Symmetric Determinantal Representations of Weakly-Skew Circuits

Bruno Grenet	Erich L. Kaltofen	Pascal Koiran	Natacha Portier
ÉNS Lyon	North Carolina	ÉNS Lyon	ÉNS Lyon
U. of Toronto	State University	U. of Toronto	U. of Toronto

28th International Symposium on Theoretical Aspects of Computer Science

Dortmund, March 11, 2011

The problem

The problem

$$(x+y)+(y\times z)=\det \begin{vmatrix} 0&x&y&0&0&0&0&0&0&0&-\frac{1}{2}\\ x&0&0&-1&0&0&0&0&0&0&0\\ y&0&0&0&-1&0&0&0&0&0&0\\ 0&-1&0&0&0&1&0&0&0&0&0\\ 0&0&-1&0&0&1&0&z&0&0&0\\ 0&0&0&1&1&0&-1&0&0&0&0\\ 0&0&0&0&0&-1&0&0&0&1&0\\ 0&0&0&0&0&0&0&0&-1&0&0\\ 0&0&0&0&0&0&0&0&-1&0&1&0\\ 0&0&0&0&0&0&0&0&0&0&-1&0&1\\ -\frac{1}{2}&0&0&0&0&0&0&0&0&0&-1&0 \end{vmatrix}$$

Formal polynomial

The problem

- Formal polynomial
- Smallest possible dimension of the matrix

Representations of polynomials

Arithmetic circuit:

Size
$$e = 5$$

Inputs $i = 2$

Representations of polynomials

Weakly-skew circuit:

Size
$$e = 5$$
 Inputs $i = 4$

Representations of polynomials

Formula:

Size
$$e = 5$$
 Inputs $i = 6$

Motivation

L. G. Valiant, Completeness classes in algebra, STOC'79

Theorem (Universality of determinant and permanent)

Let P be a polynomial given by a formula of size e. There exist matrices M and N of size $(e+2) \times (e+2)$ such that

$$P = \det M = \operatorname{per} N$$
.

• Improved bounds:

- Improved bounds:
 - 2e + 2: J. von zur Gathen [1]

[1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987

- Improved bounds:
 - 2e + 2: J. von zur Gathen [1]
 - e+1: H. Liu & K.W. Regan [2]

- [1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987
- [2] Improved construction for universality of determinant and permanent, Inf. Process. Lett., 2006

- Improved bounds:
 - 2e + 2: J. von zur Gathen [1]
 - e+1: H. Liu & K.W. Regan [2]
- Extension to weakly-skew circuits, with bound

- [1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987
- $[2]\ \mbox{Improved construction for universality of determinant and permanent, Inf. Process. Lett., <math display="inline">2006$

- Improved bounds:
 - 2e + 2: J. von zur Gathen [1]
 - e+1: H. Liu & K.W. Regan [2]
- Extension to weakly-skew circuits, with bound
 - 2e + 1: S. Toda [3]
- [1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987
- [2] Improved construction for universality of determinant and permanent, Inf. Process. Lett., 2006
- [3] Classes of arithmetic circuits capturing the complexity of computing the determinant, IEICE T. Inf. Syst., 1992

- Improved bounds:
 - 2e + 2: J. von zur Gathen [1]
 - e+1: H. Liu & K.W. Regan [2]
- Extension to weakly-skew circuits, with bound
 - 2e + 1: S. Toda [3]
 - e + i + 1: G. Malod & N. Portier [4]
- [1] Feasible arithmetic computations: Valiant's hypothesis, J. Symb. Comput., 1987
- [2] Improved construction for universality of determinant and permanent, Inf. Process. Lett., 2006
- [3] Classes of arithmetic circuits capturing the complexity of computing the determinant, IEICE T. Inf. Syst., 1992
- [4] Characterizing Valiant's algebraic complexity classes, J. Compl., 2008

Our results

• Extension to symmetric matrices (characteristic \neq 2)

Our results

- Extension to symmetric matrices (characteristic \neq 2)
- Char. 2: Partial permanent is (probably) not VNP-complete

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

ullet Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$.

