On the complexity of polynomial system solving

Bruno Grenet
 LIX - École Polytechnique

partly based on a joint work with Pascal Koiran \& Natacha Portier
$X X V^{\text {èmes }}$ rencontres arithmétiques de Caen
Île de Tatihou, June 30. - July 4., 2014

Is there a (nonzero) solution?

$$
\begin{array}{r}
X^{2}+Y^{2}-Z^{2}=0 \\
X Z+3 X Y+Y Z+Y^{2}=0 \\
X Z-Y^{2}=0
\end{array}
$$

Is there a (nonzero) solution?

$$
\begin{array}{r}
X^{2}+Y^{2}-Z^{2}=0 \\
X Z+3 X Y+Y Z+Y^{2}=0 \\
X Z-Y^{2}=0
\end{array}
$$

$\mathrm{PolSys}_{\mathbb{K}}$

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
Question: Is there $\boldsymbol{a} \in \overline{\mathbb{K}}^{n}$ s.t. $f(\mathbf{a})=0$?

$$
\begin{array}{r}
X^{2}+Y^{2}-Z^{2}=0 \\
X Z+3 X Y+Y Z+Y^{2}=0 \\
X Z-Y^{2}=0
\end{array}
$$

$\mathrm{PoLSYs}_{\mathbb{K}}$

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$
Question: Is there $\boldsymbol{a} \in \overline{\mathbb{K}}^{n}$ s.t. $\mathrm{f}(\mathbf{a})=\mathbf{0}$?

- Lower and upper bounds in terms of complexity classes
> \mathbb{K} : Either \mathbb{Z} or \mathbb{F}_{q} for some $q=p^{\text {s }}$
- Variants: Homogeneity, number of polynomials

Definition

P Deterministic polynomial time
NP, coNP Non-deterministic polynomial time
MA, AM Merlin-Arthur, Arthur-Merlin
$\Sigma_{2}, \Pi_{2}, \mathrm{PH}$ Polynomial hierarchy
PSPACE (Non-)deterministic polynomial space
EXP Deterministic exponential time

Homogeneous systems

HomPolSys $_{\mathbb{K}}$

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $\boldsymbol{a} \in \overline{\mathbb{K}}^{\mathrm{n}+1}$ s.t. $\mathrm{f}(\mathbf{a})=0$?

Homogeneous systems

HомPoıSys $_{\mathbb{K}}$

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $\boldsymbol{a} \in \overline{\mathbb{K}}^{\mathrm{n}+1}$ s.t. $\mathrm{f}(\mathbf{a})=0$?

Proposition

For $\mathbb{K}=\mathbb{Z}$ or $\mathbb{F}_{\mathbf{q}}$, PolSys $_{\mathbb{K}}$ and $\operatorname{HomPolSYS}_{\mathbb{K}}$ are polynomial-time equivalent.

Homogeneous systems

HомPoıSys $_{\mathbb{K}}$

Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $\boldsymbol{a} \in \overline{\mathbb{K}}^{\mathrm{n}+1}$ s.t. $\mathrm{f}(\mathbf{a})=0$?

Proposition

For $\mathbb{K}=\mathbb{Z}$ or $\mathbb{F}_{\mathbf{q}}$, PolSys $_{\mathbb{K}}$ and $\operatorname{HomPolSYS}_{\mathbb{K}}$ are polynomial-time equivalent.
Proof.

- PolSrs $_{\mathbb{K}} \leqslant{ }_{\mathrm{m}}^{\mathrm{P}} \operatorname{HomPoLSYS}_{\mathbb{K}}$: Homogenization
- HomPolSYs ${ }_{\mathbb{K}} \leqslant{ }_{m}^{p}$ PoLSYS $_{\mathbb{K}}$: New polynomial $\sum_{i} X_{i} Y_{i}-1$, where Y_{0}, \ldots, Y_{n} are fresh variables

Glimpse of Elimination Theory

$$
f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right], \quad f_{i}=\sum_{|\alpha|=d_{i}} \gamma_{i, \alpha} X^{\alpha}
$$

For which $\gamma_{i, \alpha}$ is there a root?

Glimpse of Elimination Theory

$$
f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right], \quad f_{i}=\sum_{|\alpha|=d_{i}} \gamma_{i, \alpha} X^{\alpha}
$$

For which $\gamma_{i, \alpha}$ is there a root?
There exist $R_{1}, \ldots, R_{h} \in \mathbb{K}[\gamma]$ s.t.

$$
\left\{\begin{array}{c}
\mathrm{R}_{1}(\gamma)=0 \\
\vdots \\
R_{h}(\gamma)=0
\end{array} \Longrightarrow \exists \boldsymbol{a} \neq 0, \quad\left\{\begin{array}{c}
f_{1}(\boldsymbol{a})=0 \\
\vdots \\
f_{s}(\boldsymbol{a})=
\end{array}\right.\right.
$$

Two Polynomials

> $P=\sum_{i=0}^{m} p_{i} X^{i} \quad, Q=\sum_{j=0}^{n} q_{j} X^{j}$

Two Polynomials

> $P=\sum_{i=0}^{m} p_{i} X^{i} \quad, Q=\sum_{j=0}^{n} q_{j} X^{j}$

Sylvester Matrix

Two Polynomials

- $P=\sum_{i=0}^{m} p_{i} X^{i} Y^{m-i}, Q=\sum_{j=0}^{n} q_{j} X^{j} Y^{n-j}:$

Sylvester Matrix

More generally

> $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right] \rightsquigarrow$ a unique resultant polynomial

