Factoring bivariate lacunary polynomials without heights

Bruno Grenet

ÉNS Lyon

Arkadev Chattophyay
U. Toronto
Pascal Koiran
ÉNS Lyon
Natacha Portier
ÉNS Lyon
Yann Strozecki
U. Paris Sud XI

Rencontres du GdT CMF - Turing 2012 - Lyon, July 4. 2012

Representation of Univariate Polynomials

$$
P(X)=X^{10}-4 X^{8}+8 X^{7}+5 X^{3}+1
$$

Representations

- Dense:

$$
[1,0,-4,8,0,0,0,0,5,0,0,1]
$$

- Sparse:

$$
\{(10: 1),(8:-4),(7: 8),(3: 5),(0: 1)\}
$$

Representation of Multivariate Polynomials

$$
P(x, y, z)=x^{2} y^{3} z^{5}-4 x^{3} y^{3} z^{2}+8 x^{5} z^{2}+5 x y z+1
$$

Representations

- Dense:

$$
[1, \ldots,-4,8, \ldots, 5, \ldots, 1]
$$

- Lacunary (supersparse):

$$
\{(2,3,5: 1),(3,3,2:-4),(5,0,2: 8),(1,1,1: 5),(0: 1)\}
$$

Representation of Multivariate Polynomials

$$
P(x, y, z)=x^{2} y^{3} z^{5}-4 x^{3} y^{3} z^{2}+8 x^{5} z^{2}+5 x y z+1
$$

Representations

- Dense:

$$
[1, \ldots,-4,8, \ldots, 5, \ldots, 1]
$$

- Sparse:

- Lacunary (supersparse):

$$
\{(2,3,5: 1),(3,3,2:-4),(5,0,2: 8),(1,1,1: 5),(0: 1)\}
$$

Size of the lacunary representation

Definition

$$
\begin{gathered}
P\left(X_{1}, \ldots, X_{n}\right)=\sum_{j=1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \ldots X_{n}^{\alpha_{n j}} \\
\Longrightarrow \operatorname{size}(P)=\sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{1 j}\right)+\cdots+\log \left(\alpha_{n j}\right)
\end{gathered}
$$

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P)=\sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P)=\sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Theorem (Cucker, Koiran, Smale, 1998)
Polynomial-time algorithm to find integer roots if $a_{j} \in \mathbb{Z}$.

Factorization of sparse univariate polynomials

$$
P(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} \quad \operatorname{size}(P)=\sum_{j=1}^{k} \operatorname{size}\left(a_{j}\right)+\log \left(\alpha_{j}\right)
$$

Theorem (Cucker, Koiran, Smale, 1998)
Polynomial-time algorithm to find integer roots if $a_{j} \in \mathbb{Z}$.
Theorem (Lenstra, 1999)
Polynomial-time algorithm to find factors of degree $\leq d$ if $a_{j} \in \mathbb{K}$, where \mathbb{K} is an algebraic number field.

Factorization of lacunary polynomials

Theorem (Kaltofen \& Koiran, 2005)
Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Factorization of lacunary polynomials

Theorem (Kaltofen \& Koiran, 2005)
Polynomial-time algorithm to find linear factors of bivariate lacunary polynomials over \mathbb{Q}.

Theorem (Kaltofen \& Koiran, 2006)
Polynomial-time algorithm to find low-degree factors of multivariate lacunary polynomials over algebraic number fields.

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X_{1}^{\alpha_{1 j}} \ldots X_{n}^{\alpha_{n j}}}_{P_{0}}+\sum_{P_{1}}^{\sum_{j=\ell+1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \ldots X_{n}^{\alpha_{n j}}}
$$

with $\alpha_{n 1} \leq \alpha_{n 2} \leq \cdots \leq \alpha_{n k}$.

