On the complexity of polynomial system solving

Bruno Grenet LIX – École Polytechnique

partly based on a joint work with Pascal Koiran & Natacha Portier

XXV^{èmes} rencontres arithmétiques de Caen Île de Tatihou, June 30. – July 4., 2014 Is there a (nonzero) solution?

X² + Y² - Z² = 0XZ + 3XY + YZ + Y² = 0XZ - Y² = 0

Is there a (nonzero) solution?

7

Is there a (nonzero) solution?

- Lower and upper bounds in terms of complexity classes
- ▷ \mathbb{K} : Either \mathbb{Z} or \mathbb{F}_q for some $q = p^s$
- Variants: Homogeneity, number of polynomials

Some complexity classes

Definition

P Deterministic polynomial time
 NP, coNP Non-deterministic polynomial time
 MA, AM Merlin-Arthur, Arthur-Merlin
 Σ₂, Π₂, PH Polynomial hierarchy
 PSPACE (Non-)deterministic polynomial space
 EXP Deterministic exponential time

Homogeneous systems

$\mathsf{HomPolSys}_{\mathbb{K}}$

Input: $f_1, \ldots, f_s \in \mathbb{K}[X_0, \ldots, X_n]$, homogeneous Question: Is there a nonzero $\mathbf{a} \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(\mathbf{a}) = 0$?

Homogeneous systems

HomPolSys_ℝ

Input: $f_1, \ldots, f_s \in \mathbb{K}[X_0, \ldots, X_n]$, homogeneous Question: Is there a nonzero $\mathbf{a} \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(\mathbf{a}) = 0$?

Proposition

For $\mathbb{K}=\mathbb{Z}$ or \mathbb{F}_q , $\mathsf{PolSys}_\mathbb{K}$ and $\mathsf{HomPolSys}_\mathbb{K}$ are polynomial-time equivalent.

Homogeneous systems

HomPolSys_K

Input: $f_1, \ldots, f_s \in \mathbb{K}[X_0, \ldots, X_n]$, homogeneous Question: Is there a nonzero $\mathbf{a} \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(\mathbf{a}) = 0$?

Proposition

For $\mathbb{K}=\mathbb{Z}$ or \mathbb{F}_q , $\mathsf{PolSys}_\mathbb{K}$ and $\mathsf{HomPolSys}_\mathbb{K}$ are polynomial-time equivalent.

Proof.

- ▷ $PolSys_{\mathbb{K}} \leq_{\mathfrak{m}}^{\mathsf{P}} HomPolSys_{\mathbb{K}}$: Homogenization
- \vdash НомРоLSys_K \leqslant_m^P PoLSys_K: New polynomial $\sum X_i Y_i 1$, where

 Y_0, \ldots, Y_n are fresh variables

Glimpse of Elimination Theory

$$f_1, \ldots, f_s \in \mathbb{K}[X_0, \ldots, X_n], \qquad f_i = \sum_{|\alpha|=d_i} \gamma_{i,\alpha} X^{\alpha}$$

For which $\gamma_{i,\alpha}$ is there a root?

Glimpse of Elimination Theory

$$f_1,\ldots,f_s \in \mathbb{K}[X_0,\ldots,X_n], \qquad f_i = \sum_{|\alpha|=d_i} \gamma_{i,\alpha} X^{\alpha}$$

For which $\gamma_{i,\alpha}$ is there a root?

There exist $R_1,\ldots,R_h\in\mathbb{K}[\gamma]$ s.t.

$$\begin{cases} R_1(\boldsymbol{\gamma}) &= 0 \\ \vdots & \Longrightarrow \exists \boldsymbol{a} \neq \boldsymbol{0}, \\ R_h(\boldsymbol{\gamma}) &= 0 \end{cases} \implies \exists \boldsymbol{a} \neq \boldsymbol{0}, \begin{cases} f_1(\boldsymbol{a}) &= 0 \\ \vdots \\ f_s(\boldsymbol{a}) &= 0 \end{cases}$$

Two Polynomials

$$\blacktriangleright P = \sum_{i=0}^{m} p_i X^i \qquad \text{, } Q = \sum_{j=0}^{n} q_j X^j$$

Two Polynomials

Two Polynomials

$$P = \sum_{i=0}^{m} p_i X^i Y^{m-i}, Q = \sum_{j=0}^{n} q_j X^j Y^{n-j}:$$

$$Res(P,Q) = det \begin{pmatrix} p_m & \dots & p_0 & \\ & \ddots & & \ddots & \\ & p_m & \dots & p_0 & \\ & q_n & \dots & q_0 & \\ & \ddots & & \ddots & \\ & & q_n & \dots & q_0 \end{pmatrix}$$

$$Sylvester Matrix$$

f₁,..., f_{n+1} ∈ K[X₀,...,X_n] → a unique resultant polynomial Sylvester matrix → Macaulay matrices (exponential size)

More generally

- ▷ $f_1, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n] \implies$ a unique resultant polynomial
 - Sylvester matrix ~> Macaulay matrices (exponential size)
- $rac{s}{s}$ s polynomials $ac{n}{n+1}$ variables ightarrow several polynomials needed