- Sylvester matrix \rightsquigarrow Macaulay matrices (exponential size)

More generally

- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right] \rightsquigarrow$ a unique resultant polynomial
- Sylvester matrix \rightsquigarrow Macaulay matrices (exponential size)
- s polynomials $>\mathrm{n}+1$ variables \rightsquigarrow several polynomials needed

More generally

- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right] \rightsquigarrow$ a unique resultant polynomial
- Sylvester matrix \rightsquigarrow Macaulay matrices (exponential size)
- s polynomials $>\mathrm{n}+1$ variables \rightsquigarrow several polynomials needed
- s polynomials $<n+1$ variables \rightsquigarrow trivial

More generally

- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right] \rightsquigarrow$ a unique resultant polynomial
- Sylvester matrix \rightsquigarrow Macaulay matrices (exponential size)
- s polynomials $>\mathrm{n}+1$ variables \rightsquigarrow several polynomials needed
- s polynomials $<n+1$ variables \rightsquigarrow trivial

Resultant $_{\mathbb{K}}$

Input: $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Question: Is there a nonzero $a \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(\boldsymbol{a})=0$?

Upper bounds

Hilbert's Nullstellensatz

> Theorem
> Let $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$. Then
> $\forall \mathbf{a} \in \overline{\mathbb{K}}, f(\mathbf{a}) \neq 0 \Longleftrightarrow \exists q_{1}, \ldots, q_{s} \in \mathbb{K}[\mathbf{X}], 1=q_{1} f_{1}+\cdots+q_{s} f_{s}$.

Hilbert's Nullstellensatz

Theorem

Let $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$. Then
$\forall \mathbf{a} \in \overline{\mathbb{K}}, f(\mathbf{a}) \neq \mathbf{0} \Longleftrightarrow \exists \mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{s}} \in \mathbb{K}[\mathbf{X}], 1=\mathrm{q}_{1} \mathrm{f}_{1}+\cdots+\mathrm{q}_{\mathrm{s}} \mathrm{f}_{\mathrm{s}}$.

Sketch of an algorithm.

- Write $q_{i}=\sum_{|\alpha| \leqslant D} q_{i, \alpha} X^{\alpha}$ where the $q_{i, \alpha}$'s are indeterminates.
$>\sum_{i} q_{i} f_{i}=1$ is a linear system of D^{n} equations on $s D^{n}$ variables.
- Linear systems can be solved in logarithmic space.
- Do not store the linear system, but compute entries on demand. \Longrightarrow PoLSYs $_{\mathrm{K}}$ can be solved in space poly $(\mathrm{n} \log \mathrm{D}, \log \mathrm{s})$.

Polynomial System Solving in PSPACE

$$
\forall a \in \overline{\mathbb{K}}, f(\mathbf{a}) \neq 0 \Longleftrightarrow \exists q_{1}, \ldots, q_{s} \text { s.t. } 1=q_{1} f_{1}+\cdots+q_{s} f_{s} .
$$

Theorem [Kollár'88, Fitchas-Galligo'90]

The q_{i} 's can be chosen such that $\operatorname{deg}\left(q_{i}\right) \leqslant \max (3, d)^{n}$.

Polynomial System Solving in PSPACE

$$
\forall a \in \overline{\mathbb{K}}, f(\mathbf{a}) \neq 0 \Longleftrightarrow \exists \mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{s}} \text { s.t. } 1=\mathrm{q}_{1} \mathrm{f}_{1}+\cdots+\mathrm{q}_{\mathrm{s}} \mathrm{f}_{\mathrm{s}} .
$$

Theorem [Kollár'88, Fitchas-Galligo'90]

The q_{i} 's can be chosen such that $\operatorname{deg}\left(q_{i}\right) \leqslant \max (3, d)^{n}$.
Corollary
For $\mathbb{K}=\mathbb{Z}$ or \mathbb{F}_{q}, PolSYs $_{\mathbb{K}}$ belongs to PSPACE.

Polynomial System Solving in PSPACE

$$
\forall a \in \overline{\mathbb{K}}, f(\mathbf{a}) \neq 0 \Longleftrightarrow \exists \mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{s}} \text { s.t. } 1=\mathrm{q}_{1} f_{1}+\cdots+\mathrm{q}_{\mathrm{s}} f_{s} .
$$

Theorem [Kollár'88, Fitchas-Galligo'90]

The q_{i} 's can be chosen such that $\operatorname{deg}\left(q_{i}\right) \leqslant \max (3, d)^{n}$.
Corollary
For $\mathbb{K}=\mathbb{Z}$ or \mathbb{F}_{q}, PolSYs $_{\mathbb{K}}$ belongs to PSPACE.
More specifically, $\mathrm{PoLSYS}_{\mathbb{K}} \in \operatorname{DSPACE}\left((n \log d \log s)^{\mathcal{O}(1)}\right)$.

Computing the resultant

Theorem
[Canny'87]
The resultant is computable in polynomial space.

Computing the resultant

Theorem

The resultant is computable in polynomial space.

Proof idea.

- The resultant can be expressed as a god of n determinants of Macaulay matrices.
- Macaulay matrices can be represented by polynomial-size boolean circuits.
- The determinant can be computed in logarithmic space.

Computing the resultant

Theorem

The resultant is computable in polynomial space.

Proof idea.

- The resultant can be expressed as a gcd of n determinants of Macaulay matrices.
- Macaulay matrices can be represented by polynomial-size boolean circuits.
- The determinant can be computed in logarithmic space.

