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Classical factorization algorithms

Factorization of a polynomial f

Find fq, ..., fy, irreducible, s.t. f =17 x --- x f.
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Factorization of a polynomial f

Find fq, ..., ft, irreducible, s.t. f =17 x --- x fy.

Algorithms for polynomials over Z, Q, Q(«), Q, Qp Fy, R, C, ...
Complexity: polynomial in deg(f)

X102Y101 +X101Y102 _X101Y101 _X_Y+]
=(X4+Y—=1)x (X"0TyT01 _1)
= (X+Y—=1) x (XY =1) x (T +XY+ - + X100y100)
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Let f € K[X], for some field or ring K.
For all K, #Zx(f) < deg(f)

It K=27Z, QorR, #Zk(f) < 2k — 1 where k is the number of
nonzero terms of f.



Descartes’ rule without signs

Definition

k
Let f(X1,...,Xn) = ZCJ'X‘]XH - Xn" of degree d
=1

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach 3728




Let f € K[X], for some field or ring K.
For all K, #Zx(f) < deg(f)

f K=7, Qor R, #Zk(f) < 2k — 1 where k is the number of
nonzero terms of f.

Definition

K
Let f(Xq,...,Xn) = chXf‘” -+ Xn" of degree d
j=1

> Lacunary representation: {(cj, ®1jy...,%nj) : 1 <j < k}

> size(f) ~ Z]. size(c;j) + log(a15) + - - - + log(otnj)

< k(maxj(size(cj)) 4 nlog(d))




Integral roots of integral polynomials

Theorem [Cucker-Koiran-Smale’98]

There exists a deterministic polynomial-time algorithm to com-
pute the integer roots of a lacunary polynomial f € Z[X].
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Integral roots of integral polynomials

Theorem [Cucker-Koiran-Smale’98]

There exists a deterministic polynomial-time algorithm to com-
pute the integer roots of a lacunary polynomial f € Z[X].

Gap Theorem [Cucker-Koiran-Smale’98]
Let

£ k
fX)=) X9+ Y XY € ZIX

j=1 j=0+1
—_———— — —
1 f2

with o7 < -+ < oy and o1 — g > 1+ max;(size(c;)). Then
for|x| > 2, f(x) =0 = f1(x) =12(x) =0.
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[Cucker-Koiran-Smale’98]

There exists a deterministic algorithm to com-
pute the integer roots of a f e Z[X].

[Cucker-Koiran-Smale’98]

Let
ZC)X“J—&- Z ;X% € Z[X
j=L+1
~—_—
i iz
with ot < -+ < o and . Then

for x| > 2, f(x) =0 = f1(x) =f2(x) =0.

94+ X2 4+6X +2X8 =9+ X2+ X(6+2X)



Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

» linear factors of f € Z[X; [Cucker-Koiran-Smale’98]
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Factorization of lacunary polynomials

Theorems

There exist deterministic polynomial-time algorithms computing

» linear factors of f € Z[X; [Cucker-Koiran-Smale’98]
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There exist deterministic polynomial-time algorithms computing

factors of f € : [Cucker-Koiran-Smale’98]
factors of f € ; [H. Lenstra’99]
factors of f € . [Kaltofen-Koiran'06]

Only available for number fields

Based on number-theoretic results ~~ theoretical algorithms



There exist deterministic polynomial-time algorithms computing

factors of f € : [Cucker-Koiran-Smale’98]
factors of f € ; [H. Lenstra’99]
factors of f € . [Kaltofen-Koiran'06]

Only available for number fields

Based on number-theoretic results ~~ theoretical algorithms

Generalization to other fields? More practical algorithms?




Let K be any field of characteristic 0.

Theorem [G/14]

Let f € K[Xy,...,Xn], of degree D with k nonzero terms, and d
an integer. The computation of the degree-d factors of f reduces
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polynomials of K[X], and
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Let K be any field of characteristic 0.

Theorem [G/14]

Let f € K[Xy,...,Xn], of degree D with k nonzero terms, and d
an integer. The computation of the degree-d factors of f reduces
to

> the computation of the degree-d factors of (nk)®(") lacunary
polynomials of K[X], and

> the factorization of polynomials of K[X,...,X}] of total degree
sum at most (nklog(D) + d)°(1),

plus at most (nklogD + d)°(") bit operations.

New algorithm for K = Q(«);
Computation of some factors for K = Q, R, C, Qyp;

Positive characteristic: discussed later.