More generally

- ${} \vdash f_1, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n] \; \rightsquigarrow$ a unique resultant polynomial
 - Sylvester matrix ~> Macaulay matrices (exponential size)
- s polynomials > n + 1 variables \rightarrow several polynomials needed
- s polynomials < n + 1 variables \rightsquigarrow trivial

More generally

${} \vdash f_1, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n] \; \rightsquigarrow$ a unique resultant polynomial

Sylvester matrix ~> Macaulay matrices (exponential size)

 \triangleright s polynomials > n + 1 variables \rightsquigarrow several polynomials needed

s polynomials < n + 1 variables \rightsquigarrow trivial

$\mathsf{Resultant}_{\mathbb{K}}$

Input: $f_1, \ldots, f_{n+1} \in \mathbb{K}[X_0, \ldots, X_n]$, homogeneous Question: Is there a nonzero $\mathbf{a} \in \overline{\mathbb{K}}^{n+1}$ s.t. $f(\mathbf{a}) = 0$? Upper bounds

Hilbert's Nullstellensatz

Theorem

Let $f_1,\,\ldots,\,f_s\in\mathbb{K}[X_1,\ldots,X_n].$ Then

 $\forall a \in \overline{\mathbb{K}}, f(a) \neq 0 \iff \exists q_1, \dots, q_s \in \mathbb{K}[X], 1 = q_1 f_1 + \dots + q_s f_s.$

Hilbert's Nullstellensatz

Theorem

Let
$$f_1, \ldots, f_s \in \mathbb{K}[X_1, \ldots, X_n]$$
. Then

$$\forall a \in \overline{\mathbb{K}}, f(a) \neq 0 \iff \exists q_1, \dots, q_s \in \mathbb{K}[X], 1 = q_1 f_1 + \dots + q_s f_s.$$

Sketch of an algorithm.

- $\sum_{i} q_i f_i = 1$ is a **linear system** of D^n equations on sD^n variables.
- Linear systems can be solved in logarithmic space.
- ▷ Do not store the linear system, but compute entries on demand. \implies PoLSys_K can be solved in space poly(n log D, log s).

Polynomial System Solving in PSPACE

$\forall a \in \overline{\mathbb{K}}, \ f(a) \neq 0 \iff \exists \ q_1, \ \ldots, \ q_s \ \text{s.t.} \ 1 = q_1 f_1 + \cdots + q_s f_s.$

Theorem

[Kollár'88, Fitchas-Galligo'90]

The q_i 's can be chosen such that $deg(q_i) \leq max(3, d)^n$.

Polynomial System Solving in PSPACE

$\forall a \in \overline{\mathbb{K}}, \ f(a) \neq 0 \iff \exists \ q_1, \ \ldots, \ q_s \ \text{s.t.} \ 1 = q_1 f_1 + \cdots + q_s f_s.$

Theorem

[Kollár'88, Fitchas-Galligo'90]

The q_i 's can be chosen such that $deg(q_i) \leq max(3, d)^n$.

Corollary

For $\mathbb{K} = \mathbb{Z}$ or \mathbb{F}_q , PolSys $_{\mathbb{K}}$ belongs to PSPACE.

Polynomial System Solving in PSPACE

$\forall a \in \overline{\mathbb{K}}, \ f(a) \neq 0 \iff \exists \ q_1, \ \ldots, \ q_s \ \text{s.t.} \ 1 = q_1 f_1 + \cdots + q_s f_s.$

Theorem

[Kollár'88, Fitchas-Galligo'90]

The q_i 's can be chosen such that $deg(q_i) \leqslant max(3, d)^n$.

Corollary

For $\mathbb{K} = \mathbb{Z}$ or \mathbb{F}_q , PolSys $_{\mathbb{K}}$ belongs to PSPACE.

More specifically, $PoLSys_{\mathbb{K}} \in DSPACE((n \log d \log s)^{\mathcal{O}(1)})$.

Computing the resultant

Theorem

[Canny'87]

The resultant is computable in polynomial space.

Computing the resultant

Theorem

[Canny'87]

The resultant is computable in polynomial space.

Proof idea.

- The resultant can be expressed as a gcd of n determinants of Macaulay matrices.
- Macaulay matrices can be represented by polynomial-size boolean circuits.
- > The determinant can be computed in logarithmic space.

Computing the resultant

Theorem

[Canny'87]

The resultant is computable in polynomial space.

Proof idea.

- The resultant can be expressed as a gcd of n determinants of Macaulay matrices.
- Macaulay matrices can be represented by polynomial-size boolean circuits.
- > The determinant can be computed in logarithmic space.

Theorem

[Koiran-Perifel'07]

The same holds true in Valiant's algebraic model of computation.

