
Elementary partial differential equations: partial correction of Homework 4

Exercise 2

We consider the solution u(t, x) to the wave equation:

∂2u

∂t2
− ∂2u

∂x2
= 0.

(1) Let us define the function v(t, x) as: v(t, x) = u(t, x−y), and let us compute its partial derivatives, owing
to the chain rule:

∂v

∂t
(t, x) =

∂u

∂t
(t, x− y),

∂2v

∂t2
(t, x) =

∂2u

∂t2
(t, x− y),

∂v

∂x
(t, x) =

∂u

∂x
(t, x− y),

∂2v

∂x2
(t, x) =

∂2u

∂x2
(t, x− y).

Thus: (
∂2v

∂t2
− ∂2v

∂x2

)
(t, x) =

(
∂2u

∂t2
− ∂2u

∂x2

)
(t, x− y) = 0,

and v is also a solution to the wave equation (with different initial data, of course !).

(2) Let us define the function v(t, x) as: v(t, x) = ∂u
∂x (t, x), we have:

∂2v

∂t2
(t, x) =

∂

∂x

(
∂2u

∂t2
(t, x)

)
,
∂2v

∂x2
(t, x) =

∂

∂x

(
∂2u

∂x2
(t, x)

)
,

Thus: (
∂2v

∂t2
− ∂2v

∂x2

)
(t, x) =

∂

∂x

(
∂2u

∂t2
− ∂2u

∂x2

)
(t, x) = 0,

and v is also a solution to the wave equation.
(3) Let us define the function v(t, x) as: v(t, x) = u(at, ax), and let us compute its partial derivatives, owing
to the chain rule:

∂v

∂t
(t, x) = a

∂u

∂t
(at, ax),

∂2v

∂t2
(t, x) = a2

∂2u

∂t2
(at, ax),

∂v

∂x
(t, x) = a

∂u

∂x
(at, ax),

∂2v

∂x2
(t, x) = a2

∂2u

∂x2
(at, ax).

Thus: (
∂2v

∂t2
− ∂2v

∂x2

)
(t, x) = a2

(
∂2u

∂t2
− ∂2u

∂x2

)
(at, ax) = 0,

and v is also a solution to the wave equation.

Exercise 4

Let us consider the PDE:

(1) 3
∂2u

∂t2
+ 10

∂2u

∂x∂t
+ 3

∂2u

∂x2
= sin(x+ t),

(1) This is a simple computation which resembles very much the factorization of second-order polynomial
equations; for any function u(t, x), one has:

3∂2u
∂t2 + 10 ∂2u

∂x∂t + 3∂2u
∂x2 = 3

(
∂2u
∂t2 + 10

3
∂2u
∂x∂t + ∂u

∂x2

)
= 3

(
∂2u
∂t2 + 10

3
∂2u
∂x∂t + 25

9
∂2u
∂x2 − 16

9
∂u
∂x2

)
,
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where the second line consists in making appear the end of the perfect square term corresponding to the
first two terms. We can now write:

3
∂2u

∂t2
+ 10

∂2u

∂x∂t
+ 3

∂2u

∂x2
= 3

((
∂

∂t
+

5

3

∂

∂x

)(
∂

∂t
+

5

3

∂

∂x

)
u− 16

9

∂2u

∂x2

)
,

which leads immediately to the desired equation:(
∂

∂t
+

5

3

∂

∂x

)(
∂

∂t
+

5

3

∂

∂x

)
u− 16

9

∂2u

∂x2
=

1

3
sin(x+ t).

(2) The purpose of this question is to find a new set of variables (ξ, η) such that, for any twice differentiable
function u, one has:

(2)
∂u

∂ξ
=
∂u

∂t
+

5

3

∂u

∂x
, and

∂u

∂η
=

4

3

∂u

∂x
.

But, we know that, because of chain rule, for any such change of variables, one has:

(3)
∂u

∂ξ
=
∂u

∂t

∂t

∂ξ
+
∂u

∂x

∂x

∂ξ
, and

∂u

∂η
=
∂u

∂t

∂t

∂η
+
∂u

∂x

∂x

∂η
.

Consequently, so that (2) holds, by identification with the general expression (3), it is enough that the new
set of variables (ξ, η) satisfies:

∂t

∂ξ
= 1,

∂x

∂ξ
=

5

3
,

and
∂t

∂η
= 0,

∂x

∂η
=

4

3
.

These formulae bring only constants into play, which suggests a linear change of variables. Let us search for
(ξ, η) under the form:

t = aξ + bη, x = cξ + dη,

for some constants a, b, c, d to be found. In view of the above equations, one simply has:

a =
∂t

∂ξ
= 1, b =

∂t

∂η
= 0,

and

c =
∂x

∂ξ
=

5

3
, d =

∂x

∂η
=

4

3
.