Theorem

 [Koiran-Perifel'07]The same holds true in Valiant's algebraic model of computation.

Macaulay matrices

- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous, of degrees d_{1}, \ldots, d_{n}
$>D=\sum_{i}\left(d_{i}-1\right), \mathcal{M}_{D}^{n}=\left\{X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}: \alpha_{0}+\ldots+\alpha_{n}=D\right\}$

Macaulay matrices

- $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous, of degrees d_{1}, \ldots, d_{n}
$>D=\sum_{i}\left(d_{i}-1\right), \mathcal{M}_{D}^{n}=\left\{X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}: \alpha_{0}+\ldots+\alpha_{n}=D\right\}$

Definition

The first Macaulay matrix is defined as follows:

- Its rows and columns are indexed by $\mathcal{M}_{\mathrm{D}}^{\mathrm{n}}$;
- The row indexed by X^{α} represents

$$
\frac{X^{\alpha}}{X_{i}^{d_{i}}} f_{i} \text {, where } i=\min \left\{j: d_{j} \leqslant \alpha_{j}\right\} .
$$

Other Macaulay matrices are defined by reordering the f_{i} 's.

Macaulay matrices

> $f_{1}, \ldots, f_{n+1} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous, of degrees d_{1}, \ldots, d_{n}
$>D=\sum_{i}\left(d_{i}-1\right), \mathcal{M}_{D}^{n}=\left\{X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}: \alpha_{0}+\ldots+\alpha_{n}=D\right\}$

Definition

The first Macaulay matrix is defined as follows:

- Its rows and columns are indexed by $\mathcal{M}_{\mathrm{D}}^{n}$;
- The row indexed by X^{α} represents

$$
\frac{X^{\alpha}}{X_{i}^{d_{i}}} f_{i} \text {, where } i=\min \left\{j: d_{j} \leqslant \alpha_{j}\right\} .
$$

Other Macaulay matrices are defined by reordering the f_{i} 's.

- Resultant : GCD of the determinants of n Macaulay matrices

Large determinants

Theorem [G.-Koiran-Portier'10-13]

Deciding the nullity of the determinant of a matrix represented
by a boolean circuit is PSPACE-complete (over any field).

Large determinants

Theorem [G.-Koiran-Portier'10-13]
Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Proof idea.

- Let \mathcal{M} be a PSPACE Turing Machine and $\mathcal{S}_{\mathcal{M}}^{\times}$its graph of configurations, with initial configuration c_{i} and accepting configuration c_{a};
- $\mathcal{G}_{\mathcal{M}}^{\times}$can be represented by a boolean circuit;
- There exists a path $c_{i} \rightsquigarrow c_{a}$ in $\mathcal{G}_{\mathcal{M}}^{x}$ iff \mathcal{M} accepts x;
- Let $A \simeq$ adjacency matrix of $\mathcal{G}_{\mathcal{M}}^{x}: \operatorname{det}(A) \neq 0 \Longleftrightarrow \exists c_{\mathfrak{i}} \rightsquigarrow c_{a}$.

Large determinants

Theorem

 [G.-Koiran-Portier'10-13]Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Proof idea.

- Let \mathcal{M} be a PSPACE Turing Machine and $\mathcal{S}_{\mathcal{M}}^{\times}$its graph of configurations, with initial configuration $\mathrm{c}_{\boldsymbol{i}}$ and accepting configuration c_{a};
- $\mathcal{G}_{\mathcal{M}}^{x}$ can be represented by a boolean circuit;
- There exists a path $c_{i} \rightsquigarrow c_{a}$ in $\mathcal{G}_{\mathcal{M}}^{x}$ iff \mathcal{M} accepts x;
$>$ Let $A \simeq$ adjacency matrix of $\mathcal{G}_{\mathcal{M}}^{x}: \operatorname{det}(A) \neq 0 \Longleftrightarrow \exists c_{i} \rightsquigarrow c_{a}$.

Theorem

[Malod'11]
The same holds true in Valiant's algebraic model of computation.

Artbur, Merlin and $\mathrm{PoLSys}_{\mathbb{Z}}$

Theorem

Under the Extended Riemann Hypothesis, $\mathrm{PolSys}_{\mathbb{Z}}$ is in AM .

Artbur, Merlin and $\mathrm{PoLSys}_{\mathbb{Z}}$

Theorem
Under the Extended Riemann Hypothesis, $\mathrm{PoLSYS}_{\mathbb{Z}}$ is in AM .
$>L \in N P$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$
x \in \mathrm{~L} \Longleftrightarrow \exists y \in \Sigma^{\mathfrak{p}(|x|)},(x, y) \in V
$$

Artbur, Merlin and $\mathrm{PoLSys}_{\mathbb{Z}}$

Theorem
Under the Extended Riemann Hypothesis, $\mathrm{PoLSYs}_{\mathbb{Z}}$ is in AM.
> $L \in N P$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$
x \in \mathrm{~L} \Longleftrightarrow \exists y \in \Sigma^{\mathfrak{p}(|x|)},(x, y) \in V
$$

> $L \in M A$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$
x \in \mathrm{~L} \Longleftrightarrow \exists y \in \Sigma^{p(|x|)}, \operatorname{Pr}_{r \in \Sigma^{p}(|x|)}((x, y, r) \in V) \geqslant 2 / 3
$$

Artbur, Merlin and $\mathrm{PoLSys}_{\mathbb{Z}}$

Theorem
Under the Extended Riemann Hypothesis, $\mathrm{PoLSYs}_{\mathbb{Z}}$ is in AM .
> $L \in N P$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$
x \in \mathrm{~L} \Longleftrightarrow \exists y \in \Sigma^{\mathfrak{p}(|x|)},(x, y) \in V
$$