Macaulay matrices

$\begin{array}{l} f_1, \dots, f_{n+1} \in \mathbb{K}[X_0, \dots, X_n], \text{ homogeneous, of degrees } d_1, \dots, d_n \\ \end{array} \\ D = \sum_i (d_i - 1), \ \mathfrak{M}_D^n = \{X_0^{\alpha_0} \cdots X_n^{\alpha_n} : \alpha_0 + \ldots + \alpha_n = D\} \end{array}$

Macaulay matrices

$$\begin{array}{l} \vdash f_1, \dots, f_{n+1} \in \mathbb{K}[X_0, \dots, X_n], \text{ homogeneous, of degrees } d_1, \dots, d_n \\ \\ \vdash D = \sum_i (d_i - 1), \ \mathfrak{M}_D^n = \{X_0^{\alpha_0} \cdots X_n^{\alpha_n} : \alpha_0 + \ldots + \alpha_n = D\} \end{array}$$

Definition

The first Macaulay matrix is defined as follows:

- Its rows and columns are indexed by Mⁿ_D;
- The row indexed by X^{α} represents

$$\frac{X^{\alpha}}{X_{i}^{d_{i}}}f_{i}\text{, where }i=\text{min}\{j:d_{j}\leqslant\alpha_{j}\}.$$

Other Macaulay matrices are defined by reordering the f_i 's.

Macaulay matrices

$$\begin{array}{l} \vdash f_1, \dots, f_{n+1} \in \mathbb{K}[X_0, \dots, X_n], \text{ homogeneous, of degrees } d_1, \dots, d_n \\ \\ \vdash D = \sum_i (d_i - 1), \ \mathfrak{M}_D^n = \{X_0^{\alpha_0} \cdots X_n^{\alpha_n} : \alpha_0 + \ldots + \alpha_n = D\} \end{array}$$

Definition

The first Macaulay matrix is defined as follows:

- Its rows and columns are indexed by Mⁿ_D;
- The row indexed by X^{α} represents

$$\frac{X^{\alpha}}{X_{i}^{d_{i}}}f_{i}\text{, where }i=\text{min}\{j:d_{j}\leqslant\alpha_{j}\}.$$

Other Macaulay matrices are defined by reordering the fi's.

Resultant : GCD of the determinants of n Macaulay matrices

Large determinants

Theorem

[G.-Koiran-Portier'10-13]

Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Large determinants

Theorem

[G.-Koiran-Portier'10-13]

Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Proof idea.

- Let \mathcal{M} be a PSPACE Turing Machine and $\mathcal{G}_{\mathcal{M}}^{x}$ its graph of configurations, with initial configuration c_i and accepting configuration c_a ;
- > $\mathcal{G}^{\mathbf{x}}_{\mathcal{M}}$ can be represented by a boolean circuit;
- ▷ There exists a path $c_i \rightsquigarrow c_a$ in $\mathcal{G}^x_{\mathcal{M}}$ iff \mathcal{M} accepts x;
- $\vdash \ \text{Let} \ A \simeq \text{adjacency matrix of} \ \mathcal{G}^x_{\mathcal{M}} \text{: } \det(A) \neq 0 \iff \exists c_i \rightsquigarrow c_a.$

Large determinants

Theorem

[G.-Koiran-Portier'10-13]

Deciding the nullity of the determinant of a matrix represented by a boolean circuit is PSPACE-complete (over any field).

Proof idea.

- Let \mathcal{M} be a PSPACE Turing Machine and $\mathcal{G}_{\mathcal{M}}^{x}$ its graph of configurations, with initial configuration c_i and accepting configuration c_a ;
- $\triangleright \ \mathcal{G}^{\mathbf{x}}_{\mathcal{M}}$ can be represented by a boolean circuit;
- $\succ \text{ There exists a path } c_i \rightsquigarrow c_a \text{ in } \mathcal{G}^x_{\mathcal{M}} \text{ iff } \mathcal{M} \text{ accepts } x;$
- ▶ Let $A \simeq$ adjacency matrix of $\mathcal{G}^x_{\mathcal{M}}$: det $(A) \neq 0 \iff \exists c_i \rightsquigarrow c_a$.

Theorem

[Malod'11]

The same holds true in Valiant's algebraic model of computation.

Arthur, Merlin and $PolSys_{\mathbb{Z}}$

T	h	eo	ore	em	

[Koiran'96]

Under the Extended Riemann Hypothesis, $PoLSys_{\mathbb{Z}}$ is in AM.

Arthur, Merlin and $POLSys_{\mathbb{Z}}$

 \triangleright L \in NP iff there exists V \in P and a polynomial p s.t. for all x,

$$x \in L \iff \exists y \in \Sigma^{p(|x|)}, (x, y) \in V.$$

Arthur, Merlin and $PolSys_{\mathbb{Z}}$

Theorem[Koiran'96]Under the Extended Riemann Hypothesis, PoLSys_ℤ is in AM.

▷ $L \in NP$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$x \in L \iff \exists y \in \Sigma^{p(|x|)}, (x,y) \in V.$$

 $\begin{array}{l} \vdash \ L \in \mathsf{MA} \ \text{iff there exists } V \in \mathsf{P} \ \text{and a polynomial } p \ \text{s.t. for all } x,\\ \\ x \in L \ \Longleftrightarrow \ \exists y \in \Sigma^{p(|x|)}, \mathsf{Pr}_{r \in \Sigma^{p(|x|)}}((x,y,r) \in \mathsf{V}) \geqslant 2/3. \end{array}$

Arthur, Merlin and $PolSys_{\mathbb{Z}}$

Theorem

[Koiran'96]

Under the Extended Riemann Hypothesis, $PolSys_{\mathbb{Z}}$ is in AM.