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}}_{P_{1}}
$$

with $\alpha_{n 1} \leq \alpha_{n 2} \leq \cdots \leq \alpha_{n k}$. Suppose that

$$
\alpha_{n, \ell+1}-\alpha_{n, \ell}>\operatorname{gap}(P)
$$

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \ldots X_{n}^{\alpha_{n j}}}_{P_{1}}
$$

with $\alpha_{n 1} \leq \alpha_{n 2} \leq \cdots \leq \alpha_{n k}$. Suppose that

$$
\alpha_{n, \ell+1}-\alpha_{n, \ell}>\operatorname{gap}(P),
$$

then F divides P iff F divides both P_{0} and P_{1}.

Common ideas

Gap Theorem

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X_{1}^{\alpha_{1 j}} \cdots X_{n}^{\alpha_{n j}}}_{P_{1}}
$$

with $\alpha_{n 1} \leq \alpha_{n 2} \leq \cdots \leq \alpha_{n k}$. Suppose that

$$
\alpha_{n, \ell+1}-\alpha_{n, \ell}>\operatorname{gap}(P),
$$

then F divides P iff F divides both P_{0} and P_{1}.
gap (P) : function of the algebraic height of P.

This talk

Get rid of the heights!

This talk

Get rid of the heights!

- Linear factors of bivariate lacunary polynomials [KaKoi05]

This talk

Get rid of the heights!

- Linear factors of bivariate lacunary polynomials [KaKoi05]
- gap (P) independent of the height

This talk

Get rid of the heights!

- Linear factors of bivariate lacunary polynomials [KaKoi05]
- gap (P) independent of the height
\rightsquigarrow valid over any field of char. 0

This talk

Get rid of the heights!

- Linear factors of bivariate lacunary polynomials [KaKoi05]
- gap (P) independent of the height
\rightsquigarrow valid over any field of char. 0
- More elementary algorithms

This talk

Get rid of the heights!

- Linear factors of bivariate lacunary polynomials [KaKoi05]
- gap (P) independent of the height
\rightsquigarrow valid over any field of char. 0
- More elementary algorithms
- Extension to multilinear factors

This talk

Get rid of the heights!

- Linear factors of bivariate lacunary polynomials [KaKoi05]
- gap (P) independent of the height
\rightsquigarrow valid over any field of char. 0
- More elementary algorithms
- Extension to multilinear factors
- Results in positive characteristics

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

$(Y-u X-v)$ divides $P \Longleftrightarrow P(X, u X+v) \equiv 0$

Linear factors of bivariate polynomials

$$
P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}
$$

$$
(Y-u X-v) \text { divides } P \Longleftrightarrow P(X, u X+v) \equiv 0
$$

- Study of polynomials of the form $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$

Bound on the valuation

Definition

Let $P \in \mathbb{K}[X]$. Then $\operatorname{val}(P)=\max \left\{\alpha: \exists Q, P=X^{\alpha} Q\right\}$.

Bound on the valuation

Definition

Let $P \in \mathbb{K}[X]$. Then $\operatorname{val}(P)=\max \left\{\alpha: \exists Q, P=X^{\alpha} Q\right\}$.

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0$, with $\alpha_{1} \leq \cdots \leq \alpha_{k}$. Then

$$
\operatorname{val}(P) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right) .
$$

Bound on the valuation

Definition

Let $P \in \mathbb{K}[X]$. Then $\operatorname{val}(P)=\max \left\{\alpha: \exists Q, P=X^{\alpha} Q\right\}$.
Theorem
Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0$, with $\alpha_{1} \leq \cdots \leq \alpha_{k}$. Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2}
$$

- $X^{\alpha_{j}}(1+X)^{\beta_{j}}$ linearly independent

Bound on the valuation

Definition

Let $P \in \mathbb{K}[X]$. Then $\operatorname{val}(P)=\max \left\{\alpha: \exists Q, P=X^{\alpha} Q\right\}$.
Theorem
Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0$, with $\alpha_{1} \leq \cdots \leq \alpha_{k}$. Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2}
$$

- $X^{\alpha_{j}}(1+X)^{\beta_{j}}$ linearly independent
- Hajós' Lemma: if $\alpha_{1}=\cdots=\alpha_{k}, \operatorname{val}(P) \leq \alpha_{1}+(k-1)$.

