Exercise 1: Let A, B and C be three sets, and $f: A \to B, g: B \to C$ two functions.

- (1) Show that, if the composed function $g \circ f$ is one-to-one, then f is one-to-one.
- (2) Is the converse of this property true? That is, is it true that, if f is one-to-one, then $g \circ f$ also is? If your answer is yes, prove it; else, provide a counter-example.
- (3) Show that, if the composed function $g \circ f$ is onto, then g is onto.
- (4) Does the converse of this property hold? If your answer is yes, prove it; else, provide a counterexample.

Exercise 2: Let $\{a_i\}_{i=1,\dots,n}$ and $\{b_i\}_{i=1,\dots,n}$ be two sequences of real numbers. Prove the *Cauchy-Schwarz inequality* by induction on n:

$$\left|\sum_{i=1}^{n} a_i b_i\right| \le \left(\sum_{i=1}^{n} a_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} b_i^2\right)^{\frac{1}{2}}.$$