▷ $L \in NP$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$x \in L \iff \exists y \in \Sigma^{p(|x|)}, (x, y) \in V.$$

 $\begin{array}{l} \vdash \ L\in\mathsf{MA} \mbox{ iff there exists }V\in\mathsf{P} \mbox{ and a polynomial }p \mbox{ s.t. for all }x,\\ x\in L \iff \exists y\in\Sigma^{p(|x|)}, \mathsf{Pr}_{r\in\Sigma^{p(|x|)}}((x,y,r)\in V)\geqslant 2/3. \end{array}$

► L ∈ AM iff there exists V ∈ P and a polynomial p s.t. for all x, $x \in L \iff Pr_{r \in \Sigma^{p(|x|)}}(\exists y \in \Sigma^{p(|x|)}(x, r, y) \in V) \ge 2/3.$
Arthur, Merlin and $PolSys_{\mathbb{Z}}$

Theorem

[Koiran'96]

Under the Extended Riemann Hypothesis, $PolSys_{\mathbb{Z}}$ is in AM.

▷ $L \in NP$ iff there exists $V \in P$ and a polynomial p s.t. for all x,

$$x \in L \iff \exists y \in \Sigma^{p(|x|)}, (x,y) \in V.$$

► L ∈ MA iff there exists V ∈ P and a polynomial p s.t. for all x, $x \in L \iff \exists y \in \Sigma^{p(|x|)}, \Pr_{r \in \Sigma^{p(|x|)}}((x, y, r) \in V) \ge 2/3.$

 ${}\succ\ L\in \mathsf{AM}$ iff there exists $V\in\mathsf{P}$ and a polynomial p s.t. for all x,

$$x \in L \iff \mathsf{Pr}_{r \in \Sigma^{p(|x|)}}(\exists y \in \Sigma^{p(|x|)}(x, r, y) \in V) \ge 2/3.$$

 $\mathsf{NP}\subseteq\mathsf{MA}\subseteq\mathsf{AM}$

Polynomial system mod primes

- ▶ Let $f = (f_1, \ldots, f_s)$, with $f_i \in \mathbb{Z}[X_1, \ldots, X_n]$;
- ► Let $\pi_f(x)$ be the set of prime numbers $\leq x$, s.t. f has a root mod p.

Polynomial system mod primes

- Let $f = (f_1, \ldots, f_s)$, with $f_i \in \mathbb{Z}[X_1, \ldots, X_n]$;
- ${}\succ$ Let $\pi_f(x)$ be the set of prime numbers $\leqslant x$, s.t. f has a root mod p.

Theorem[Koiran'96]There exist polynomial-time computable A and x0 s.t.

- If f has no root in \mathbb{C} , then $|\pi_f(x_0)| \leqslant A$;
- If f has a root in \mathbb{C} , then $|\pi_f(x_0)| \ge 8A(\log A + 3)$.

Polynomial system mod primes

- Let $f = (f_1, \ldots, f_s)$, with $f_i \in \mathbb{Z}[X_1, \ldots, X_n]$;
- ${\displaystyle \succ}\$ Let $\pi_f(x)$ be the set of prime numbers $\leqslant x,$ s.t. f has a root mod p.

Theorem

[Koiran'96]

There exist polynomial-time computable A and x_0 s.t.

- If f has no root in \mathbb{C} , then $|\pi_f(x_0)| \leq A$;
- If f has a root in \mathbb{C} , then $|\pi_f(x_0)| \ge 8A(\log A + 3)$.

Proof idea.

- ▷ Using Hilbert's Nullstellensatz, there exists $b \in \mathbb{Z}$ and $q_i \in \mathbb{Z}[X]$ such that $q_1f_1 + \cdots + q_sf_s = b$, with log $b = \exp(s, d)$.
- Using effective quantifier elimination, consider a root **a** of f such that $\mathbb{Q}(\mathbf{a}) = \mathbb{Q}/\langle R \rangle$ where R is "small". Roots of R in \mathbb{F}_p yield roots of f in \mathbb{F}_p . Use an Effective Chebotarev Density Theorem (ERH) to prove that R has "many" roots.

Arthur-Merlin protocol

Theorem

Let U be a universe and $\{S_x \subseteq U : x \in \Sigma^*\}$ a collection of sets s.t. for all x, either $|S_x| \leq \alpha |U|$ or $|S_x| \geq 4\alpha |U|$, and $S_x \in NP$. Then the following problem is in AM: Given x, does $|S_x| \geq 4\alpha |U|$?

Arthur-Merlin protocol

Theorem

Let U be a universe and $\{S_x \subseteq U : x \in \Sigma^*\}$ a collection of sets s.t. for all x, either $|S_x| \leq \alpha |U|$ or $|S_x| \geq 4\alpha |U|$, and $S_x \in NP$. Then the following problem is in AM: Given x, does $|S_x| \geq 4\alpha |U|$?

Proof idea.

