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XZ+3XY+YZ+Y?>=0
XZ—-Y?=0

PoLSysk

Input: f1,...,fs € K[X1,...,Xn]
Question: Is there a e K s.t. f(a) = 0?

Lower and upper bounds in terms of complexity classes
K: Either Z or [y for some q = p*

Variants: Homogeneity, number of polynomials
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Definition

P Deterministic polynomial time
NP, coNP Non-deterministic polynomial time
MA, AM Merlin-Arthur, Arthur-Merlin
>, [, ,PH Polynomial hierarchy
PSPACE (Non-)deterministic polynomial space

EXP Deterministic exponential time




Homogeneom systems

HomPoLSysk

Input: fy,...,fs € K[Xp,...,Xnl, homogeneous

. —n+1
Question: Is there a nonzero a € R st fla) =07
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Homogeneom systems

HomPoLSysk

Input: fy,...,fs € K[Xp,...,Xnl, homogeneous

: —n+1
Question: Is there a nonzero a € KM st fla) =07

Proposition

For K = Z or Fy, PoLSyskg and HomPoLSysy are polynomial-time
equivalent.

On the complexity of polynomial system solvi
n mplexity of polynomial sy solving 427




HomPolLSysk

Input: fq,...,fs € K[Xo,...,Xnl,

= 1
Question: Is there a ac K" st f(a) =07

For K = Z or Fq, PoLSysk and HomMPoLSys are polynomial-time
equivalent.

Proof.

PoLSysk gﬁl HomPoLSysk: Homogenization
HomPoLSysk <ﬁ1 PoLSysk: New polynomial Z XiY; — 1, where
i

Yo, ..., Yn are fresh variables



Glimpse of Elimination Theory

For which v; « is there a root?
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Glimpse of Elimination Theory

For which v; « is there a root?

There exist Rq,..., Ry € K[y] s.t.
Ry (v) 0 fi(a)
= Ja #0,
Rh(v) fs(a)

On the complexity of polynomial system solvi
n mplexity of polynomial sy ving 527
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m n
P = Zpixiymfi' Q _ Z quanfj:
i=0 j=0

Res(P,Q) — det q Pm  ceeeeeeennn.

qn ....... qo

Sylvester Matrix
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Sylvester matrix ~» Macaulay matrices (exponential size)



f1y...yfut1 € KXo,...,Xn]l ~ a unique resultant polynomial
Sylvester matrix ~» Macaulay matrices (exponential size)

s polynomials > n + 1 variables ~~ several polynomials needed



f1y...yfut1 € KXo,...,Xn]l ~ a unique resultant polynomial
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f1y.ooyfrp1 € K[Xo,...,Xn] ~ a unique resultant polynomial
Sylvester matrix ~» Macaulay matrices (exponential size)
s polynomials > n + 1 variables ~~ several polynomials needed

s polynomials < n + 1 variables ~~ trivial

RESULTANTK

Input: f1,...,f4+1 € K[Xp,...,X,], homogeneous

: —=n+1
Question: Is there a nonzero a € K st. f(a) =07




Upper bounds



Hilbert’s Nullstellensatz

Theorem
Let fq, ..., fs € K[Xy,...,Xn]. Then

VacK,f(a) #0 < 3q1,...,qs € K[X],1 = q1f1+ - -+qsfs.

On the complexity of polynomial system solvin
P y of poly Y: 9 927




Theorem

Let fy, ..., fs € K[Xq,...,Xn]. Then

VaeK, f(a) #0 < 3q1,...,9s € K[X],1 = q1f1+ - -+qsfs.

Sketch of an algorithm.

Write q; = Z qi,oX* where the gi «'s are indeterminates.
|x|<D

Z qifi =1 is a linear system of D™ equations on sD™ variables.

1

Linear systems can be solved in logarithmic space.
Do not store the linear system, but compute entries on demand.

=—> PoLSysk can be solved in space poly(nlog D, logs).



VaekK, fla)#0 < 3q1,...,qs st. 1 =q1f1 + -+ + qsfs.

Theorem [Kollar'88, Fitchas-Galligo’90]

The qgi's can be chosen such that deg(q;) < max(3,d)™.
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Theorem [Kollar'88, Fitchas-Galligo’90]

The qgi's can be chosen such that deg(q;) < max(3,d)™.

