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- Representations of polynomials

Arithmetic circuit:
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. Representations of polynomials

oL @ Formula:
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‘ Introduction

Motivation

L. G. Valiant, Completeness classes in algebra, STOC'79

Theorem (Universality of determinant and permanent)

Let P be a polynomial given by a formula of size e. There exist
matrices M and N of size (e + 2) x (e + 2) such that

P = det M = per N.
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~ Qur results

o Extension to symmetric matrices (characteristic # 2)

o Char. 2: Partial permanent is (probably) not VNP-complete
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A0+X1A1+~'-—|—XnAn

o Lax conjecture: express a real zero polynomial 7 as
f=detA
with A LME and A > 0. ~ disproved

o Drop condition Ag = 0 ~» exponential size matrices
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‘ Main construction

Overview

Arithmetic Branching Program
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Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

81/17



‘ Main construction

. Overview

° 0 000 0O0O0TO0-1
Xy _5

X Y x 00-100000 0 O
y 00 0-10000 0 0

-1 - 0 100010000 O

0 010010 200 0

—1/2 det| 0 0 01 1 0-100 0 0

0 000 0-1020T01 0

-1 -1 0 000 2 00O0O0-10 0

0 000 0O0UO-101 0

0 00 00O0T1GO0T120 -1

1
) -0 000000 0-10
t

=x+y)+(yx2)

Circuit = ABP = Graph = Matrix

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

81/17



‘ Main construction

. Overview

° 0 000 0O0O0TO0-1
Xy _5

X Y x 00-100000 0 O
y 00 0-10000 0 0

-1 - 0 100010000 O

0 010010 200 0

—1/2 det| 0 0 01 1 0-100 0 0

0 000 0-1020T01 0

-1 -1 0 000 2 00O0O0-10 0

0 000 0O0UO-101 0

0 00 00O0T1GO0T120 -1

1
) -0 000000 0-10
t

=(x+y)+(yx2)
Characteristic # 2

Circuit = ABP = Graph = Matrix

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

81/17



‘ Main construction

Main new difficulty

Symmetric matrices

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

9717



‘ Main construction

Main new difficulty

Symmetric matrices
= undirected graphs

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits




‘ Main construction

Main new difficulty

Symmetric matrices
= undirected graphs
=— “undirected ABPs”

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

9717



‘ Main construction

Main new difficulty

Symmetric matrices
= undirected graphs
=— “undirected ABPs”
Definition

A path P is acceptable if G\ P admits a cycle cover
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Main construction

o Add s <2V Tt hew graph G'.
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Main construction

ABP — Graph

o Add s <2V Tt hew graph G'.
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‘: Main construction

- ABP — Graph

o Add s <2V Tt hew graph G'.

o Cycle covers of G’
<= s — t-paths in G

1/ <= t — s-pathsin G.
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Main construction

Graph — Matrix

Determinant

S, = Permutation group of {1,...,n}

det A= Z ( 1)sgn(a) HA, o (i)

O‘GGn
—1/2
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Main construction

Graph — Matrix

Determinant

S, = Permutation group of {1,...,n}

det A= Z ( 1)sgn(a) HA, o (i)

O‘GGn
—1/2

o permutation in A = cycle cover in G’
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Main construction

Graph — Matrix

Determinant

S, = Permutation group of {1,...,n}

detA= 3" (<1 [[ Ay
i=1

O‘GGn
—1/2
o permutation in A = cycle cover in G’

o Up to signs, det A = sum of weights of cycle
covers in G’
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‘: Main construction

P(x1,...,xn) Weakly-Skew Circuit
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Main construction

Summary

P(x1,...,xn) Weakly-Skew Circuit
= Z (—l)lp‘Tf1 w(P) Arithmetic Branching Program
s-t path P
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‘ Main construction