> $\mathrm{L} \in \mathrm{MA}$ iff there exists $\mathrm{V} \in \mathrm{P}$ and a polynomial p s.t. for all x,

$$
x \in \mathrm{~L} \Longleftrightarrow \exists y \in \Sigma^{p(|x|)}, \operatorname{Pr}_{r \in \Sigma^{p}(|x|)}((x, y, r) \in V) \geqslant 2 / 3
$$

> $L \in A M$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$
x \in \mathrm{~L} \Longleftrightarrow \operatorname{Pr}_{r \in \Sigma^{p}(|x|)}\left(\exists y \in \Sigma^{p(|x|)}(x, r, y) \in V\right) \geqslant 2 / 3
$$

Artbur, Merlin and $\mathrm{PoLSys}_{\mathbb{Z}}$

Theorem
[Koiran'96]
Under the Extended Riemann Hypothesis, $\mathrm{PoLSYs}_{\mathbb{Z}}$ is in AM .
> $L \in N P$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$
x \in \mathrm{~L} \Longleftrightarrow \exists y \in \Sigma^{\mathfrak{p}(|x|)},(x, y) \in V
$$

> $L \in M A$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$
x \in L \Longleftrightarrow \exists y \in \Sigma^{p(|x|)}, \operatorname{Pr}_{r \in \Sigma p(|x|)}((x, y, r) \in V) \geqslant 2 / 3
$$

> $L \in A M$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$
x \in \mathrm{~L} \Longleftrightarrow \operatorname{Pr}_{r \in \Sigma^{p}(|x|)}\left(\exists y \in \Sigma^{p(|x|)}(x, r, y) \in V\right) \geqslant 2 / 3
$$

$$
N P \subseteq M A \subseteq A M
$$

Polynomial system mod primes

- Let $f=\left(f_{1}, \ldots, f_{s}\right)$, with $f_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$;

Let $\pi_{f}(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root $\bmod p$.

Polynomial system mod primes

- Let $f=\left(f_{1}, \ldots, f_{s}\right)$, with $f_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$;
$>$ Let $\pi_{f}(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root $\bmod p$.

Theorem

[Koiran'96]
There exist polynomial-time computable A and x_{0} s.t.

- If f has no root in \mathbb{C}, then $\left|\pi_{\mathrm{f}}\left(\mathrm{x}_{0}\right)\right| \leqslant \mathcal{A}$;
- If f has a root in \mathbb{C}, then $\left|\pi_{\mathrm{f}}\left(\mathrm{x}_{0}\right)\right| \geqslant 8 A(\log A+3)$.
- Let $f=\left(f_{1}, \ldots, f_{s}\right)$, with $f_{i} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$;

Let $\pi_{f}(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root $\bmod p$.

Theorem

[Koiran'96]
There exist polynomial-time computable A and x_{0} s.t.

- If f has no root in \mathbb{C}, then $\left|\pi_{\mathrm{f}}\left(\mathrm{x}_{0}\right)\right| \leqslant \mathcal{A}$;
- If f has a root in \mathbb{C}, then $\left|\pi_{f}\left(x_{0}\right)\right| \geqslant 8 A(\log A+3)$.

Proof idea.

- Using Hilbert's Nullstellensatz, there exists $b \in \mathbb{Z}$ and $q_{i} \in \mathbb{Z}[\mathbf{X}]$ such that $q_{1} f_{1}+\cdots+q_{s} f_{s}=b$, with $\log b=\exp (s, d)$.
- Using effective quantifier elimination, consider a root a of f such that $\mathbb{Q}(\mathbf{a})=\mathbb{Q} /\langle R\rangle$ where R is "small". Roots of R in \mathbb{F}_{p} yield roots of f in \mathbb{F}_{p}. Use an Effective Chebotarev Density Theorem (ERH) to prove that R has "many" roots.

Artbur-Merlin protocol

Theorem

Let U be a universe and $\left\{S_{x} \subseteq U: x \in \Sigma^{\star}\right\}$ a collection of sets s.t. for all x, either $\left|S_{x}\right| \leqslant \alpha|\mathrm{U}|$ or $\left|S_{x}\right| \geqslant 4 \alpha|\mathrm{U}|$, and $\mathrm{S}_{x} \in \mathrm{NP}$. Then the following problem is in AM: Given x, does $\left|S_{x}\right| \geqslant 4 \alpha|\mathrm{U}|$?

Artbur-Merlin protocol

Theorem

Let U be a universe and $\left\{S_{x} \subseteq U: x \in \Sigma^{\star}\right\}$ a collection of sets s.t. for all x, either $\left|S_{x}\right| \leqslant \alpha|\mathrm{U}|$ or $\left|S_{x}\right| \geqslant 4 \alpha|\mathrm{U}|$, and $S_{x} \in$ NP. Then the following problem is in AM: Given x, does $\left|S_{x}\right| \geqslant 4 \alpha \mid$ U \mid ?

Proof idea.

> $4 \alpha \simeq 1$: Arthur chooses $y \in \mathrm{U}$ at random, and asks Merlin a certificate that $y \in S_{x}$. If $\left|S_{x}\right| \simeq|U|, \operatorname{Pr}\left(y \in S_{x}\right) \simeq 1$.

- $\alpha \ll 1$: Consider a set T of size $4 \alpha|\mathrm{U}|$ and a family of universal hash functions $h: \mathrm{U} \rightarrow \mathrm{T}$.

