), one has:
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where the second line consists in making appear the end of the perfect square term corresponding to the
first two terms. We can now write:
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which leads immediately to the desired equation:
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(2) The purpose of this question is to find a new set of variables (£, n) such that, for any twice differentiable
function u, one has:
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But, we know that, because of chain rule, for any such change of variables, one has:
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Consequently, so that (2) holds, by identification with the general expression (3), it is enough that the new
set of variables (&, n) satisfies:
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These formulae bring only constants into play, which suggests a linear change of variables. Let us search for
(&,m) under the form:
t=al+bn, v=c&+dn,
for some constants a, b, ¢, d to be found. In view of the above equations, one simply has:
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Eventually, the new set of variables is defined by:
5 4
t=¢ and x = -§+ o7,
& and = €+ 2
whence, inverting this system to get (£,7) in terms of (¢, x):

5 3
E=t, and n=-t+ —x.
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Now, with these new variables, (2) holds by construction, and (1) rewrites:
Pu  0Pu 1 . 1 . 8 4
(4) 852—61722381n(t—|—x)=381n(3§+37]>

(3) Denote v(&,n) = Asin (%5 + %17), for some constant A to be found. Then,
0%v
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3752(577)) = ——Asin <3f+ 377> , and 87772(5777) = ——Asin (35 + 377> .

9 9
Consequently:
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aTZ(g,n) - 8772(&77) = —gAsm (3§+ 377) :

Therefore, a particular solution to (4) is v(t, z) = — 2 sin (§¢ + 7).
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(4) The PDE (1) is linear. Thus, its general solution is given by the sum of the general solution to the
associated homogeneous equation

(5) u 9%*u B
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and of a particular solution to (1). By the results of the lectures over the wave equation, we know that the
general solution to (5) is of the form:

fE€—=n)+g(€+n),

where f and g are two arbitrary twice differentiable functions. Hence, the general solution of (1) is of the
form:

on) = £6 =)+ ol +) - g sin (e 3n).

or, in term of ¢, x:

1.3 9 3 3 .
u(t,x) = f Zt+i$ +g Zt+1$ —@sm(t—kx),

where f and g are two arbitrary twice differentiable functions.

Exercise 5

Our purpose is to solve the PDE:
0? 0? 0?
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As suggested, let us remark that the differential operator at play here admits the following factorization, for
any twice differentiable function w:
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We now proceed exactly as during the lecture over the wave equation, and remark that, introducing
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one has:
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Thus, solving the second-order equation (6) boils down to solving two first-order linear equations:
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But we know that the general solution to (8) is of the form:

U(t,l’) = f(.’E - t)v
where f is an arbitrary function (we have been solving this transport equation at least a dozen times during
the lectures, but if you are not confident with it, use the method of characteristics !). Now, (7) becomes:
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As we have seen before, this is an inhomogeneous first-order linear PDE. Its solution is thus the sum of a
particular solution, and of the general solution of the the associated homogeneous equation % — 3% =0.

The general solution to this homogeneous equation is upem(t,x) = g(x + 3t), where g is an arbitrary
function (same as above, use the method of characteristics !). We search now for a particular solution to (9)
under the form wpq,(t, 2) = h(x — t), where h is a function to be found. But, under this form:

aupart _ 38upart

o . =—h'(x—t) = 3h'(x —t) = —4h/(x — ).
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We may therefore take: e (t,) = —1F(x — t), where F is a primitive of f over R. But, since f is

arbitrary, so is F.

All things considered, the solution u(t, z) to (6) is of the form:
(10) ult,z) = [z — 1) + gl +31),

where f,g are two arbitrary twice differentiable functions.

If we eventually assume that u(0,z) = 22 and %(O,x) = e%, we have, using (10) in combination with
chain rule:
Vo €R, f(x)+g(z) =22 and — f(x)+3g(z) = e”.
Hence,

flx) == (322 —¢%), and g(z) = ~ (2% + €7),

| =
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and:

u(t,z) = (3(5(} —1)? - e(x_t)) + i ((x +3t)% + e(“'?’t)) .
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