The Wronskian

Definition

Let $f_{1}, \ldots, f_{k} \in \mathbb{K}[X]$. Then

$$
\mathrm{W}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{det}\left[\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{k}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(k-1)} & f_{2}^{(k-1)} & \ldots & f_{k}^{(k-1)}
\end{array}\right]
$$

The Wronskian

Definition

Let $f_{1}, \ldots, f_{k} \in \mathbb{K}[X]$. Then

$$
W\left(f_{1}, \ldots, f_{k}\right)=\operatorname{det}\left[\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{k}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(k-1)} & f_{2}^{(k-1)} & \ldots & f_{k}^{(k-1)}
\end{array}\right]
$$

Proposition

$\mathrm{W}\left(f_{1}, \ldots, f_{k}\right) \neq 0 \Longleftrightarrow$ the f_{j} 's are linearly independent.

Wronskian \& valuation

Lemma

$$
\operatorname{val}\left(W\left(f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=1}^{k} \operatorname{val}\left(f_{j}\right)-\binom{k}{2}
$$

Wronskian \& valuation

Lemma

$$
\operatorname{val}\left(\mathrm{W}\left(f_{1}, \ldots, f_{k}\right)\right) \geq \sum_{j=1}^{k} \operatorname{val}\left(f_{j}\right)-\binom{k}{2}
$$

$$
\begin{gathered}
\\
0 \\
-1 \\
\vdots \\
-(k-1)
\end{gathered}\left[\begin{array}{cccc}
\operatorname{val}\left(f_{1}\right) & \operatorname{val}\left(f_{2}\right) & \ldots & \operatorname{val}\left(f_{k}\right) \\
f_{1} & f_{2} & \ldots & f_{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{k}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(k-1)} & f_{2}^{(k-1)} & \ldots & f_{k}^{(k-1)}
\end{array}\right]
$$

Upper bound for the valuation

Lemma

Let $f_{j}=X^{\alpha_{j}}(1+X)^{\beta_{j}}$, linearly independent, s.t. $\alpha_{j}, \beta_{j} \geq k-1$. Then

$$
\operatorname{val}\left(\mathrm{W}\left(f_{1}, \ldots, f_{k}\right) \leq \sum_{j=1}^{k} \alpha_{j} .\right.
$$

Upper bound for the valuation

Lemma

Let $f_{j}=X^{\alpha_{j}}(1+X)^{\beta_{j}}$, linearly independent, s.t. $\alpha_{j}, \beta_{j} \geq k-1$. Then

$$
\operatorname{val}\left(W\left(f_{1}, \ldots, f_{k}\right) \leq \sum_{j=1}^{k} \alpha_{j} .\right.
$$

Proof idea. Write

$$
W\left(f_{1}, \ldots, f_{k}\right)=X^{\sum_{j} \alpha_{j}-\binom{k}{2}}(1+X)^{\sum_{j} \beta_{j}-\binom{k}{2}} \operatorname{det} M
$$

with $\operatorname{deg}\left(M_{i j}\right) \leq i$. Use $\operatorname{val}(\operatorname{det} M) \leq \operatorname{deg}(\operatorname{det} M) \leq\binom{ k}{2}$.

Proof of the Theorem

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0$, with $\alpha_{1} \leq \cdots \leq \alpha_{k}$. Then

$$
\operatorname{val}(P) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right)
$$

Proof of the Theorem

$$
\begin{aligned}
& \text { Theorem } \\
& \qquad \begin{array}{l}
\text { Let } P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0 \text {, with } \alpha_{1} \leq \cdots \leq \alpha_{k} \text {. Then } \\
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2} .
\end{array}
\end{aligned}
$$

Proof of the Theorem

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Let } P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0 \text {, with } \alpha_{1} \leq \cdots \leq \alpha_{k} \text {. Then } \\
& \operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2} .
\end{aligned}
$$

Proof.

$$
\operatorname{val}\left(\mathrm{W}\left(f_{1}, \ldots, f_{k}\right)\right)=\operatorname{val}\left(\mathrm{W}\left(P, f_{2}, \ldots, f_{k}\right)\right)
$$