Corollary
For K = Z or [Fy, PoLSysk belongs to PSPACE.




VaekK, fla)#0 < 3q1,...,qs st. 1 =q1f1 + -+ + qsfs.

Theorem [Kollar'88, Fitchas-Galligo’90]

The qgi's can be chosen such that deg(q;) < max(3,d)™.

Corollary

For K = Z or [Fy, PoLSysk belongs to PSPACE.

More specifically, PoLSysxg € DSPACE((n log d log s)o(”).




Computing the resultant

Theorem [Canny'87]

The resultant is computable in polynomial space.

On the complexity of polynomial system solvin
P y of poly Y: 9 1127
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The resultant is computable in polynomial space.

Proof idea.

The resultant can be expressed as a gcd of n determinants of
Macaulay matrices.

Macaulay matrices can be represented by polynomial-size boolean
circuits.

The determinant can be computed in logarithmic space.



Theorem [Canny’87]

The resultant is computable in polynomial space.

Proof idea.

The resultant can be expressed as a gcd of n determinants of
Macaulay matrices.

Macaulay matrices can be represented by polynomial-size boolean
circuits.

The determinant can be computed in logarithmic space.

Theorem [Koiran-Perifel’07]

The same holds true in Valiant’s algebraic model of computation.
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f1, ...,fne1 € KXo,...,Xn], homogeneous, of degrees di, ..., dn
D=) (di—1), M} ={X§° - X& a0 +...+ an =D}
i

Definition

The first Macaulay matrix is defined as follows:
» Its rows and columns are indexed by Mp;

» The row indexed by X represents

[
Fﬂ' where i = min{j : d; < o}

i

Other Macaulay matrices are defined by reordering the f;’s.




f1, ...,fne1 € KXo,...,Xn], homogeneous, of degrees di, ..., dn
D=) (di—1), M} ={X§° - X& a0 +...+ an =D}
i

Definition

The first Macaulay matrix is defined as follows:
» Its rows and columns are indexed by Mp;

» The row indexed by X represents

[
Fﬂ' where i = min{j : d; < o}

i

Other Macaulay matrices are defined by reordering the f;’s.

Resultant : GCD of the determinants of n Macaulay matrices
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Deciding the nullity of the determinant of a matrix represented
by a boolean circuit is PSPACE-complete (over any field).
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Deciding the nullity of the determinant of a matrix represented
by a boolean circuit is PSPACE-complete (over any field).

Proof idea.

Let M be a PSPACE Turing Machine and G3; its graph of
configurations, with initial configuration c; and accepting
configuration cq;

» can be represented by a boolean circuit;
There exists a path ci ~» cq in Gy iff M accepts x;

Let A ~ adjacency matrix of G3;: det(A) #0 <= Jci ~ cq.



Theorem [G.-Koiran-Portier'10-13]

Deciding the nullity of the determinant of a matrix represented
by a boolean circuit is PSPACE-complete (over any field).

Proof idea.

Let M be a PSPACE Turing Machine and G3; its graph of
configurations, with initial configuration c; and accepting
configuration cq;

» can be represented by a boolean circuit;
There exists a path ci ~» cq in Gy iff M accepts x;

Let A ~ adjacency matrix of G3;: det(A) #0 <= Jci ~ cq.

Theorem [Malod’'11]

The same holds true in Valiant’s algebraic model of computation.
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Theorem [Koiran’96]

Under the Extended Riemann Hypothesis, PoLSysz is in AM.

L € NP iff there exists V € P and a polynomial p s.t. for all x,

xe€L < Jye€ Zp(l"”,(x,y) eV.

L € MA iff there exists V € P and a polynomial p s.t. for all x,

xeEL < dye spx) Pri.esvaxn ((x,y,1) € V) > 2/3.

L € AM iff there exists V € P and a polynomial p s.t. for all x,

x €L <= Proczpaxn(Fy € 2PN (x 1 y) € V) > 2/3.

NP C MA C AM
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Let 7t¢(x) be the set of prime numbers < x, s.t. f has a root mod p.
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Let 7t¢(x) be the set of prime numbers < x, s.t. f has a root mod p.