Jjoint work with

A. Chattopadhyay, P. Koiran, N. Portier & Y. Strozecki



Linear factors of bivariate polynomials

Observation

(Y —uX —v) divides f(X,Y) < f(X,uX+v) =0
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Observation

(Y —uX —v) divides f(X,Y) < f(X,uX+v) =0

Gap Theorem [Chattopadhyay-G.-Koiran-Portier-Strozecki’'13]
Let

f—Zc)X“J (uX +v)P + Z 5X%9 ( (uX 4 )P
j=L+1

s f2

with uv #0, o7 < -+ < o If

)
X1 > X1 + <2>

then f = 0 iff both f; =0 and f, = 0.




Bound on the valuation

Definition

val(f) = max {v : XV divides f}
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Bound on the valuation

Definition

val(f) = max {v : XV divides f}

Theorem
4
Let f = Z c; X% (uX+v)Pi £ 0, withuv £ 0and & < -+ < ag.

j=1
Then, if the family (X% (uX +v)f55)j is linearly independent,

val(f) < o + (;)

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach 028




The Wronskian

Definition
Let fq,..., fe € K[X]. Then
f1 f2
f/ !
wr(fq,...,fg) = det .1 2

fg€_1 ) fg€—1 )

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach 10/ 28
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The Wronskian

Definition
Let fq,..., fe € K[X]. Then
f1 f2
f/ !
wr(fq,...,fg) = det .1 2

fg€—1 ) f(28—1 )

Proposition [Bécher, 1900]

wr(fy,...,fg) #0 <= the fj’s are linearly independ

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach

A
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Wronskian €9 valuation

¢
val(wr(f1,...,fe)) > ) val(fy) — (§>

j=1

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach 128
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Wronskian €9 valuation

val(wr(f1,...,fe)) > ) val(fy) — (2)

j=1

Lemma

Let f; = X% (uX +v)Bi, uv # 0, linearly independent, and s.t.
oy, By = {. Then

val(wr(fy,...,f¢)) < Z gy = Zval(fj).

j=1 j=1

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach

A
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Lemma

val(wr(fy,...,f¢)) > ) val(fj) — <§)

j=1

Lemma

Let f; = X% (uX +v)Bi, uv # 0, linearly independent, and s.t.
g, B; = €. Then

val(wr(fy,...,fe)) < ) o5 =Y val(fj).

j=1 j=1

Proof of the theorem. wr(f,fy,...,f¢) = cqwr(fy,...,fg)



Lemma

¢
val(wr(fy,...,f¢)) > ) val(fj) — <§)

=1

Lemma

Let f; = X% (uX + v)Pi, uv # 0, linearly independent, and s.t.
o) Bj > L. Then

4 ¢
val(wr(fy,...,fe)) < ) o5 =Y val(fj).

Proof of the theorem. wr(f,fo,...,fy) =cqwr(fy,...,Te)

Z o = val(wr(fy,...,fe)) > val(f) + Z oG — (ﬁ)



Finding linear factors

Observation + Gap Theorem (recursively)

(Y —uX —v) divides f(X,Y)
— f(X,uX+v)=0
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Finding linear factors

Observation + Gap Theorem (recursively)

(Y —uX —v) divides f(X,Y)
— f(X,uX+v)=0
— fH1iX,uX+v)=---=f;(X,uX+v) =0

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach

A

12/ 28



Observation + Gap Theorem (recursively)

(Y —uX —v) divides f(X,Y)
— f(X,uX+v)=0
— fH1iX,uX+v)=---=f;(X,uX+v) =0
< (Y —uX—v) divides each f¢(X,Y)
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Observation + Gap Theorem (recursively)

(Y —uX —v) divides f(X,Y)
— f(X,uX+v)=0
— fH1iX,uX+v)=---=f;(X,uX+v) =0
< (Y —uX—v) divides each f¢(X,Y)

jet+ei—1 i
fy = Z ¢ X® Y with o, 1o, 1 — o, < (;)
J=t

Independent from u and v

X does not play a special role
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f=X31Y® —2X30Y7 4 X27Y® —X27Y6