Proof of the Theorem

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0$, with $\alpha_{1} \leq \cdots \leq \alpha_{k}$. Then

$$
\operatorname{val}(P) \leq \alpha_{1}+\binom{k}{2} .
$$

Proof.

$$
\sum_{j=1}^{k} \alpha_{j} \geq \operatorname{val}\left(\mathrm{W}\left(f_{1}, \ldots, f_{k}\right)\right)=\operatorname{val}\left(\mathrm{W}\left(P, f_{2}, \ldots, f_{k}\right)\right)
$$

$$
\geq \operatorname{val}(P)+\sum_{j=2}^{k} \alpha_{j}-\binom{k}{2}
$$

Proof of the Theorem

Theorem

Let $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0$, with $\alpha_{1} \leq \cdots \leq \alpha_{k}$. Then

$$
\operatorname{val}(P) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right) .
$$

Proof.

$$
\begin{aligned}
& \sum_{j=1}^{k} \alpha_{j} \geq \operatorname{val}\left(\mathrm{W}\left(f_{1}, \ldots, f_{k}\right)\right)=\operatorname{val}(\mathrm{W} \\
&\left.\left(P, f_{2}, \ldots, f_{k}\right)\right) \\
& \geq \operatorname{val}(P)+\sum_{j=2}^{k} \alpha_{j}-\binom{k}{2}
\end{aligned}
$$

Some comments

$$
\operatorname{val}\left(\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}}\right) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right)
$$

> $u X+v=v(Y+1)$, with $Y=\frac{u}{v} X$

Some comments

$$
\operatorname{val}\left(\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}}\right) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right)
$$

> $u X+v=v(Y+1)$, with $Y=\frac{u}{v} X$

- Generalization: $\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}, \operatorname{deg}\left(f_{i}\right) \leq d$

Some comments

$$
\operatorname{val}\left(\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}}\right) \leq \max _{1 \leq j \leq k}\left(\alpha_{j}+\binom{k+1-j}{2}\right)
$$

> $u X+v=v(Y+1)$, with $Y=\frac{u}{v} X$

- Generalization: $\sum_{j=1}^{k} a_{j} \prod_{i=1}^{m} f_{i}^{\alpha_{i j}}, \operatorname{deg}\left(f_{i}\right) \leq d$
- Lower bound: $\exists P, \operatorname{val}(P) \geq \alpha_{1}+(2 k-3)$

Our Gap Theorem

Theorem

Let

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{1}}
$$

with $u, v \neq 0, \alpha_{1} \leq \cdots \leq \alpha_{k}$. If

$$
\alpha_{\ell+1}>\max _{1 \leq j \leq \ell}\left(\alpha_{j}+\binom{\ell+1-j}{2}\right)
$$

then $P \equiv 0$ iff both $P_{0} \equiv 0$ and $P_{1} \equiv 0$.

Our Gap Theorem

Theorem

Let

$$
P=\underbrace{\sum_{j=1}^{\ell} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{0}}+\underbrace{\sum_{j=\ell+1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}}_{P_{1}}
$$

with $u, v \neq 0, \alpha_{1} \leq \cdots \leq \alpha_{k}$. If ℓ is the smallest index s.t.

$$
\alpha_{\ell+1}>\alpha_{1}+\binom{\ell}{2}
$$

then $P \equiv 0$ iff both $P_{0} \equiv 0$ and $P_{1} \equiv 0$.

Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

$$
\mathbb{K}=\mathbb{Q}[\xi] /\langle\varphi\rangle, \quad \varphi \in \mathbb{Z}[\xi] \text { irreducible of degree } \delta
$$

Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

$$
\mathbb{K}=\mathbb{Q}[\xi] /\langle\varphi\rangle, \quad \varphi \in \mathbb{Z}[\xi] \text { irreducible of degree } \delta
$$

- $x \in \mathbb{K}$ represented as $\left(\frac{n_{0}}{d_{0}}, \ldots, \frac{n_{\delta}}{d_{\delta}}\right)$
$\triangleright \operatorname{size}(x)=\log \left(n_{0} d_{0}\right)+\cdots+\log \left(n_{\delta} d_{\delta}\right)$