1. Arthur chooses h and $t \in T$ at random.
2. Merlin must return $y \in S_{x}$ s.t. $h(y)=t$, with a certificate

Arthur-Merlin protocol

Theorem

Let U be a universe and $\left\{S_{x} \subseteq U: x \in \Sigma^{\star}\right\}$ a collection of sets s.t. for all x, either $\left|S_{x}\right| \leqslant \alpha|\mathrm{U}|$ or $\left|S_{x}\right| \geqslant 4 \alpha|\mathrm{U}|$, and $S_{x} \in N P$. Then the following problem is in AM: Given x, does $\left|S_{x}\right| \geqslant 4 \alpha \mid$ U|?

Proof idea.

- $4 \alpha \simeq 1$: Arthur chooses $y \in \mathrm{U}$ at random, and asks Merlin a certificate that $y \in S_{x}$. If $\left|S_{x}\right| \simeq|U|, \operatorname{Pr}\left(y \in S_{x}\right) \simeq 1$.
- $\alpha \ll 1$: Consider a set T of size $4 \alpha|\mathrm{U}|$ and a family of universal hash functions $h: \mathrm{U} \rightarrow \mathrm{T}$.

1. Arthur chooses h and $t \in T$ at random.
2. Merlin must return $y \in S_{x}$ s.t. $h(y)=t$, with a certificate

Proof $\left(\mathrm{PolSrs}_{\mathbb{Z}} \in A M\right) . \mathrm{U}=\left\{p \leqslant x_{0}: p\right.$ is prime $\}, S_{f}=\pi_{f}\left(x_{0}\right)$.

Lower bounds

Lower bounds for non-square systems

Proposition
[Folklore]
For $\mathbb{K}=\mathbb{Z}$ or $\mathbb{F}_{\mathfrak{p}}$, PolSys $_{\mathbb{K}}$ \& $\mathrm{HomPolSys}_{\mathbb{K}}$ are $\mathrm{NP}^{\text {-hard. }}$

Lower bounds for non-square systems

For $\mathbb{K}=\mathbb{Z}$ or \mathbb{F}_{p}, PolSys $_{\mathbb{K}}$ \& HomPolSys ${ }_{\mathbb{K}}$ are NP-hard.
Proof. Case HomPolSys $\mathbb{F}_{\mathfrak{p}}$, with $p \neq 2$:

BoolSys

- Boolean variables u_{1}, \ldots, u_{n}
- Equations
- $u_{i}=$ True
$u_{i}=\neg u_{j}$
$u_{i}=u_{j} \vee u_{k}$

Lower bounds for non-square systems

Proposition

For $\mathbb{K}=\mathbb{Z}$ or \mathbb{F}_{p}, PolSys $_{\mathbb{K}}$ \& $\operatorname{HomPolSys}_{\mathbb{K}}$ are NP-hard.
Proof. Case HomPolSys $\mathbb{F}_{\mathfrak{p}}$, with $p \neq 2$:

BoolSys

- Boolean variables u_{1}, \ldots, u_{n}
- Equations

$$
\begin{aligned}
& u_{i}=\text { True } \\
& u_{i}=\neg u_{j} \\
& u_{i}=u_{j} \vee u_{k}
\end{aligned}
$$

НомPolSys $_{\mathbb{K}}$

- Variables (over $\mathbb{F}_{\mathfrak{p}}$) X_{0} and X_{1}, \ldots, X_{n}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Lower bound for the resultant in char. o

Proposition
[Heintz-Morgenstern'93]
Resultant $_{\mathbb{Z}}$ is NP-hard.

Lower bound for the resultant in char. o

Proposition

[Heintz-Morgenstern'93]

Resultant $_{\mathbb{Z}}$ is NP-hard.

Proof. Partition $\mathbb{Z}_{\mathbb{Z}}$:

$$
\text { Input: } S=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq \mathbb{Z}
$$

Question: Does there exist $S^{\prime} \subseteq S, \sum_{i \in S^{\prime}} u_{i}=\sum_{j \notin S^{\prime}} u_{j}$?

Lower bound for the resultant in char．o

Resultant $_{\mathbb{Z}}$ is NP－hard．

Proof．Partition⿻彐丨冖又思：

$$
\text { Input: } S=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq \mathbb{Z}
$$

Question：Does there exist $S^{\prime} \subseteq S, \sum_{i \in S^{\prime}} u_{i}=\sum_{j \notin S^{\prime}} u_{j}$ ？

$$
\rightsquigarrow\left\{\begin{aligned}
X_{1}^{2}-X_{0}^{2} & =0 \\
& \vdots \\
X_{n}^{2}-X_{0}^{2} & =0 \\
u_{1} X_{1}+\cdots+u_{n} X_{n} & =0
\end{aligned}\right.
$$

Lower bound for the resultant in char. o

Resultant $_{\mathbb{Z}}$ is NP-hard.
Proof. Partitioñ:

$$
\text { Input: } S=\left\{u_{1}, \ldots, u_{n}\right\} \subseteq \mathbb{Z}
$$

Question: Does there exist $S^{\prime} \subseteq S, \sum_{i \in S^{\prime}} u_{i}=\sum_{j \notin S^{\prime}} u_{j}$?

$$
\rightsquigarrow\left\{\begin{aligned}
X_{1}^{2}-X_{0}^{2} & =0 \\
& \vdots \\
X_{n}^{2}-X_{0}^{2} & =0 \\
u_{1} X_{1}+\cdots+u_{n} X_{n} & =0
\end{aligned}\right.
$$