1571

1071

+X10y2 _ x9y3
+X7Y2 —X3Y® + X3Y8 —2Xx3Y7 + x3v®

10 15 20 25 30 X



f=X31Y® —2X30Y7 4 X27Y® —X27Y6
+ X0y —X7y?
+X7Y2 = XY+ X3Y8 —2X3Y7 4 X3Y°

f1 =X3YO (=X + Y2 —2Y +1)



f=X31Y® —2X30Y7 4 X27Y® —X27Y6
+ X0y —X7y?
+X7Y2 = XY+ X3Y8 —2X3Y7 4 X3Y°

f1=X3Ye(X—=Y+1)(1=X—-Y)



f=X31Y® —2X30Y7 4 X27Y® —X27Y6
+X10y2 — x7y3
+X7Y2 = X3Y® + x3v8 —2x3Y7 + xX3y°

f1=X3Ye(X=Y+1)(1=X-Y)

f, =XY2(X=Y+1)
=X"eYB(X+V)(X =Y +1)

f2 =XV (X+Y—-1)(X=Y+1)



f=X31Y® —2X30Y7 4 X27Y® —X27Y6
+X10y2 _ x9y3
+X7Y2 —X3Y® + X3Y8 —2Xx3Y7 + x3v®

f1=X3Ye(X=Y+1)(1=X-Y)

f, =XY2(X=Y+1)
=X"eYB(X+V)(X =Y +1)

f2 =XV (X+Y—-1)(X=Y+1)

— linear factors of f: (X—Y+1,1)



f=X31Y® —2X30Y7 4 X27Y® —X27Y6
+X10y2 _ x9y3
+X7Y2 —X3Y® + X3Y8 —2Xx3Y7 + x3v®

f1=X3Ye(X=Y+1)(1=X-Y)

f, =XY2(X=Y+1)
=X"eYB(X+V)(X =Y +1)

f2 =XV (X+Y—-1)(X=Y+1)

— linear factors of f: (X—Y +1,1), (X,3), (¥,2)



Complete algorithm for linear factors

Find linear factors of f(X,Y) = Z c: X% YR

j=1

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach 1428
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[Chattopadhyay-G.-Koiran-Portier-Strozecki’rs |

Find linear factors of f(X,Y) Zc X% YP;
j=1

monomials binomials

/ J

(X, mln]- (X]') (X — (1)
(Y, min; 35) Factors of 3_; ¢;X*i
(Y —uX)

Roots of u— 3 cjuPs

Univariate lacunary factorization
[H. Lenstra’99]



[Chattopadhyay-G.-Koiran-Portier-Strozecki’rs |

Find linear factors of f(X,Y) Zc X% YP;
j=1

monomials binomials trinomials

/ | N\

(X, minj og;) (X—a) Conjm(gn f1actors of
. - ] + —
(Y, mtn; B)) Factors of Zj c; X% - :t Zt Canersj
(Y —uX) j=it
Roots of w3, cjubs (deg(fe) < O(€))

Low-degree factorization

Univariate lacunary factorization
[Kaltofen’82, ..., Lecerf'07]

[H. Lenstra’99]



[Chattopadhyay-G.-Koiran-Portier-Strozecki’rs |

13
Let f = Z(:]-X"‘iYBj € Q(a)[X,Y] be given in lacunary repre-
j=1
sentation. There exists a deterministic polynomial-time algo-
rithm to compute its linear factors, with multiplicities.

\
monomials binomials trinomials

/ | N\

(X, minj og;) (X—a) Conjm(gn f1actors of
. - ] + —
(Y, mtn; B)) Factors of Zj c; X% - :t Zt Canersj
(Y —uX) j=it
Roots of w3, cjubs (deg(fe) < O(€))

Low-degree factorization

Univariate lacunary factorization
[Kaltofen’82, ..., Lecerf'07]

[H. Lenstra’99]



on+l

1+X)?2" +(1+X) =X*"(X+1) mod?2



T+X2 (14X =X (X+1) mod 2

Theorem
¢
Let f = Z ¢ X% (uX+v)Bi e Fps [X], where p > max; (o4 35). If
j=1
(X% (uX+v)Pi); is linearly independent, then val(f) < o + (g)
provided f # 0.