Algorithms

1. Polynomial Identity Testing
2. Finding (multi)linear factors

Definition

$$
\mathbb{K}=\mathbb{Q}[\xi] /\langle\varphi\rangle, \quad \varphi \in \mathbb{Z}[\xi] \text { irreducible of degree } \delta
$$

- $x \in \mathbb{K}$ represented as $\left(\frac{n_{0}}{d_{0}}, \ldots, \frac{n_{\delta}}{d_{\delta}}\right)$
$\triangleright \operatorname{size}(x)=\log \left(n_{0} d_{0}\right)+\cdots+\log \left(n_{\delta} d_{\delta}\right)$
N.B.: Algorithms are from [Kaltofen \& Koiran, 2005]

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test
if $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ vanishes.

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test
if $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ vanishes.
Proof.

- If $u=0$: test $\sum_{j} a_{j} v^{\beta_{j}} \stackrel{?}{=} 0 \rightsquigarrow[$ Lenstra'99]

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test
if $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ vanishes.
Proof.

- If $u=0$: test $\sum_{j} a_{j} v^{\beta_{j}} \stackrel{?}{=} 0 \rightsquigarrow[$ Lenstra'99] (idem $v=0$)

Polynomial Identity Testing

Theorem

There exists a deterministic polynomial-time algorithm to test
if $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ vanishes.

Proof.

- If $u=0$: test $\sum_{j} a_{j} v^{\beta_{j}} \stackrel{?}{=} 0 \rightsquigarrow[$ Lenstra' 09$] \quad$ (idem $v=0$)
- If $u, v \neq 0: P=P_{1}+\cdots+P_{s}$ s.t.

$$
P=0 \Longleftrightarrow P_{1}=\cdots=P_{s}=0
$$

where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$ with $\alpha_{\max } \leq \alpha_{\min }+\binom{k}{2}$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}, \text { with } \alpha_{k} \leq \alpha_{1}+\binom{k}{2}
$$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j},}, \text { with } \alpha_{k} \leq \quad\binom{k}{2}
$$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j},} \text { with } \alpha_{k} \leq \quad\binom{k}{2}
$$

Let $Y=u X+v$. Then

$$
Q(Y)=\sum_{j=1}^{k} a_{j} u^{-\alpha_{j}}(Y-v)^{\alpha_{j}} Y^{\beta_{j}}
$$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j},} \text { with } \alpha_{k} \leq \quad\binom{k}{2}
$$

Let $Y=u X+v$. Then

$$
\begin{aligned}
& Q(Y)=\sum_{j=1}^{k} a_{j} u^{-\alpha_{j}}(Y-v)^{\alpha_{j}} Y^{\beta_{j}} \\
&=\sum_{j=1}^{k} \sum_{\ell=0}^{\alpha_{j}} a_{j} u^{-\alpha_{j}}\binom{\alpha_{j}}{\ell}(-v)^{\ell} Y^{\alpha_{j}+\beta_{j}-\ell}
\end{aligned}
$$

Polynomial Identity Testing (2)

$$
Q(X)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j},} \text { with } \alpha_{k} \leq \quad\binom{k}{2}
$$

Let $Y=u X+v$. Then

$$
\begin{aligned}
Q(Y)=\sum_{j=1}^{k} a_{j} u^{-\alpha_{j}}(Y- & v)^{\alpha_{j}} Y^{\beta_{j}} \\
& =\sum_{j=1}^{k} \sum_{\ell=0}^{\alpha_{j}} a_{j} u^{-\alpha_{j}}\binom{\alpha_{j}}{\ell}(-v)^{\ell} Y^{\alpha_{j}+\beta_{j}-\ell}
\end{aligned}
$$

number of monomials, exponents $\leq \operatorname{poly}(\operatorname{size}(Q))$

Finding linear factors

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$.

Finding linear factors

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$.

- PIT algorithm \rightsquigarrow test a given linear factor

Finding linear factors

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$.

- PIT algorithm \rightsquigarrow test a given linear factor
- How to find linear factors?

Finding linear factors

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$.

- PIT algorithm \rightsquigarrow test a given linear factor
\downarrow How to find linear factors?