Note. Partition $\mathbb{F}_{\mathfrak{p}} \in P$

Hardness in positive characteristics

- $\operatorname{HomPoLSYS}_{\mathbb{F}_{\mathfrak{p}}}$ is NP-hard: \# homogeneous polynomials \geqslant \# variables

HomPolSrs $_{\mathbb{K}}$

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Hardness in positive characteristics

- HomPolSYs $\mathbb{F}_{\mathfrak{p}}$ is NP-hard: \# homogeneous polynomials \geqslant \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

HomPoıSys $_{\mathbb{K}}$

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Hardness in positive characteristics

- HomPolSYs $\mathbb{F}_{\mathfrak{p}}$ is NP-hard: \# homogeneous polynomials \geqslant \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

$\mathrm{HomPolSrs}_{\mathbb{K}}$

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

A randomized reduction

Define $g_{i}=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n: f(\mathbf{a})=0 \Longrightarrow g(\mathbf{a})=0$.

A randomized reduction

Define $g_{i}=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n: f(a)=0 \Longrightarrow g(a)=0$.

- Effective Bertini Theorem: There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $F(\boldsymbol{\alpha}) \neq 0$.
[Krick-Pardo-Sombra'01]

A randomized reduction

Define $g_{i}=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n: f(a)=0 \Longrightarrow g(a)=0$.

- Effective Bertini Theorem: There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $\mathrm{F}(\boldsymbol{\alpha}) \neq 0$.
[Krick-Pardo-Sombra'01]
- Schwartz-Zippel Lemma:
[DeMillo-Lipton, Zippel, Schwartz, '78-'80]

$$
\operatorname{Pr}_{\alpha \in \mathbb{F}_{\mathbf{q}}^{s(n+1)}}(F(\boldsymbol{\alpha})=0) \leqslant \frac{\operatorname{deg}(F)}{\left|\mathbb{F}_{\mathbf{q}}\right|}
$$

A randomized reduction

- Define $g_{i}=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n: f(a)=0 \Longrightarrow g(a)=0$.
- Effective Bertini Theorem: There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $F(\boldsymbol{\alpha}) \neq 0$.
[Krick-Pardo-Sombra'01]
- Schwartz-Zippel Lemma:
[DeMillo-Lipton, Zippel, Schwartz, '78-'80]

$$
\operatorname{Pr}_{\alpha \in \mathbb{F}_{q}^{s(n+1)}}(F(\boldsymbol{\alpha})=0) \leqslant \frac{\operatorname{deg}(F)}{\left|\mathbb{F}_{q}\right|}
$$

- Build an extension $\mathbb{L} / \mathbb{F}_{p}$ with at least 3^{n+2} elements

A randomized reduction

- Define $g_{i}=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n: f(a)=0 \Longrightarrow g(a)=0$.
- Effective Bertini Theorem: There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $F(\boldsymbol{\alpha}) \neq 0$. [Krick-Pardo-Sombra'01]
- Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]

$$
\operatorname{Pr}_{\alpha \in \mathbb{F}_{\mathbf{q}}^{s(n+1)}}(F(\boldsymbol{\alpha})=0) \leqslant \frac{\operatorname{deg}(F)}{\left|\mathbb{F}_{\mathbf{q}}\right|}
$$

- Build an extension $\mathbb{L} / \mathbb{F}_{p}$ with at least 3^{n+2} elements
- Choose the $\alpha_{i j}$'s independently at random in \mathbb{L};

A randomized reduction

Define $g_{i}=\sum_{j=1}^{s} \alpha_{i j} f_{j}, 0 \leqslant i \leqslant n: f(\mathbf{a})=0 \Longrightarrow g(a)=0$.

- Effective Bertini Theorem: There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $\mathrm{F}(\boldsymbol{\alpha}) \neq 0$. [Krick-Pardo-Sombra'01]
- Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]

$$
\operatorname{Pr}_{\alpha \in \mathbb{F}_{\mathbf{q}}^{s(n+1)}}(F(\boldsymbol{\alpha})=0) \leqslant \frac{\operatorname{deg}(F)}{\left|\mathbb{F}_{\mathbf{q}}\right|}
$$

- Build an extension $\mathbb{L} / \mathbb{F}_{p}$ with at least $3^{\mathfrak{n}+2}$ elements
- Choose the $\alpha_{i j}$'s independently at random in \mathbb{L};

Theorem \quad [G.-Koiran-Portier'10-13]
Let p be a prime number. Resultant $\mathbb{F}_{\boldsymbol{q}}$ is NP-hard for degree-2
polynomials for some $q=p^{s}$, under randomized reductions.

Hardness in positive characteristics

- HomPolSYs $\mathbb{F}_{\mathfrak{p}}$ is NP-hard: \# homogeneous polynomials \geqslant \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

$\mathrm{HomPolSrs}_{\mathbb{K}}$

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and
- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
- $X_{0} \cdot\left(X_{i}+X_{j}\right)$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$

Hardness in positive characteristics

- HomPolSYs $\mathbb{F}_{\mathfrak{p}}$ is NP-hard: \# homogeneous polynomials \geqslant \# variables
- Two strategies:
- Reduce the number of polynomials
- Increase the number of variables