Theorem [Koiran'96]

There exist polynomial-time computable A and x¢ s.t.
» If f has no root in C, then |7 (xo)| < A;

» If f has a root in C, then |ms(xo)| = 8A(log A + 3).




Let f = (fy,...,fs), with f; € Z[Xq,...,Xu];

Let 7t¢(x) be the set of prime numbers < x, s.t. f has a root mod p.

Theorem [Koiran'96]

There exist polynomial-time computable A and x¢ s.t.

» |f f has no root in C, then |7t¢(x0)| < A;

» If f has a root in C, then |ms(xo)| = 8A(log A + 3).

Proof idea.
Using Hilbert's Nullstellensatz, there exists b € Z and q; € Z[X]
such that qif; +--- + qsfs = b, with logb = exp(s, d).
Using effective quantifier elimination, consider a root a of f such
that Q(a) = Q/(R) where R is “small”. Roots of R in [F, yield roots
of f in I,. Use an Effective Chebotarev Density Theorem (ERH) to
prove that R has “many” roots.




Theorem

Let U be a universe and {Sx C U : x € Z*} a collection of sets
s.t. for all x, either |Sy| < U] or |Sy| > 4x|U]|, and S € NP.
Then the following problem is in AM: Given x, does [Sx| > 4«x|U|?




Theorem

Let U be a universe and {Sx C U : x € Z*} a collection of sets
s.t. for all x, either |Sy| < U] or |Sy| > 4x|U]|, and Sy € NP.
Then the following problem is in AM: Given x, does [Sx| > 4«x|U|?

Proof idea.

4oc >~ 1: Arthur chooses y € U at random, and asks Merlin a
certificate that y € Sy. If |Sx| ~ U], Pr(y € Syx) ~ 1.

« < 1: Consider a set T of size 4«|U| and a family of universal
hash functions h: U — T.

Arthur chooses h and t € T at random.
Merlin must return y € Sy s.t. h(y) = t, with a certificate



Theorem

Let U be a universe and {Sx C U : x € Z*} a collection of sets
s.t. for all x, either |Sy| < U] or |Sy| > 4x|U]|, and Sy € NP.
Then the following problem is in AM: Given x, does [Sx| > 4«x|U|?

Proof idea.

4oc >~ 1: Arthur chooses y € U at random, and asks Merlin a
certificate that y € Sy. If |Sx| ~ U], Pr(y € Syx) ~ 1.

« < 1: Consider a set T of size 4«|U| and a family of universal
hash functions h: U — T.

Arthur chooses h and t € T at random.
Merlin must return y € Sy s.t. h(y) = t, with a certificate

Proof (PoLSysz € AM). U ={p < x¢ : p is prime}, Sy = m¢(x0).



Lower bounds



Lower bounds for non-square systems

Proposition [Folklore]

For K =Z or Fp, PoLSysg & HomPoLSysk are NP-hard.

On the complexity of polynomial system solvin
P Yy of poly Y: 9 18 /27
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[Folklore]
For K = Z or [F,, PoLSysg & HomPoLSysy are
Proof. Case HomPoLSysg,, with p # 2:

BoolLSys

» Boolean variables
UyeoneylUn

» Equations

u; = True
Uy = _‘u]'
Uy = U.]' V Uk




[Folklore]

For K = Z or [F,, PoLSysg & HomPoLSysy are
Proof. Case HomPoLSysg,, with p # 2:

BoolLSys

HomPoLSysk

» Boolean variables
UyeoneylUn

» Equations

u; = True
Ui =Y
Uy = u]' V Uk

> Variables (over [F,) X, and
Xiyeooy Xn

» Polynomials X5 — X7 for every i > 0 and

Xo - (Xi + Xo)
Xo - (Xi + Xj)
(Xi 4+ Xo0)? — (X5 + Xo) - (Xk + Xo)




Lower bound. for the resultant in char. o

Proposition [Heintz-Morgenstern’93]

RESULTANTZ is NP-hard.