Eventually, the new set of variables is defined by:

t = ξ, and x =
5

3
ξ +

4

3
η,

whence, inverting this system to get (ξ, η) in terms of (t, x):

ξ = t, and η =
5

4
t+

3

4
x.

Now, with these new variables, (2) holds by construction, and (1) rewrites:

(4)
∂2u

∂ξ2
− ∂2u

∂η2
=

1

3
sin (t+ x) =

1

3
sin

(
8

3
ξ +

4

3
η

)
.

(3) Denote v(ξ, η) = A sin
(
8
3ξ + 4

3η
)
, for some constant A to be found. Then,

∂2v

∂ξ2
(ξ, η) = −64

9
A sin

(
8

3
ξ +

4

3
η

)
, and

∂2v

∂η2
(ξ, η) = −16

9
A sin

(
8

3
ξ +

4

3
η

)
.

Consequently:
∂2v

∂ξ2
(ξ, η)− ∂2v

∂η2
(ξ, η) = −48

9
A sin

(
8

3
ξ +

4

3
η

)
.

Therefore, a particular solution to (4) is v(t, x) = − 3
48 sin

(
8
3ξ + 4

3η
)
.
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(4) The PDE (1) is linear. Thus, its general solution is given by the sum of the general solution to the
associated homogeneous equation

(5)
∂2u

∂ξ2
− ∂2u

∂η2
= 0

and of a particular solution to (1). By the results of the lectures over the wave equation, we know that the
general solution to (5) is of the form:

f(ξ − η) + g(ξ + η),

where f and g are two arbitrary twice differentiable functions. Hence, the general solution of (1) is of the
form:

u(ξ, η) = f(ξ − η) + g(ξ + η)− 3

48
sin

(
8

3
ξ +

4

3
η

)
,

or, in term of t, x:

u(t, x) = f

(
1

4
t+

3

4
x

)
+ g

(
9

4
t+

3

4
x

)
− 3

48
sin (t+ x) ,

where f and g are two arbitrary twice differentiable functions.

Exercise 5

Our purpose is to solve the PDE:

(6)
∂2u

∂t2
− 2

∂2u

∂x∂t
− 3

∂2u

∂x2
= 0.

As suggested, let us remark that the differential operator at play here admits the following factorization, for
any twice differentiable function u:

∂2u

∂t2
− 2

∂2u

∂x∂t
− 3

∂2u

∂x2
=

(
∂

∂t
+

∂

∂x

)(
∂

∂t
− 3

∂

∂x

)
u.

We now proceed exactly as during the lecture over the wave equation, and remark that, introducing

(7) v =
∂u

∂t
− 3

∂u

∂x
,

one has:

(8)
∂v

∂t
+
∂v

∂x
= 0.

Thus, solving the second-order equation (6) boils down to solving two first-order linear equations:{
∂v
∂t + ∂v

∂x = 0
∂u
∂t − 3∂u

∂x = v

But we know that the general solution to (8) is of the form:

v(t, x) = f(x− t),

where f is an arbitrary function (we have been solving this transport equation at least a dozen times during
the lectures, but if you are not confident with it, use the method of characteristics !). Now, (7) becomes:

(9)
∂u

∂t
− 3

∂u

∂x
= f(x− t).

As we have seen before, this is an inhomogeneous first-order linear PDE. Its solution is thus the sum of a
particular solution, and of the general solution of the the associated homogeneous equation ∂u

∂t − 3∂u
∂x = 0.

The general solution to this homogeneous equation is uhom(t, x) = g(x + 3t), where g is an arbitrary
function (same as above, use the method of characteristics !). We search now for a particular solution to (9)
under the form upart(t, x) = h(x− t), where h is a function to be found. But, under this form:

∂upart
∂t

− 3
∂upart
∂x

= −h′(x− t)− 3h′(x− t) = −4h′(x− t).
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We may therefore take: upart(t, x) = − 1
4F (x − t), where F is a primitive of f over R. But, since f is

arbitrary, so is F .

All things considered, the solution u(t, x) to (6) is of the form:

(10) u(t, x) = f(x− t) + g(x+ 3t),

where f, g are two arbitrary twice differentiable functions.

If we eventually assume that u(0, x) = x2 and ∂u
∂t (0, x) = ex, we have, using (10) in combination with

chain rule:
∀x ∈ R, f(x) + g(x) = x2, and − f(x) + 3g(x) = ex.

Hence,

f(x) =
1

4

(
3x2 − ex

)
, and g(x) =

1

4

(
x2 + ex

)
,

and:

u(t, x) =
1

4

(
3(x− t)2 − e(x−t)

)
+

1

4

(
(x+ 3t)2 + e(x+3t)

)
.
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