Gap theorem

$$
\begin{aligned}
P(X, u X+v) & \equiv 0 \\
\Longleftrightarrow & P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0
\end{aligned}
$$

Finding linear factors

Observation

$(Y-u X-v)$ divides $P(X, Y) \Longleftrightarrow P(X, u X+v) \equiv 0$.

- PIT algorithm \rightsquigarrow test a given linear factor
\triangleright How to find linear factors?

Gap theorem

$$
\begin{aligned}
P(X, u X+v) & \equiv 0 \\
& \Longleftrightarrow P_{1}(X, u X+v) \equiv \cdots \equiv P_{s}(X, u X+v) \equiv 0
\end{aligned}
$$

\Longrightarrow find linear factors of low-degree polynomials

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}} \quad \rightsquigarrow$ [Lenstra'99]

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}} \quad \rightsquigarrow$ [Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
\rightsquigarrow [Lenstra'99]
\rightsquigarrow [Lenstra'99]

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y \beta_{j}$
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
\rightsquigarrow [Lenstra'99]
\rightsquigarrow [Lenstra'99]
3. If $u, v \neq 0$:

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}} \quad \rightsquigarrow$ [Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}} \quad \rightsquigarrow$ [Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with $\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}}$
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}}$
\rightsquigarrow [Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with $\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}$
- Invert the roles of X and Y, to get $\beta_{\text {max }} \leq \beta_{\text {min }}+\binom{k}{2}$

Some details

Find linear factors $(Y-u X-v)$ of $P(X, Y)=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$

1. If $u=0$: Factors of polynomials $\sum_{j} a_{j} Y^{\beta_{j}} \rightsquigarrow$ [Lenstra'99]
2. If $v=0: P(X, u X)=\sum_{j} a_{j} u^{\beta_{j}} X^{\alpha_{j}+\beta_{j}} \quad \rightsquigarrow$ [Lenstra'99]
3. If $u, v \neq 0$:

- Compute $P=P_{1}+\cdots+P_{s}$ where $P_{t}=\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$ with $\alpha_{\text {max }} \leq \alpha_{\text {min }}+\binom{k}{2}$
- Invert the roles of X and Y, to get $\beta_{\text {max }} \leq \beta_{\text {min }}+\binom{k}{2}$
- Apply some dense factorization algorithm [Kaltofen'82, ..., Lecerf'07]

Complexity

Main computational task: Factorization of dense polynomials

Complexity

Main computational task: Factorization of dense polynomials
\Longrightarrow Complexity in terms of gap (P)

Complexity

Main computational task: Factorization of dense polynomials \Longrightarrow Complexity in terms of gap (P)

- [Kaltofen \& Koiran, 2005] gap $(P)=\mathcal{O}\left(k \log k+k \log h_{P}\right)$

Complexity

Main computational task: Factorization of dense polynomials \Longrightarrow Complexity in terms of gap (P)

- [Kaltofen \& Koiran, 2005] gap $(P)=\mathcal{O}\left(k \log k+k \log h_{P}\right)$

Ex.: $h_{P}=\max _{j}\left|a_{j}\right|$ if $P \in \mathbb{Z}[X, Y]$

Complexity

Main computational task: Factorization of dense polynomials \Longrightarrow Complexity in terms of $\operatorname{gap}(P)$

- [Kaltofen \& Koiran, 2005] gap $(P)=\mathcal{O}\left(k \log k+k \log h_{P}\right)$
- Here: $\operatorname{gap}(P)=\mathcal{O}\left(k^{2}\right)$

Ex.: $h_{P}=\max _{j}\left|a_{j}\right|$ if $P \in \mathbb{Z}[X, Y]$

Generalization for PIT

Theorem

There exists a polynomial-time algorithm to test if $P(X)=\sum_{j} a_{j} X^{\alpha_{j}}\left(u X^{d}+v\right)^{\beta_{j}}$ vanishes.

Generalization for PIT

Theorem

There exists a polynomial-time algorithm to test if $P(X)=\sum_{j} a_{j} X^{\alpha_{j}}\left(u X^{d}+v\right)^{\beta_{j}}$ vanishes.