HomPoıSys $_{\mathbb{K}}$

- Variables X_{0} and X_{1}, \ldots, X_{n} over \mathbb{F}_{p}
- Polynomials $X_{0}^{2}-X_{i}^{2}$ for every $i>0$ and

$$
f_{1}, \ldots, f_{n}
$$

- $X_{0} \cdot\left(X_{i}+X_{0}\right)$
$X_{0} \cdot\left(X_{i}+X_{j}\right) \quad f_{n+1}, \ldots, f_{s}$
- $\left(X_{i}+X_{0}\right)^{2}-\left(X_{j}+X_{0}\right) \cdot\left(X_{k}+X_{0}\right)$
- New variables: $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{s}-\mathrm{n}-1}$

New system

- New variables: $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{s}-\mathrm{n}-1}$

New system

$$
g(X, Y)=\left(\begin{array}{c}
f_{1}(X) \\
\vdots \\
f_{n}(X)
\end{array} \quad\right. \text { (untouched) }
$$

- New variables: $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{s}-\mathrm{n}-1}$

New system

$$
g(X, Y)=\left(\begin{array}{cc}
f_{1}(X) & \\
\vdots & \text { (untouched) } \\
f_{n}(X) & \\
f_{n+1}(X) & \\
f_{n+2}(X) & -Y_{1}^{2} \\
\vdots & \\
Y_{1}^{2} \\
f_{s-1}(X)-Y_{2}^{2} \\
f_{s}(X) & -Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2}
\end{array}\right)
$$

- New variables: $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{s}-\mathrm{n}-1}$

New system

$$
g(X, Y)=\left(\begin{array}{cc}
f_{1}(X) & \\
\vdots & \\
\text { (untouched) } \\
f_{n}(X) & \\
f_{n+1}(X) & \\
f_{n+2}(X) & -Y_{1}^{2} \\
\vdots & \\
& +\lambda Y_{1}^{2} \\
f_{s-1}(X)-Y_{s-n-2}^{2}+\lambda Y_{s-n-1}^{2} \\
f_{s}(X) & -Y_{s-n-1}^{2}
\end{array}\right)
$$

a root of $f \Longrightarrow(a, 0)$ root of g
(\mathbf{a}, \mathbf{b}) non trivial root of $g \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\left(\begin{array}{lll}
f_{1}(\boldsymbol{a}) & & \\
\vdots & & \\
f_{n}(\mathbf{a}) & & \\
f_{n+1}(\mathbf{a}) & & +\lambda b_{1}^{2} \\
f_{n+2}(\boldsymbol{a}) & -b_{1}^{2} & +\lambda b_{2}^{2} \\
\vdots & & \\
f_{s-1}(\mathbf{a}) & -b_{s-n-2}^{2}+\lambda b_{s-n-1}^{2} \\
f_{s}(\mathbf{a}) & -b_{s-n-1}^{2}
\end{array}\right)
$$

Equivalence?

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\left.\left(\begin{array}{ll}
f_{1}(a) & \\
\vdots & \\
f_{n}(a) & \\
f_{n+1}(a) & \\
f_{n+2}(a) & -b_{1}^{2} \\
\vdots & \\
\\
\\
f_{s-1}(a)-\lambda b_{1}^{2} \\
f_{s}(a) & -b_{s-n-2}^{2}+\lambda b_{s-n-1}^{2}
\end{array}\right) \quad \begin{array}{l}
\text { s } \\
f_{s-n-1}^{2}
\end{array}\right)
$$

(\mathbf{a}, \mathbf{b}) non trivial root of $g \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\left(\begin{array}{cl}
f_{1}(a) & \\
\vdots & \boldsymbol{a}=0 \Longrightarrow \mathbf{b}=0 \\
& >a_{0}=1 \text { and } a_{i}= \pm 1
\end{array}\right.
$$

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f
(\mathbf{a}, \mathbf{b}) non trivial root of $g \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\begin{aligned}
& \left(\begin{array}{ccc}
& & \\
& & \\
\epsilon_{1} & & +\lambda b_{1}^{2} \\
\epsilon_{2} & -b_{1}^{2} & +\lambda b_{2}^{2} \\
\vdots & & \\
\epsilon_{s-n-2}-b_{s-n-2}^{2}+\lambda b_{s-n-1}^{2} \\
\epsilon_{s-n-1} & -b_{s-n-1}^{2}
\end{array}\right) \\
& \text { - } \mathbf{a}=0 \Longrightarrow \mathrm{~b}=0 \\
& \text { - } a_{0}=1 \text { and } a_{i}= \pm 1 \\
& \text { > } \epsilon_{i}=f_{n+i}(a)
\end{aligned}
$$

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f
(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f
(\mathbf{a}, \mathbf{b}) non trivial root of $g \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$\left(\begin{array}{lll} & & \\ & & \\ \epsilon_{1} & & \\ \epsilon_{2} & -B_{1} & +\lambda B_{1} \\ \\ \vdots & \\ \epsilon_{s-n-2} & -B_{s-n-2}+\lambda B_{s-n-1} \\ \epsilon_{s-n-1} & -B_{s-n-1}\end{array}\right)$	$\begin{aligned} > & a=0 \Longrightarrow b=0 \\ > & a_{0}=1 \text { and } a_{i}= \pm 1 \\ > & \epsilon_{i}=f_{n+i}(\mathbf{a}) \\ > & B_{i}=b_{i}^{2} \end{aligned}$

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{s-n} \lambda^{s-n-1}\right)
$$

(\mathbf{a}, \mathbf{b}) non trivial root of $\mathrm{g} \stackrel{?}{\Longrightarrow} \mathbf{a}$ non trivial root of f

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{s-n} \lambda^{s-n-1}\right)
$$

$$
\operatorname{det}=0 \stackrel{?}{\Longrightarrow} \forall i, \epsilon_{i}=0 \Longrightarrow f_{1}(\mathbf{a})=\cdots=f_{s}(\boldsymbol{a})=0
$$

Last step

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.
$>$ In the extension \mathbb{L}, det $=0 \Longleftrightarrow \epsilon_{\mathrm{i}}=0$ for all i.
- For coefficients in \mathbb{F}_{p} instead of \mathbb{L} : "put P inside the system"

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.
- In the extension \mathbb{L}, det $=0 \Longleftrightarrow \epsilon_{i}=0$ for all i.
- For coefficients in \mathbb{F}_{p} instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]
Let p be a prime number.