T+X2 (14X =X (X+1) mod 2

Theorem
0
Let f = Z ¢ X% (uX+v)Bi e Fps [X], where p > max; (o4 35). If
j=1
(X% (uX—i—v)f’i)j is linearly independent, then val(f) < oy + (g)
provided f # 0.

wr(fy,...,fx) #0 <= fj's linearly independent




Factorization algorithm

k
Find linear factors of f = Z ch"‘inSj

i=1
where ¢; € Fpps and p > deg(f)

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach 1628
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Kk
Find linear factors of f = Z ch"‘iYBi
j=1
where ¢; € Fps and p > deg(f)

monomials trinomials

/ N

) Common factors of
) jr+le—1

fo=) ¢XHYP;
J=Jt
(deg(fe) < O(€}))

(X, minj o
(Y, minj Bj

Low-degree factorization
[Gao’03, Lecerf’10]



Kk
Find linear factors of f = Z ch"‘iYBi
j=1
where ¢; € Fps and p > deg(f)

monomials binomials trinomials
(X, minj og;) (uX —vY) Common factors of
(Y, min; B;) i) Jert!

fo=) ¢XHYP;
J=Jt
(deg(fe) < O(€}))

Roots of univariate
lacunary polynomials

Low-degree factorization
[Gao’03, Lecerf’10]



Kk
Find linear factors of f = Z ch“in’i
j=1
where ¢; € Fps and p > deg(f)

monomials binomials trinomials

/ | N

Common factors of
Je4Le—1

fo=) ¢XHYP;
J=Jt
(deg(fi) < O(£7))

[Kipnis-Shamir'99,Bi-Cheng-Rojas’13]  Low-degree factorization
[Gao’03, Lecerf'10]



Low-degree factors of bivariate lacunary polynomials



Let g € K[X, Y] of degree d in Y. Then g can be written

where go € K[X]



Let g € K[X, Y] of degree d in Y. Then g can be written

where go € K[X], and &1, ..., dgq € K{X)) are Puiseux series:

= Z CltXt/n,

t>to

with a; € K, at, # 0.



Let g € K[X, Y] of degree d in Y. Then g can be written

where go € K[X], and &1, ..., dgq € K{X)) are Puiseux series:

= Z CltXt/n,

t>to

with a; € K, at, 7 0. The valuation of ¢ is to/n.



Let g € K[X, Y] of degree d in Y. Then g can be written

where go € K[X], and &1, ..., dgq € K{X)) are Puiseux series:

= Z (ltXt/n,

t>to

with a; € K, at, 7 0. The valuation of ¢ is to/n.

Proposition

Let f, g € K[X, Y], and suppose g irreducible. Then g divides f iff
f(X, d) = 0 for some/each root ¢ € K({(X)) of g.




Theorem [G14]

Letf; = Zf:1 ch‘xiYBi and g a degree-d irreducible polynomial
with a root ¢ € K((X)) of valuation v.
If the family (X"‘J’d)ﬁ’i)j is linearly independent,

val(f1(X, b)) < mjln(ocj +vB;) + (2d(4d + 1) —v) <§>




Theorem [G14]

Letf; = Zf:1 ch‘xiYBi and g a degree-d irreducible polynomial
with a root ¢ € K((X)) of valuation v.
If the family (X"‘J’d)ﬁ’i)j is linearly independent,

val(f1(X, b)) < mjln(ocj +vB;) + (2d(4d + 1) —v) <§>

Proof along the same lines, using the Wronskian.




Gap Theorem [G/14]

(4 k
f=) X9YBi+ Y oXx9YR
j=1 j=C+1

Let

fq 1)

with uv # 0, &1 +vp71 < -+ < o + vPx. Let g a degree-d
irreducible poynomial, with a root of valuation v.
If £ is the smallest index s.t.

o1 +vBer1 > (o +v[51)+(2d(4d+1)v)<§>,

then g divides f iff it divides both f; and f5.
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Let

fq 1)

with uv # 0, &1 +vp71 < -+ < o + vPx. Let g a degree-d
irreducible poynomial, with a root of valuation v.
If £ is the smallest index s.t.

o1 +vBer1 > (o +v[51)+(2d(4d+1)v)<§>,

then g divides f iff it divides both f; and f5.

Depends on v.




Gap Theorem

[G.14]
Let

(4 k
f=) X9YBi+ Y oXx9YR
j=1 j=0+1

fq 1)

with uv # 0, &1 +vp71 < -+ < o + vPx. Let g a degree-d
irreducible poynomial, with a root of valuation v.
If £ is the smallest index s.t.

o1 +vBer1 > (o +v[51)+(2d(4d+1)v)<§>,

then g divides f iff it divides both f; and f5.

Depends on v.

Does not bound o, nor (3!