On the complexity of polynomial system solvin
P Yy of poly Y: 9 19 /27
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[Heintz-Morgenstern’93]
RESULTANTZ is
Proof. PARTITIONZ:
S={uy,...,un} C7%Z

Does there exist S’ C S, Z up = Z u;?
ies’ s’



[Heintz-Morgenstern’93]
RESULTANTZ is
Proof. PARTITIONZ:
S={uy,...,un} C7%Z
Does there exist S’ C S, Z up = Z u;?

ies’ ¢S’
2
X3 -X; = 0
- 2 2 '
wXy+---Fun Xy = 0



[Heintz-Morgenstern’93]

RESULTANTZ is

Proof. PARTITIONZ:
S :{uh--')un}gz

Does there exist S’ C S, Z up = Z u;?

ies’ jgs’
2
X]—X5 = 0
- 2 2 '
Xp-X§ =0

X
3
o

w Xy +--+up

Note. PARTITIONFP epP



HOMPOLSYSFP is NP-hard:
# homogeneous polynomials > # variables

HomPoLSysk

> Variables Xy and Xy, ..., X, over [,

» Polynomials X5 — X? for every i > 0 and
Xo - (Xi 4+ Xo)
Xo - (Xi +X5)
(Xi +Xo0)? = (X + Xo) - (X + Xo)
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Reduce the number of polynomials
Increase the number of variables
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HOMPOLSYSFP is NP-hard:
# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables

HomPoLSysk

> Variables Xy and Xy, ..., X, over [,

» Polynomials X5 — X? for every i > 0 and
Xo - (Xi 4+ Xo)
Xo - (Xi +X5)
(Xi +Xo0)? = (X + Xo) - (X + Xo)




Define = ES f = g =
i
. oci]- jr 0 < i < .
g < n: ((1) 0 — a 0
( )



Define gi = Zoquj, 0<i<n fla)=0 = ¢g(a)=0.
j=1

Effective Bertini Theorem: There exists F of degree 3™ sit. the
reciprocal holds as soon as F(«) # 0. [Krick-Pardo-Sombra’01]
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j=1

Effective Bertini Theorem: There exists F of degree 3™ sit. the
reciprocal holds as soon as F(«) # 0. [Krick-Pardo-Sombra’01]

Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]

deg(F)
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Define g; = Zocijfj, 0<i<n fla)=0 = ¢g(a)=0.
j=1

Effective Bertini Theorem: There exists F of degree 3™ sit. the

reciprocal holds as soon as F(«) # 0. [Krick-Pardo-Sombra’01]
Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]
deg(F)
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Build an extension /I, with at least 3™*2 elements [Shoup’90]



Define gi = Zoquj, 0<i<n fla)=0 = ¢g(a)=0.
j=1

Effective Bertini Theorem: There exists F of degree 3™ sit. the
reciprocal holds as soon as F(«) # 0. [Krick-Pardo-Sombra’01]
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deg(F)
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Build an extension /I, with at least 3™*2 elements [Shoup’90]

Choose the «ij's independently at random in L;



Define g; = Zocijfj, 0<i<n fla)=0 = ¢g(a)=0.
j=1

Effective Bertini Theorem: There exists F of degree 3™ sit. the
reciprocal holds as soon as F(«) # 0. [Krick-Pardo-Sombra’01]

Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]

deg(F)
|y |

Prang(nJrl](F((X) = O) <

Build an extension /I, with at least 3™*2 elements [Shoup’90]

Choose the o;'s independently at random in LL;

Theorem [G.-Koiran-Portier’10-13]

Let p be a prime number. RESULTANTF, is NP-hard for degree-2
polynomials for some q = p®, under randomized reductions.




HOMPOLSYSFP is NP-hard:
# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables

HomPoLSysk

> Variables Xy and Xy, ..., X, over [,

» Polynomials X5 — X? for every i > 0 and
Xo - (Xi 4+ Xo)
Xo - (Xi +X5)
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HOMPOLSYSFP is NP-hard:
# homogeneous polynomials > # variables

Two strategies:

Reduce the number of polynomials
Increase the number of variables

HomPoLSysk
> Variables Xy and Xy, ..., X, over [,
» Polynomials X5 — X? for every i > 0 and fiyeeoyfn
Xo - (Xi 4+ Xo)
Xo - (Xi +X5) Tnsligooogiis

(Xi + Xo)? — (Xj + Xo) - (X + Xo)




Reduction

New system

On the complexity of polynomial system solvin
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Reduction

New system

(untouched)

On the complexity of polynomial syste lvi
n mplexity of polynomial system solving n/27
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New system

Reduction

1(X)

: (untouched)
fn(X)

1 (X) +AY?
fre2(X) —Y§ +AY;

fs—] (X) _Yg—n—2+}\Ysz—n—1
fs(X) —YZ .