- ► $4\alpha \simeq 1$: Arthur chooses $y \in U$ at random, and asks Merlin a certificate that $y \in S_x$. If $|S_x| \simeq |U|$, $\Pr(y \in S_x) \simeq 1$.
- ▷ $\alpha \ll 1$: Consider a set T of size $4\alpha |U|$ and a family of universal hash functions $h: U \to T$.
 - 1. Arthur chooses h and $t \in T$ at random.
 - 2. Merlin must return $y \in S_x$ s.t. h(y) = t, with a certificate

Arthur-Merlin protocol

Theorem

Let U be a universe and $\{S_x \subseteq U : x \in \Sigma^*\}$ a collection of sets s.t. for all x, either $|S_x| \leq \alpha |U|$ or $|S_x| \geq 4\alpha |U|$, and $S_x \in NP$. Then the following problem is in AM: Given x, does $|S_x| \geq 4\alpha |U|$?

Proof idea.

- ▷ $4\alpha \simeq 1$: Arthur chooses $y \in U$ at random, and asks Merlin a certificate that $y \in S_x$. If $|S_x| \simeq |U|$, $Pr(y \in S_x) \simeq 1$.
- ▷ $\alpha \ll 1$: Consider a set T of size $4\alpha |U|$ and a family of universal hash functions $h: U \to T$.
 - 1. Arthur chooses h and $t \in T$ at random.
 - 2. Merlin must return $y\in S_{\kappa}$ s.t. h(y)=t, with a certificate

 $\textbf{Proof} \text{ (PoLSys}_{\mathbb{Z}} \in AM\text{). } U = \{p \leqslant x_0 : p \text{ is prime}\}, \text{ } S_f = \pi_f(x_0).$

Lower bounds

Lower bounds for non-square systems

Proposition

[Folklore]

For $\mathbb{K} = \mathbb{Z}$ or \mathbb{F}_p , $\mathsf{PolSys}_{\mathbb{K}}$ & $\mathsf{HomPolSys}_{\mathbb{K}}$ are $\mathsf{NP-hard}$.

Lower bounds for non-square systems

Proposition

[Folklore]

For $\mathbb{K} = \mathbb{Z}$ or \mathbb{F}_p , $\mathsf{PolSys}_{\mathbb{K}}$ & $\mathsf{HomPolSys}_{\mathbb{K}}$ are $\mathsf{NP-hard}$.

Proof. Case HomPolSys_{\mathbb{F}_p}, with $p \neq 2$:

BOOLSYS

- Boolean variables
 u₁,...,u_n
- Equations
 - $u_i = True$
 - $u_i = \neg u_j$
 - $\mathfrak{u}_i = \mathfrak{u}_j \vee \mathfrak{u}_k$

Lower bounds for non-square systems

Proposition

[Folklore]

For $\mathbb{K} = \mathbb{Z}$ or \mathbb{F}_p , $\mathsf{PolSys}_{\mathbb{K}}$ & $\mathsf{HomPolSys}_{\mathbb{K}}$ are $\mathsf{NP-hard}$.

Proof. Case HomPolSys_{\mathbb{F}_p}, with $p \neq 2$:

BOOLSYS

- Boolean variables
 u₁,...,u_n
- Equations

•
$$u_i = True$$

•
$$u_i = \neg u_j$$

•
$$\mathfrak{u}_i = \mathfrak{u}_i \vee \mathfrak{u}_k$$

$\mathsf{HomPolSys}_{\mathbb{K}}$

- ► Variables (over 𝔽_p) X₀ and X₁,...,X_n
- Polynomials $X_0^2 X_i^2$ for every i > 0 and

$$\begin{array}{l} X_{0} \cdot (X_{i} + X_{0}) \\ X_{0} \cdot (X_{i} + X_{j}) \\ (X_{i} + X_{0})^{2} - (X_{j} + X_{0}) \cdot (X_{k} + X_{0}) \end{array}$$

				• . •	
Р	ro	n	05	ITI	on
	· ~	Γ.	~~		

[Heintz-Morgenstern'93]

RESULTANT_{\mathbb{Z}} is NP-hard.

$$\label{eq:proposition} \begin{split} \hline \textbf{Proposition} & [\text{Heintz-Morgenstern'93}] \\ \hline \textbf{RESULTANT}_{\mathbb{Z}} \text{ is NP-hard.} \\ \hline \textbf{Proof. PARTITION}_{\mathbb{Z}}: \\ & \text{Input: } S = \{u_1, \dots, u_n\} \subseteq \mathbb{Z} \\ & \text{Question: Does there exist } S' \subseteq S, \ \sum_{i \in S'} u_i = \sum_{j \notin S'} u_j? \end{split}$$

Proposition

[Heintz-Morgenstern'93]

Resultant_{\mathbb{Z}} is NP-hard.

Proof. Partition_{\mathbb{Z}}:

Proposition

[Heintz-Morgenstern'93]

Resultant_{\mathbb{Z}} is NP-hard.