Proof. Write $\alpha_{j}=d q_{j}+r_{j}$.

$$
P(X)=\sum_{r=0}^{d-1} X^{r} \underbrace{\sum_{j: r_{j}=r} a_{j}\left(X^{d}\right)^{q_{j}}\left(u X^{d}+v\right)^{\beta_{j}}}_{P_{r}\left(X^{d}\right)}
$$

Generalization for factorization

Lemma

Let $P=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}(w X+t)^{\gamma_{j}} \not \equiv 0$, uvwt $\neq 0$. Then

$$
\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+2\binom{k+1-j}{2}\right)
$$

Generalization for factorization

Lemma

Let $P=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}(w X+t)^{\gamma_{j}} \not \equiv 0$, uvwt $\neq 0$. Then

$$
\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+2\binom{k+1-j}{2}\right)
$$

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$.

Generalization for factorization

Lemma

Let $P=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}(w X+t)^{\gamma_{j}} \not \equiv 0$, uvwt $\neq 0$. Then

$$
\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+2\binom{k+1-j}{2}\right)
$$

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$.

Proof. $X Y-(u X-v Y+w)$ divides $P \Longleftrightarrow P\left(X, \frac{u X+w}{X+v}\right) \equiv 0$.

Generalization for factorization

Lemma

Let $P=\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}(w X+t)^{\gamma_{j}} \not \equiv 0$, uvwt $\neq 0$. Then

$$
\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+2\binom{k+1-j}{2}\right)
$$

Theorem

There exists a polynomial-time algorithm to compute the multilinear factors of $\sum_{j} a_{j} X^{\alpha_{j}} Y^{\beta_{j}}$.

Proof. $X Y-(u X-v Y+w)$ divides $P \Longleftrightarrow P\left(X, \frac{u X+w}{X+v}\right) \equiv 0$.
Gap theorem for $Q(X)=(X+v)^{\text {max }_{j} \beta_{j}} P\left(X, \frac{u X+w}{X+v}\right)$.

Positive characteristic

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1)
$$

Positive characteristic

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1)
$$

Proposition

Let \mathbb{K} be a field of characteristic p, and $f_{1}, \ldots, f_{k} \in \mathbb{K}[X]$. Then f_{1}, \ldots, f_{k} are linearly independent over $\mathbb{K}\left[X^{p}\right]$ iff $\mathrm{W}\left(f_{1}, \ldots, f_{k}\right) \neq 0$.

Positive characteristic

$$
(1+X)^{2^{n}}+(1+X)^{2^{n+1}}=X^{2^{n}}(X+1)
$$

Proposition

Let \mathbb{K} be a field of characteristic p, and $f_{1}, \ldots, f_{k} \in \mathbb{K}[X]$. Then f_{1}, \ldots, f_{k} are linearly independent over $\mathbb{K}\left[X^{p}\right]$ iff $\mathrm{W}\left(f_{1}, \ldots, f_{k}\right) \neq 0$.

Theorem

Let \mathbb{K} be a field of char. p and $P=\sum_{j=1}^{k} a_{j} X^{\alpha_{j}}(1+X)^{\beta_{j}} \not \equiv 0$, with $\alpha_{1} \leq \cdots \leq \alpha_{k}$.
If $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, then $\operatorname{val}(P) \leq \max _{j}\left(\alpha_{j}+\binom{k+1-j}{2}\right)$.

Algorithms in positive characteristic

$\mathbb{K}=\mathbb{F}_{p^{s}}=\mathbb{F}_{p}[\xi] /\langle\varphi\rangle, \varphi$ irreducible of degree s

Algorithms in positive characteristic

$\mathbb{K}=\mathbb{F}_{p^{s}}=\mathbb{F}_{p}[\xi] /\langle\varphi\rangle, \varphi$ irreducible of degree s

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, vanishes.

Algorithms in positive characteristic

$\mathbb{K}=\mathbb{F}_{p^{s}}=\mathbb{F}_{p}[\xi] /\langle\varphi\rangle, \varphi$ irreducible of degree s

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, vanishes.