Gap Theorem

[G.14]
Let

(4 k
f=) X9YBi+ Y oXx9YR
j=1 j=0+1

fq 1)

with uv # 0, &1 +vp71 < -+ < o + vPx. Let g a degree-d
irreducible poynomial, with a root of valuation v.
If £ is the smallest index s.t.

o1 +vBer1 > (o +v[51)+(2d(4d+1)v)<§>,

then g divides f iff it divides both f; and f5.

Depends on v.
Does not bound o, nor (3!

Several distinct valuations needed.
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f= Y3 £2XY = X3V X3Y3 —2X2Y2 —4X3 +2X4Y3 —2X°Y2
+X3YC +2X4Y* — XPY7 + XOY®



A o o X

f= Y3 £2XY = X3V X3Y3 —2X2Y2 —4X3 +2X4Y3 —2X°Y2
+X3YC + 2 XYY — XPY7 + XOY®
:(Y_2X2+X3Y4)(YZ+2X*XZY3+X3YZ)



For each edge in the lower hull
of slope —v, f has a root
¢ € K{X)) of valuation v.




For each edge in the lower hull
of slope —v, f has a root
¢ € K{X)) of valuation v.

0" 1234567V

Two kinds of factors g = 3 ; b; XYi Y

Quasi-homogeneous: 3p, q,w s.t. py; +qB; = w
~» the Newton polygon is a line;

Non-homogeneous

~» the Newton polygon has at least two non-parallel edges.
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YO—3X2Y2—X2Y7 42 X342 X3V X3V -2 XA Y3 2 XA Y4+ X7 Y2
= (X? = 2XYZ £ YH)(Y2 +2X = X2Y3 + X3Y?)

(quasi-homogeneous with p =2, q =1, w =4)
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Write f = f; + ...+ f5 into
quasi-homogeneous parts

44 \\\\ g divides f iff it divides each f;
34

g divides f; < g(X'/9,1)
divides f¢(X'/9,1)

univariate lacunary
factorization

00 1 2 3 45 6 7 Y

YO—3X2Y2—X2Y7 42 X342 X3V X3V -2 X4 Y3 2 XA Y4+ X7 Y2
= (X? = 2XYZ £ YH(Y2 +2X = X2Y3 + X3Y?)

(quasi-homogeneous withp =2, q =1, w =4)



Proposition

Let f; = Zf:] ch“iYBi and vi # v, such that for all j

o5 +VviB; < o +viBr + (2d(@dd+ 1) —vi)(5)
o +v2Bj < ax +v2B2 + (2d(4d + 1) —v2)(5).

Then for all p, q, loy — aql < O(€2d*) and [Bp — Bql < O(£2d?).
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Proposition

Let f; = Zf:] ch“iYBi and vi # v, such that for all j

o5 +VviB; < o +viBr + (2d(@dd+ 1) —vi)(5)
o +v2Bj < ax +v2B2 + (2d(4d + 1) —v2)(5).

Then for all p, q, loy — aql < O(€2d*) and [Bp — Bql < O(£2d?).

For all pair of non-parallel edges, of slopes vi and vy:
Write f = f1 + - .- + f5, using both v; and vy;
Write fi = XOYP£S with deg(f$) < O(¢2d*);
Factor each f3.

~» low-degree bivariate factorization
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Multivariate polynomial f € K[Xq,...,Xu]:

For all i # j, consider f € R[Xj, X;] where R is the ring of
polynomials in the other variables;

Apply the algorithm for the bivariate case;

Proceed carefully to avoid an exponential complexity in n.

Positive characteristic:

Puiseux series ~~ Hahn series;
Wronskian for Hahn series?



Complete algorithm

3
Find degree-d factors of f = Z ;X%

j=1

Computing low-degree factors of lacunary polynomials:a Newton-Puiseux Approach

26/ 28
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k
Find degree-d factors of f = Z ;X%
j=1

monomials quasi-hom. pon-hom.

/ J N\

{(Xi, min; o ) J Degree-d factors Commone fagtors of
of univariate - (s X%
= )
lacunary polynomials t Z )

J=it
Available for Q(c) only (deg(fy) < O(£2d"))
Impossible for Q, C

Low-degree factorization

Q(«), Q,R,C,Qy, etc.



Conclusion
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Computing low-degree factors of lacunary multivariate polynomials

univariate lacunary polynomials

Reduction to - .
low-degree multivariate polynomials

“Field-independent”

and than previous algorithms
Partial results in
Implementation: work in progress

Open questions:

Can we compute lacunary factors in polynomial time?
What can be done in small positive characteristic?
More general settings: arithmetic circuits/straight-line programs

Thank you!
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