Proof. PARTITION_{\mathbb{Z}}:

Input:
$$S = \{u_1, \dots, u_n\} \subseteq \mathbb{Z}$$

Question: Does there exist $S' \subseteq S$, $\sum_{i \in S'} u_i = \sum_{j \notin S'} u_j$?
 $\Rightarrow \begin{cases} X_1^2 - X_0^2 = 0 \\ \vdots \\ X_n^2 - X_0^2 = 0 \\ u_1 X_1 + \dots + u_n X_n = 0 \end{cases}$

Note. Partition $\mathbb{F}_{p} \in \mathsf{P}$

Hardness in positive characteristics

 \blacktriangleright HomPolSys_{\mathbb{F}_p} is NP-hard:

homogeneous polynomials $\geqslant \#$ variables

$\mathsf{HomPolSys}_{\mathbb{K}}$

- Variables X_0 and X_1, \ldots, X_n over \mathbb{F}_p
- Polynomials $X_0^2 X_i^2$ for every i > 0 and

$$X_0 \cdot (X_i + X_0)$$
$$X_0 \cdot (X_i + X_j)$$

$$(X_i + X_0)^2 - (X_j + X_0) \cdot (X_k + X_0)$$

HomPolSys_{\mathbb{F}_n} is NP-hard:

```
# homogeneous polynomials \geq # variables
```

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

HOMPOLSYS_K

- ▶ Variables X_0 and X_1, \ldots, X_n over \mathbb{F}_p
- Polynomials $X_0^2 X_i^2$ for every i > 0 and

$$X_0 \cdot (X_i + X_0)$$

$$X_0 \cdot (X_i + X_i)$$

 $\begin{array}{l} X_0 \cdot (X_i + X_j) \\ (X_i + X_0)^2 - (X_j + X_0) \cdot (X_k + X_0) \end{array}$

Hardness in positive characteristics

► HomPolSys_{\mathbb{F}_p} is NP-hard:

```
\# homogeneous polynomials \geqslant \# variables
```

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

$\mathsf{HomPolSys}_{\mathbb{K}}$

- Variables X_0 and X_1, \ldots, X_n over \mathbb{F}_p
- Polynomials $X_0^2 X_i^2$ for every i > 0 and

$$X_0 \cdot (X_1 + X_0)$$
$$X_1 - (X_1 + X_1)$$

$$(X_i + X_0)^2 - (X_j + X_0) \cdot (X_k + X_0)$$

$$\qquad \qquad \text{Define } g_i = \sum_{j=1}^s \alpha_{ij} f_j, \ 0 \leqslant i \leqslant n \text{: } f(a) = 0 \implies g(a) = 0.$$

$$\qquad \qquad \text{Define } g_{\mathfrak{i}} = \sum_{j=1}^{s} \alpha_{ij} f_{j}, \, \mathfrak{0} \leqslant \mathfrak{i} \leqslant \mathfrak{n} \text{: } f(\mathfrak{a}) = \mathfrak{0} \implies g(\mathfrak{a}) = \mathfrak{0}.$$

Effective Bertini Theorem: There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $F(\alpha) \neq 0$. [Krick-Pardo-Sombra'01]

$$\qquad \qquad \text{Define } g_{\mathfrak{i}} = \sum_{j=1}^{s} \alpha_{ij} f_{j}, \, \mathfrak{0} \leqslant \mathfrak{i} \leqslant \mathfrak{n} \text{: } f(\mathfrak{a}) = \mathfrak{0} \implies g(\mathfrak{a}) = \mathfrak{0}.$$

- **Effective Bertini Theorem:** There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $F(\alpha) \neq 0$. [Krick-Pardo-Sombra'01]
- Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]

$$\Pr_{\alpha \in \mathbb{F}_{q}^{s(n+1)}}(F(\alpha) = 0) \leqslant \frac{\deg(F)}{|\mathbb{F}_{q}|}$$

$$\qquad \qquad \text{Define } g_{\mathfrak{i}} = \sum_{j=1}^{s} \alpha_{\mathfrak{i}j} f_{\mathfrak{j}}, \, \mathfrak{0} \leqslant \mathfrak{i} \leqslant \mathfrak{n} \text{: } f(\mathfrak{a}) = \mathfrak{0} \implies g(\mathfrak{a}) = \mathfrak{0}.$$

- **Effective Bertini Theorem:** There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $F(\alpha) \neq 0$. [Krick-Pardo-Sombra'01]
- Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]

$$\mathsf{Pr}_{\alpha \in \mathbb{F}_{q}^{s(n+1)}}(F(\alpha) = 0) \leqslant \frac{\mathsf{deg}(F)}{|\mathbb{F}_{q}|}$$

> Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements [Shoup'90]

$$\vdash \text{ Define } g_{\mathfrak{i}} = \sum_{j=1}^{s} \alpha_{\mathfrak{i}j} f_{\mathfrak{j}}, \, \mathfrak{0} \leqslant \mathfrak{i} \leqslant \mathfrak{n} \text{: } f(\mathfrak{a}) = \mathfrak{0} \implies g(\mathfrak{a}) = \mathfrak{0}.$$

- **Effective Bertini Theorem:** There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $F(\alpha) \neq 0$. [Krick-Pardo-Sombra'01]
- Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]

$$\mathsf{Pr}_{\alpha \in \mathbb{F}_q^{s(n+1)}}(F(\alpha) = 0) \leqslant \frac{\mathsf{deg}(F)}{|\mathbb{F}_q|}$$

- ${}^{\triangleright}$ Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements \qquad [Shoup'90]
- ► Choose the α_{ij} 's independently at random in \mathbb{L} ;

$$\vdash \text{ Define } g_{\mathfrak{i}} = \sum_{j=1}^{s} \alpha_{\mathfrak{i}j} f_{\mathfrak{j}}, \, \mathfrak{0} \leqslant \mathfrak{i} \leqslant \mathfrak{n} \text{: } f(\mathfrak{a}) = \mathfrak{0} \implies g(\mathfrak{a}) = \mathfrak{0}.$$