Theorem

There exists a randomized polynomial-time algorithm to find factors of the form $(u X+v Y+w)$, $u v w \neq 0$, of a polynomial of the form $\sum_{j} a_{j} X^{\alpha_{j}} Y{ }^{\beta_{j}} \not \equiv 0$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$.

Algorithms in positive characteristic

$\mathbb{K}=\mathbb{F}_{p^{s}}=\mathbb{F}_{p}[\xi] /\langle\varphi\rangle, \varphi$ irreducible of degree s

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, vanishes.

Theorem

There exists a randomized polynomial-time algorithm to find factors of the form $(u X+v Y+w)$, $u v w \neq 0$, of a polynomial of the form $\sum_{j} a_{j} X^{\alpha_{j}} Y{ }^{\beta_{j}} \not \equiv 0$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$.

- If u, v or w is zero, then finding such factors is NP-hard.
[Kipnis-Shamir'99, Bi-Cheng-Rojas'12]

Algorithms in positive characteristic

$\mathbb{K}=\mathbb{F}_{p^{s}}=\mathbb{F}_{p}[\xi] /\langle\varphi\rangle, \varphi$ irreducible of degree s

Theorem

There exists a deterministic polynomial-time algorithm to test if $\sum_{j} a_{j} X^{\alpha_{j}}(u X+v)^{\beta_{j}}$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$, vanishes.

Theorem

There exists a randomized polynomial-time algorithm to find factors of the form $(u X+v Y+w)$, $u v w \neq 0$, of a polynomial of the form $\sum_{j} a_{j} X^{\alpha_{j}} Y{ }^{\beta_{j}} \not \equiv 0$, where $p>\max _{j}\left(\alpha_{j}+\beta_{j}\right)$.

- If u, v or w is zero, then finding such factors is NP-hard.
[Kipnis-Shamir'99, Bi-Cheng-Rojas'12]
- Only randomized dense factorization algorithms over $\mathbb{F}_{p^{s}}$

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]
+ Complexity independent of the height \rightsquigarrow large coefficients

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]
+ Complexity independent of the height \rightsquigarrow large coefficients
+ Consequences in large positive characteristic

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]
+ Complexity independent of the height \rightsquigarrow large coefficients
+ Consequences in large positive characteristic
- Still relies on [Lenstra'99] \rightsquigarrow number fields

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]
+ Complexity independent of the height \rightsquigarrow large coefficients
+ Consequences in large positive characteristic
- Still relies on [Lenstra'99] \rightsquigarrow number fields
- Extend to low-degree factors of multivariate polynomials

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]
+ Complexity independent of the height \rightsquigarrow large coefficients
+ Consequences in large positive characteristic
- Still relies on [Lenstra'99] \rightsquigarrow number fields
- Extend to low-degree factors of multivariate polynomials
- Extend to the univariate case

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]
+ Complexity independent of the height \rightsquigarrow large coefficients
+ Consequences in large positive characteristic
- Still relies on [Lenstra'99] \rightsquigarrow number fields
- Extend to low-degree factors of multivariate polynomials
- Extend to the univariate case
\rightsquigarrow Impossible in positive characteristic

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]
+ Complexity independent of the height \rightsquigarrow large coefficients
+ Consequences in large positive characteristic
- Still relies on [Lenstra'99] \rightsquigarrow number fields
- Extend to low-degree factors of multivariate polynomials
- Extend to the univariate case
\rightsquigarrow Impossible in positive characteristic
- Improve the $\binom{k}{2}$, or the lower bound

Conclusion

+ More elementary proofs for [Kaltofen \& Koiran'05]
+ Complexity independent of the height \rightsquigarrow large coefficients
+ Consequences in large positive characteristic
- Still relies on [Lenstra'99] $\rightsquigarrow ~ n u m b e r ~ f i e l d s ~$
- Extend to low-degree factors of multivariate polynomials
- Extend to the univariate case
\rightsquigarrow Impossible in positive characteristic
- Improve the $\binom{k}{2}$, or the lower bound

Thank you!

arXiv:1206.4224