On the complexity of polynomial system solvi
n mplexity of polynomial sy ving 327
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New system

Reduction

1(X)

: (untouched)
fn(X)

1 (X) +AY?
fre2(X) —Y§ +AY;

fs—] (X) _Yg—n—2+}\Ysz—n—1
fs(X) —YZ .

On the complexity of polynomial system solvi
n mplexity of polynomial sy ving 027

A
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N
(a,b) non trivial root of g = a non trivial root of f

fi(a) a=0 = b=0

ap =1 and a; = £1
fn(a) € = fnyila)
(@) +Ab%




N
(a,b) non trivial root of g = a non trivial root of f

€1
€2

€s n_2—b2 | ,+AD2

+Ab?
—b%  +Ab3

s—n—1

€s—m—1 _bsfn71

a=0—=—= b=0
ap =1 and a; = £1

€ = fnyila)



N
(a,b) non trivial root of g = a non trivial root of f

a=0—=—= b=0
ap =1 and a; = £1

€ = fnyi(a)
€1 +)\b% B; = b%
€2 -—b% +Ab%

2
s—n—1

€s_mn_2 —b% | ,+AD

2
€s—n—1 =05 n 1



N
(a,b) non trivial root of g = a non trivial root of f

a=0—=—= b=0
ap =1 and a; = £1

€ = fnyi(a)
€1 +)\B] B; = b%
€2 —B1 +AB»

€s—n—2 —Bs—n—2+ABs_n—1
€s—n—1 —Bs—n—1




N
(a,b) non trivial root of g = a non trivial root of f

€1 +AB
€2 —B1 +AB»

€s—n—2 —Bs—n—2+ABs_n—1
€s—n—1 —Bs—n—1

a=0—=—= b=0
ap =1 and a; = £1
ei:fn+i(a)

B; = b?

det ==+ (€1 + €A+

+ ES,TJ\Sin71 )




(a,b) non trivial root of g @ non trivial root of f

a=0—=—= b=0
ap =1 and a; = £1

€ = fnyila)
€1 +)\B] B; = b%
€2 —B1 +AB»

€s—n—2 —Bs—n—2+ABs_n—1

€s—n—1 _Bsfnfl

det = 4+ (e] +erA+ -+ es_n}\sfn71)

det=0—=Vi, e;=0 — f1(a)=---=fs(a) =0
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[Shoup’90]

Let L=1F,[&]/(P) and A =& € L.
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Let L=1F,[&]/(P) and A =& € L.

In the extension I, det =0 <= ¢€; =0 for all i.

For coefficients in I, instead of IL: “put P inside the system”

Theorem [G.-Koiran-Portier'10-13]

Let p be a prime number.

> ResULTANTE, is NP-hard for linear-degree polynomials.




det = + (3 +ez?\+~~+€N?\N*1)

Compute an irreducible polynomial P € [, [£] of degree N;
[Shoup'90]

Let L=1F,[&]/(P) and A =& € L.

In the extension I, det =0 <= ¢€; =0 for all i.

For coefficients in I, instead of IL: “put P inside the system”

Theorem [G.-Koiran-Portier'10-13]

Let p be a prime number.
> ResULTANTE, is NP-hard for linear-degree polynomials.

> REeSULTANTF, is NP-hard for degree-2 polynomials for some
q=p°.
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‘ Lower bound ‘ Upper bound ‘
NP-hard AM

Z
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Evaluation of the resultant in PSPACE

Ideal membership problem is EXPSPACE-complete [Mayr-Meyer'82]

g)fh-'-)fs EK[X]
Does g belong to (fy,...,fs)?

PoLSysk is NPx complete (BSS model)
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Derandomize Koiran's theorem: PoLSys; € NP?

NP-hardness for degree-2 polynomial systems in If,?
Complexity of solving sparse or lacunary polynomial systems?
Complexity of root finding, especially:

f1,...,fn € K[Xo,...,Xn], homogeneous
A root a € K of f

~> always a solution: PPAD, TENP, ...?

Thank you!
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