- **Effective Bertini Theorem:** There exists F of degree 3^{n+1} s.t. the reciprocal holds as soon as $F(\alpha) \neq 0$. [Krick-Pardo-Sombra'01]
- Schwartz-Zippel Lemma: [DeMillo-Lipton, Zippel, Schwartz, '78-'80]

$$\mathsf{Pr}_{\alpha \in \mathbb{F}_{q}^{s(n+1)}}(F(\alpha) = 0) \leqslant \frac{\mathsf{deg}(F)}{|\mathbb{F}_{q}|}$$

- \triangleright Build an extension \mathbb{L}/\mathbb{F}_p with at least 3^{n+2} elements \qquad [Shoup'90]
- Choose the α_{ij} 's independently at random in L;

Theorem

[G.-Koiran-Portier'10-13]

Let p be a prime number. RESULTANT_{\mathbb{F}_q} is NP-hard for degree-2 polynomials for some $q = p^s$, under randomized reductions.

Hardness in positive characteristics

► HomPolSys_{\mathbb{F}_p} is NP-hard:

```
# homogeneous polynomials \geq # variables
```

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

$\mathsf{HomPolSys}_{\mathbb{K}}$

- Variables X_0 and X_1, \ldots, X_n over \mathbb{F}_p
- Polynomials $X_0^2 X_i^2$ for every i > 0 and

$$X_0 \cdot (X_i + X_0)$$

$$X_0 \cdot (X_i + X_j)$$

$$(X_{i} + X_{0})^{2} - (X_{j} + X_{0}) \cdot (X_{k} + X_{0})$$

Hardness in positive characteristics

► HomPolSys_{\mathbb{F}_p} is NP-hard:

 $X_0 \cdot (X_i + X_0)$ $X_0 \cdot (X_i + X_i)$

```
# homogeneous polynomials \ge # variables
```

- Two strategies:
 - Reduce the number of polynomials
 - Increase the number of variables

$\mathsf{HomPolSys}_{\mathbb{K}}$

- Variables X_0 and X_1, \ldots, X_n over \mathbb{F}_p
- Polynomials $X_0^2 X_i^2$ for every i > 0 and

 f_1,\ldots,f_n

$$f_{n+1},\ldots,f_s$$

$$(X_{i} + X_{0})^{2} - (X_{j} + X_{0}) \cdot (X_{k} + X_{0})$$

▷ New variables: Y_1, \ldots, Y_{s-n-1}

Reduction

▶ New variables: Y_1, \ldots, Y_{s-n-1}

Reduction

New variables: Y_1, \ldots, Y_{s-n-1}

Reduction

▷ New variables: Y_1, \ldots, Y_{s-n-1}

 $a \text{ root of } f \implies (a, 0) \text{ root of } g$

(a, b) non trivial root of $g \implies a$ non trivial root of f $\begin{pmatrix} f_{1}(a) \\ \vdots \\ f_{n}(a) \\ f_{n+1}(a) & +\lambda b_{1}^{2} \\ f_{n+2}(a) & -b_{1}^{2} & +\lambda b_{2}^{2} \\ \vdots \\ f_{s-1}(a) -b_{s-n-2}^{2} +\lambda b_{s-n-1}^{2} \\ f_{s}(a) & -b_{s-n-1}^{2} \end{pmatrix}$

24 / 27

Equivalence?

Equivalence?

$$\begin{array}{c} (a,b) \text{ non trivial root of } g \xrightarrow{?} a \text{ non trivial root of } f \\ \\ \begin{pmatrix} a,b \end{pmatrix} \xrightarrow{(a,b)} a = 0 \implies b = 0 \\ a_0 = 1 \text{ and } a_i = \pm 1 \\ a_0 = 1 \text{ and } a_i$$

On the complexity of polynomial system solving

Equivalence?

$$\begin{array}{c} (a,b) \text{ non trivial root of } g \xrightarrow{?} a \text{ non trivial root of } f \\ \\ \begin{pmatrix} a,b \end{pmatrix} \text{ non trivial root of } g \xrightarrow{?} a \text{ non trivial root of } f \\ \\ & a = 0 \implies b = 0 \\ & a_0 = 1 \text{ and } a_i = \pm 1 \\ & e_i = f_{n+i}(a) \\ & B_i = b_i^2 \\ \hline \\ & e_{s-n-1} - B_{s-n-1} \\ \hline \\ & det = \pm \left(e_1 + e_2\lambda + \dots + e_{s-n}\lambda^{s-n-1}\right) \\ \\ & det = 0 \xrightarrow{?} \forall i, \ e_i = 0 \implies f_1(a) = \dots = f_s(a) = 0 \end{array}$$

$$det = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial P ∈ 𝔽_p[ξ] of degree N; [Shoup'90]
- ▶ Let $\mathbb{L} = \mathbb{F}_p[\xi]/(P)$ and $\lambda = \xi \in \mathbb{L}$.

$$\det = \pm \left(\epsilon_1 + \epsilon_2 \lambda + \dots + \epsilon_N \lambda^{N-1} \right)$$

Compute an irreducible polynomial P ∈ 𝔽_p[ξ] of degree N;
[Shoup'90]

▶ Let
$$\mathbb{L} = \mathbb{F}_p[\xi]/(P)$$
 and $\lambda = \xi \in \mathbb{L}$.

