Advanced Calculus I: Workshop 8

Exercise 1

The purpose of this exercise is to prove the following fundamental property of compact sets:

The infimum and the supremum of a non empty compact set $K \subset \mathbb{R}$ belong to K.

(1) Give an example of a (non compact) subset A of \mathbb{R} which does not contain its supremum $\sup(A)$. Let now $K \subset \mathbb{R}$ be a non empty compact set.

- (2) Explain why the supremum and infimum $\sup(K)$ and $\inf(K)$ exist.
- (3) Show that there exists a sequence $\{x_n\}$ of elements of K which converges to $\sup(K)$.
- (4) Infer that $\sup(K)$ is an element of K.

Exercise 2 The goal of this exercise is to prove the following statements about open subsets of \mathbb{R} :

• Any union of open subsets of \mathbb{R} is open.

• An intersection of a *finite* number of open subsets of \mathbb{R} is open.

- (1) By using the definition of an open set, show that, if $\{O_{\lambda}\}_{\lambda \in \Lambda}$ is any family of open subsets of \mathbb{R} , then the union $\bigcup_{\lambda \in \Lambda} O_{\lambda}$ is also open.
- (2) Show that if $O_1, ... O_N$ are N open subsets of \mathbb{R} , the (finite) intersection $\bigcap_{n=1}^N O_n$ is also open.
- (3) For any $n \in \mathbb{N}^*$, consider the set $O_n = (-\frac{1}{n}, \frac{1}{n})$. Identify the infinite intersection $\bigcap_{n=1}^{\infty} O_n$. Is it open?
- (4) [This question is subsidiary and is not part of the workshop session] By using the fact that a set $A \subset \mathbb{R}$ is open if an only if its complement is closed, show that:
 - Any intersection of closed subsets of \mathbb{R} is closed.
 - A union of a *finite* number of closed subsets of \mathbb{R} is closed.