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

ullet Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

ullet Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

• Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices

• Linear Matrix Expression (LME): for A_i symmetric in $\mathbb{R}^{t \times t}$

$$A_0 + x_1 A_1 + \cdots + x_n A_n$$

• Lax conjecture: express a real zero polynomial f as

$$f = \det A$$

with A LME and $A_0 \succeq 0$. \rightsquigarrow disproved

- Drop condition $A_0 \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?

$$(x+y)+(y\times z)$$

Circuit: Weakly-skew circuit or formula

Circuit: Weakly-skew circuit or formula

Arithmetic Branching Program

Circuit \implies ABP

 $Circuit \implies ABP$

Main construction

Overview

 $\begin{array}{ccc} \mathsf{Circuit} & \Longrightarrow & \mathsf{ABP} & \Longrightarrow & \mathsf{Graph} \end{array}$

$$\det \begin{pmatrix} 0 & x & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} \\ x & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ y & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 & z & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & z & 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

$$= (x + y) + (y \times z)$$

Circuit
$$\Rightarrow$$
 ABP \Rightarrow Graph \Rightarrow Matrix

Characteristic $\neq 2$

 $\begin{array}{cccc} \text{Circuit} & \Longrightarrow & \text{ABP} & \Longrightarrow & \text{Graph} & \Longrightarrow & \text{Matrix} \end{array}$

Symmetric matrices

Symmetric matrices

 $\implies \text{undirected graphs}$

Symmetric matrices

 \implies undirected graphs

⇒ "undirected ABPs"

Symmetric matrices

 $\implies \text{undirected graphs}$

⇒ "undirected ABPs"

Definition

A path P is acceptable if $G \setminus P$ admits a cycle cover

Weakly-Skew Circuit ⇒ ABP

Weakly-Skew Circuit ⇒ ABP

$ABP \implies Graph$

• Add $s \xleftarrow{(1/2)\cdot (-1)^{\frac{|G|-1}{2}}} t$: new graph G'.

$ABP \implies Graph$

- Add $s \xleftarrow{(1/2)\cdot(-1)^{\frac{|G|-1}{2}}} t$: new graph G'.
- Cycle covers of G'

$$\iff s o t ext{-paths in } G$$

$ABP \implies Graph$

- Add $s \stackrel{(1/2)\cdot (-1)^{\frac{|G|-1}{2}}}{\longrightarrow} t$: new graph G'.
- Cycle covers of G'

$$\iff$$
 $s \rightarrow t$ -paths in G

$$\iff s \to t ext{-paths in } G$$
 $\iff t \to s ext{-paths in } G.$

$Graph \implies Matrix$

Determinant

$$\mathfrak{S}_n = \text{Permutation group of } \{1, \ldots, n\}$$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

$Graph \implies Matrix$

Determinant

 $\mathfrak{S}_n = \mathsf{Permutation} \; \mathsf{group} \; \mathsf{of} \; \{1, \ldots, n\}$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

• permutation in $A \equiv$ cycle cover in G'

Graph ⇒ Matrix

Determinant

 $\mathfrak{S}_n = \mathsf{Permutation} \; \mathsf{group} \; \mathsf{of} \; \{1, \ldots, n\}$

$$\det A = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n A_{i,\sigma(i)}$$

- permutation in $A \equiv$ cycle cover in G'
- Up to signs, det A = sum of weights of cycle covers in G'

 $P(x_1,\ldots,x_n)$

Weakly-Skew Circuit

$$P(x_1, \dots, x_n)$$
 Weakly-Skew Circuit
$$= \sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P)$$
 Arithmetic Branching Program

$$P(x_1, ..., x_n)$$
 Weakly-Skew Circuit
$$= \sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P) \qquad \text{Arithmetic Branching Program}$$

$$= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C) \qquad \text{Graph } G'$$

$$P(x_1, ..., x_n)$$
 Weakly-Skew Circuit

$$= \sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P)$$
 Arithmetic Branching Program

$$= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C)$$
 Graph G'

$$= \det \text{Adj}(G')$$
 Symmetric Matrix

$$P(x_1, ..., x_n)$$
 Weakly-Skew Circuit

$$= \sum_{s-t \text{ path } P} (-1)^{\frac{|P|-1}{2}} w(P)$$
 Arithmetic Branching Program

$$= \sum_{\text{cycle cover } C} (-1)^{\text{sgn}(C)} w(C)$$
 Graph G'

$$= \det \text{Adj}(G')$$
 Symmetric Matrix

	Formula	Weakly-skew circuit
Non symmetric	e+1	(e + i) + 1
Symmetric	2e + 1	2(e+i)+1