. Summary

P(x1,...,xn) Weakly-Skew Circuit
= Z (—l)lp‘Tf1 w(P) Arithmetic Branching Program
s-t path P
= Z (—=1)"(Ow(C) Graph G’
cycle cover C
= det Adj(G') Symmetric Matrix

| || Formula | Weakly-skew circuit |
Non symmetric e+1 e+i)+1
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Problem

Problem [Biirgisser 00]

Is the partial permanent VNP-complete in characteristic 27
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Problem [Biirgisser 00]

Is the partial permanent VNP-complete in characteristic 27

B = Injective Partial Maps from {1,..., n} to itself

per* M = Z H M,-’,r(,-)

mEPn icdef(m)

o Injective Partial Maps = Partial Matchings in a Bipartite Graph
o VP, VNP, VNP-complete = P, NP, NP-complete for polynomials
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H: Characteristic 2

Partial Answer

Is the partial permanent VNP-complete in characteristic 2?
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‘ Characteristic 2

Partial Answer

Is the partial permanent VNP-complete in characteristic 2?

Theorem

No unless the Polynomial Hierarchy collapses.

Main lemma
(per* M) € VP
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H: Conclusion

A by-product & two updates

Theorem

Let M be an nx n matrix. Then there exists a symmetric matrix
M’ of size O(n®) s.t. det M = det M.
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Theorem

Let M be an nx n matrix. Then there exists a symmetric matrix
M’ of size O(n®) s.t. det M = det M.

Theorem (G., Monteil, Thomassé)

In characteristic 2, Symmetric Determinantal Representations
do not always exist.

Theorem (Malod)

In characteristic 2, the partial permanent is in VP.

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

16 /17



Conclusion

~ Summary & Future Work

o Symmetric Determinantal Representations of linear size

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits




Conclusion

~ Summary & Future Work

o Symmetric Determinantal Representations of linear size

o Characteristic 2: Partial answer to Biirgisser's Open Problem

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits




Conclusion

~ Summary & Future Work

o Symmetric Determinantal Representations of linear size

o Characteristic 2: Partial answer to Biirgisser's Open Problem

o Convex Geometry: K =R and real zero polynomials

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

7117



Conclusion

~ Summary & Future Work

o Symmetric Determinantal Representations of linear size

o Characteristic 2: Partial answer to Biirgisser's Open Problem

o Convex Geometry: K =R and real zero polynomials

~» what can be done in that precise case?

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

7117



Conclusion

~ Summary & Future Work

o Symmetric Determinantal Representations of linear size

o Characteristic 2: Partial answer to Biirgisser's Open Problem

o Convex Geometry: K =R and real zero polynomials
~» what can be done in that precise case?

o Characteristic 2:

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

7117



‘ Conclusion

Summary & Future Work

©

Symmetric Determinantal Representations of linear size

o Characteristic 2: Partial answer to Biirgisser's Open Problem

o Convex Geometry: K =R and real zero polynomials
~» what can be done in that precise case?
o Characteristic 2:

o Characterize polynomials with a Symmetric Determinantal
Representation

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits

17 117



‘ Conclusion

Summary & Future Work

©

Symmetric Determinantal Representations of linear size

o Characteristic 2: Partial answer to Biirgisser's Open Problem

o Convex Geometry: K =R and real zero polynomials
~» what can be done in that precise case?
o Characteristic 2:

o Characterize polynomials with a Symmetric Determinantal
Representation
o Explore other graph polynomials

Bruno Grenet — Symmetric Determinantal Representations of Weakly-Skew Circuits o




Conclusion

Summary & Future Work

©

Symmetric Determinantal Representations of linear size

o Characteristic 2: Partial answer to Biirgisser's Open Problem

o Convex Geometry: K =R and real zero polynomials
~» what can be done in that precise case?
o Characteristic 2:

o Characterize polynomials with a Symmetric Determinantal
Representation
o Explore other graph polynomials

©

Symmetric matrices in Valiant's theory?
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