- In the extension \mathbb{L} , det = 0 $\iff \varepsilon_i = 0$ for all i.
- ▷ For coefficients in \mathbb{F}_p instead of \mathbb{L} : "put P inside the system"

$$\det = \pm \left(\varepsilon_1 + \varepsilon_2 \lambda + \dots + \varepsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial P ∈ 𝔽_p[ξ] of degree N; [Shoup'90]
- ▷ In the extension \mathbb{L} , det = 0 \iff \varepsilon_i = 0 for all i.
- For coefficients in \mathbb{F}_p instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]

Let p be a prime number.

▶ RESULTANT_F, is NP-hard for **linear-degree** polynomials.

$$\det = \pm \left(\epsilon_1 + \epsilon_2 \lambda + \dots + \epsilon_N \lambda^{N-1} \right)$$

- Compute an irreducible polynomial P ∈ 𝔽_p[ξ] of degree N; [Shoup'90]
- ${\succ}$ In the extension $\mathbb{L},$ det = 0 \iff $\varepsilon_i=0$ for all i.
- For coefficients in \mathbb{F}_p instead of \mathbb{L} : "put P inside the system"

Theorem

[G.-Koiran-Portier'10-13]

Let p be a prime number.

- ▶ RESULTANT_{Fp} is NP-hard for **linear-degree** polynomials.
- ► RESULTANT_{\mathbb{F}_q} is NP-hard for degree-2 polynomials for some $q = p^s$.

	Lower bound	Upper bound
\mathbb{Z}	NP-hard	AM
\mathbb{F}_{p}	NP-hard	PSPACE

	Lower bound	Upper bound
\mathbb{Z}	NP-hard	AM
\mathbb{F}_{p}	NP-hard	PSPACE

Evaluation of the resultant in PSPACE

	Lower bound	Upper bound
\mathbb{Z}	NP-hard	AM
\mathbb{F}_{p}	NP-hard	PSPACE

- Evaluation of the resultant in PSPACE
- Ideal membership problem is EXPSPACE-complete [Mayr-Meyer'82]

 $\begin{array}{ll} \mbox{Input: } g, f_1, \ldots, f_s \in \mathbb{K}[X] \\ \mbox{Question: Does g belong to $\langle f_1, \ldots, f_s \rangle$? } \end{array}$

	Lower bound	Upper bound
\mathbb{Z}	NP-hard	AM
\mathbb{F}_{p}	NP-hard	PSPACE

- Evaluation of the resultant in PSPACE
- Ideal membership problem is EXPSPACE-complete [Mayr-Meyer'82]

 $\begin{array}{ll} \mbox{Input: } g, f_1, \ldots, f_s \in \mathbb{K}[X] \\ \mbox{Question: Does g belong to $\langle f_1, \ldots, f_s \rangle$? } \end{array}$

 ${\ \vartriangleright \ }$ PolSys $_{\mathbb{K}}$ is NP $_{\mathbb{K}}$ complete (BSS model)

Reduce the gap between NP and PSPACE in positive characteristics

- Reduce the gap between NP and PSPACE in positive characteristics
- ▷ Derandomize Koiran's theorem: $PolSys_{\mathbb{Z}} \in NP$?

- Reduce the gap between NP and PSPACE in positive characteristics
- ▷ Derandomize Koiran's theorem: $PolSys_{\mathbb{Z}} \in NP$?
- ▷ NP-hardness for degree-2 polynomial systems in \mathbb{F}_p ?

- Reduce the gap between NP and PSPACE in positive characteristics
- ▷ Derandomize Koiran's theorem: $PolSys_{\mathbb{Z}} \in NP$?
- ▷ NP-hardness for degree-2 polynomial systems in \mathbb{F}_{p} ?
- Complexity of solving sparse or lacunary polynomial systems?

- Reduce the gap between NP and PSPACE in positive characteristics
- ▷ Derandomize Koiran's theorem: $PolSys_{\mathbb{Z}} \in NP$?
- ▷ NP-hardness for degree-2 polynomial systems in \mathbb{F}_p ?
- Complexity of solving sparse or lacunary polynomial systems?
- Complexity of root finding, especially:

Input: $f_1, \ldots, f_n \in \mathbb{K}[X_0, \ldots, X_n]$, homogeneous Output: A root $a \in \overline{\mathbb{K}}$ of f

 \rightsquigarrow always a solution: PPAD, TFNP, ...?

- Reduce the gap between NP and PSPACE in positive characteristics
- ▷ Derandomize Koiran's theorem: $PolSys_{\mathbb{Z}} \in NP$?
- ▷ NP-hardness for degree-2 polynomial systems in \mathbb{F}_p ?
- Complexity of solving sparse or lacunary polynomial systems?
- Complexity of root finding, especially:

Input: $f_1,\ldots,f_n\in\mathbb{K}[X_0,\ldots,X_n],$ homogeneous Output: A root $\alpha\in\overline{\mathbb{K}}$ of f

 \rightsquigarrow always a solution: PPAD, TFNP, ...?

Thank you!