Characteristic 2

Problem

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

Problem

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

$$\mathfrak{P}_n = \mathsf{Injective} \; \mathsf{Partial} \; \mathsf{Maps} \; \mathsf{from} \; \{1, \dots, n\} \; \mathsf{to} \; \mathsf{itself}$$

$$\operatorname{\mathsf{per}}^* M = \sum_{\pi \in \mathfrak{P}_n} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} M_{i,\pi(i)}$$

Problem

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

$$\mathfrak{P}_n = \mathsf{Injective} \; \mathsf{Partial} \; \mathsf{Maps} \; \mathsf{from} \; \{1, \dots, n\} \; \mathsf{to} \; \mathsf{itself}$$

$$\operatorname{\mathsf{per}}^* M = \sum_{\pi \in \mathfrak{P}_n} \prod_{i \in \operatorname{\mathsf{def}}(\pi)} M_{i,\pi(i)}$$

ullet Injective Partial Maps \equiv Partial Matchings in a Bipartite Graph

Problem

Problem [Bürgisser 00]

Is the partial permanent VNP-complete in characteristic 2?

$$\mathfrak{P}_n = \text{Injective Partial Maps from } \{1, \ldots, n\} \text{ to itself }$$

$$\mathsf{per}^* M = \sum_{\pi \in \mathfrak{P}_n} \prod_{i \in \mathsf{def}(\pi)} M_{i,\pi(i)}$$

- ullet Injective Partial Maps \equiv Partial Matchings in a Bipartite Graph
- ullet VP, VNP, VNP-complete \equiv P, NP, NP-complete for polynomials

Characteristic 2

Partial Answer

Is the partial permanent VNP-complete in characteristic 2?

Characteristic 2

Partial Answer

Is the partial permanent VNP-complete in characteristic 2?

Theorem

No unless the Polynomial Hierarchy collapses.

Partial Answer

Is the partial permanent VNP-complete in characteristic 2?

Theorem

No unless the Polynomial Hierarchy collapses.

Main lemma

$$(per^* M)^2 \in VP$$

A by-product & two updates

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^3)$ s.t. det $M = \det M'$.

A by-product & two updates

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^3)$ s.t. det $M = \det M'$.

Theorem (G., Monteil, Thomassé)

In characteristic 2, Symmetric Determinantal Representations do not always exist.

A by-product & two updates

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M' of size $O(n^3)$ s.t. det $M = \det M'$.

Theorem (G., Monteil, Thomassé)

In characteristic 2, Symmetric Determinantal Representations do not always exist.

Theorem (Malod)

In characteristic 2, the partial permanent is in VP.

• Symmetric Determinantal Representations of linear size

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser's Open Problem

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser's Open Problem
- \bullet Convex Geometry: $\mathbb{K}=\mathbb{R}$ and real zero polynomials

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser's Open Problem
- ullet Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - → what can be done in that precise case?

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser's Open Problem
- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - what can be done in that precise case?
- Characteristic 2:

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser's Open Problem
- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - → what can be done in that precise case?
- Characteristic 2:
 - Characterize polynomials with a Symmetric Determinantal Representation

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser's Open Problem
- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - what can be done in that precise case?
- Characteristic 2:
 - Characterize polynomials with a Symmetric Determinantal Representation
 - Explore other graph polynomials

- Symmetric Determinantal Representations of linear size
- Characteristic 2: Partial answer to Bürgisser's Open Problem
- Convex Geometry: $\mathbb{K} = \mathbb{R}$ and real zero polynomials
 - what can be done in that precise case?
- Characteristic 2:
 - Characterize polynomials with a Symmetric Determinantal Representation
 - Explore other graph polynomials
- Symmetric matrices in Valiant's theory?

Thank you!

1 Introduction

2 Main construction

3 Characteristic 2

4 Conclusion