- Resultant \mathbb{F}_{p} is NP-hard for linear-degree polynomials.

$$
\operatorname{det}= \pm\left(\epsilon_{1}+\epsilon_{2} \lambda+\cdots+\epsilon_{N} \lambda^{N-1}\right)
$$

- Compute an irreducible polynomial $P \in \mathbb{F}_{p}[\xi]$ of degree N; [Shoup'90]
- Let $\mathbb{L}=\mathbb{F}_{\mathrm{p}}[\xi] /(\mathrm{P})$ and $\lambda=\xi \in \mathbb{L}$.
- In the extension \mathbb{L}, det $=0 \Longleftrightarrow \epsilon_{i}=0$ for all i.
- For coefficients in \mathbb{F}_{p} instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]
Let p be a prime number.

- Resultant $\mathbb{F}_{\mathfrak{p}}$ is NP-hard for linear-degree polynomials.
- Resultant $\mathbb{F}_{\mathbb{q}}$ is NP-hard for degree-2 polynomials for some $\mathrm{q}=\mathrm{p}^{\mathrm{s}}$.

Main results

	Lower bound	Upper bound
\mathbb{Z}	NP-hard	AM
$\mathbb{F}_{\mathfrak{p}}$	NP-hard	PSPACE

Main results

	Lower bound	Upper bound
\mathbb{Z}	NP-hard	AM
$\mathbb{F}_{\mathfrak{p}}$	NP-hard	PSPACE

- Evaluation of the resultant in PSPACE

Main results

	Lower bound	Upper bound
\mathbb{Z}	NP-hard	AM
$\mathbb{F}_{\mathfrak{p}}$	NP-hard	PSPACE

- Evaluation of the resultant in PSPACE
- Ideal membership problem is EXPSPACE-complete [Mayr-Meyer'82]

$$
\begin{aligned}
\text { Input: } & g, f_{1}, \ldots, f_{s} \in \mathbb{K}[X] \\
\text { Question: } & \text { Does } g \text { belong to }\left\langle f_{1}, \ldots, f_{s}\right\rangle \text { ? }
\end{aligned}
$$

Main results

	Lower bound	Upper bound
\mathbb{Z}	NP-hard	AM
$\mathbb{F}_{\mathfrak{p}}$	NP-hard	PSPACE

- Evaluation of the resultant in PSPACE
- Ideal membership problem is EXPSPACE-complete [Mayr-Meyer'82]

$$
\begin{aligned}
\text { Input: } & g, f_{1}, \ldots, f_{s} \in \mathbb{K}[X] \\
\text { Question: } & \text { Does } g \text { belong to }\left\langle f_{1}, \ldots, f_{s}\right\rangle \text { ? }
\end{aligned}
$$

- PolSYs $_{\mathbb{K}}$ is $\mathrm{NP}_{\mathbb{K}}$ complete (BSS model)

Some open questions

- Reduce the gap between NP and PSPACE in positive characteristics
- Reduce the gap between NP and PSPACE in positive characteristics

Derandomize Koiran's theorem: $\mathrm{PoLSrs}_{\mathbb{Z}} \in$ NP?

- Reduce the gap between NP and PSPACE in positive characteristics
- Derandomize Koiran's theorem: $\mathrm{PoLSrs}_{\mathbb{Z}} \in$ NP?
- NP-hardness for degree-2 polynomial systems in \mathbb{F}_{p} ?
- Reduce the gap between NP and PSPACE in positive characteristics
- Derandomize Koiran's theorem: $\mathrm{PoLSrs}_{\mathbb{Z}} \in$ NP?
- NP-hardness for degree-2 polynomial systems in \mathbb{F}_{p} ?
- Complexity of solving sparse or lacunary polynomial systems?
- Reduce the gap between NP and PSPACE in positive characteristics
- Derandomize Koiran's theorem: $\mathrm{PoLSrs}_{\mathbb{Z}} \in$ NP?
- NP-hardness for degree-2 polynomial systems in \mathbb{F}_{p} ?
- Complexity of solving sparse or lacunary polynomial systems?
- Complexity of root finding, especially:

Input: $f_{1}, \ldots, f_{n} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Output: A root $a \in \mathbb{K}$ of f
\rightsquigarrow always a solution: PPAD, TFNP, ...?

- Reduce the gap between NP and PSPACE in positive characteristics

Derandomize Koiran's theorem: PoLSys $\mathbb{Z}_{\mathbb{Z}} \in$ NP?

- NP-hardness for degree-2 polynomial systems in \mathbb{F}_{p} ?
- Complexity of solving sparse or lacunary polynomial systems?
- Complexity of root finding, especially:

Input: $f_{1}, \ldots, f_{n} \in \mathbb{K}\left[X_{0}, \ldots, X_{n}\right]$, homogeneous
Output: A root $a \in \mathbb{K}$ of f
\rightsquigarrow always a solution: PPAD, TFNP, ...?

Thank you!

