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Motivation from Convex Geometry

e Linear Matrix Expression (LME): for A; symmetric in R***

Ao +x1A1 + - + XA

@ Lax conjecture: express a real zero polynomial f as
f=detA

with A LME and Ag = 0. ~ disproved

Drop condition Ag = 0 ~ exponential size matrices

What about polynomial size matrices?

Applications to Semi-Definite Programming
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Valiant (1979)

@ Arithmetic formula ~» Determinant

0 xx xx 0 0 =z O
0 -1 1. 0 0 0 O
0 0 1 xx y 00
0O 0 0O 1 -1 0 O
-1 0 0 0 1 0 O
y 0 0 0 0 1 x
-1 0 0 0 0 0 1
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0 0 1 xx y 00
0 0 0 1 -1 00
-1 0 0 0 1 0 O
y 0 0 0 0 1 x
-1 0 0 0 0 o0 1
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0 vy x O 0 0 O
0 -1 O 1 0O 0 O
0 0 -1 1 0O 0 O
0 O 0 -1 x3 =z 0
0o 0o o o0 -1 0 2
10 0 0O 0 -1 0
1 0 0 0O 0 0 -1

=24 -(e+y)t+z (x+y)
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Strategy

@ Valiant's, Toda's and Malod's contructions ~» polynomial size matrices
@ But nonsymmetric matrices

@ Is is possible to symmetrize their constructions?

@ Remark: valid for any field
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Introduction

Contents

@ (Improved) Valiant's and Malod’s constructions
@ Symmetrization for fields of characteristic # 2

@ Case of characteristic 2

Bruno Grenet (LIP — ENS Lyon) Symm. Det. Rep. of Polynomials Montpellier — 30/09/2010 6/ 36



Valiant's and Malod’s constructions
Outline

@ Valiant's and Malod's constructions
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Valiant's and Malod’s constructions

Graph-theoretic interpretation of determinants

@ Let G be a graph, A its adjacency matrix

det A= 51 [[ Avwgi
o i=1

@ permutation in A = cycle cover in G

@ Up to signs, det A = sum of the weights of cycle covers in G
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Valiant's and Malod’s constructions

Valiant's construction (1/3)

@ Input: a formula representing a polynomial ¢ € K[Xi, ..., X,] of size e

Size of a formula : number of computation gates
e Output: a matrix A of dimension (e + 1), with entries in
KU{Xi,...,Xp}, st. detA=o
@ In between: a graph G of size (e + 1) whose adjacency matrix is A
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Valiant's construction (2/3)

S

t
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Valiant's and Malod’s constructions

Valiant's construction (2/3)

S
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tq
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Valiant's and Malod’s constructions

Valiant's construction (2/3)
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Valiant's and Malod’s constructions

Valiant's construction (2/3)

S
(21
() > (G t2 Invariant
+1

o= Y ()W)

s-t-paths P
¥1
Q >
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Valiant's construction (3/3)
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Valiant's construction (3/3)

e Gst. p==+ Z DIPlw(P), with s, t distinguished
s-t-paths P

~+ G': merge s and t + add weight-1 loops on vertices # s.
@ s-t-paths ~> big cycles
@ Cycle cover in G": One big cycle + loops

Theorem

For a size-e formula, this construction yields a size-(e + 1) graph. Let A be
the adjacency matrix of G. Then det(A) =
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Malod's construction (1/3)

@ Input: a weakly-skew circuit of
size e with 7 variable inputs
representing ¢
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Malod's construction (1/3)

@ Input: a weakly-skew circuit of
size e with 7 variable inputs
representing ¢

@ Output: a matrix A of dimension
(e+i+1)st detA=¢p

e=b5andi=4

Bruno Grenet (LIP — ENS Lyon) Symm. Det. Rep. of Polynomials Montpellier — 30/09/2010 12 / 36



Malod's construction (1/3)
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Malod's construction (1/3)

@ Input: a weakly-skew circuit of
size e with 7 variable inputs
representing ¢

@ Output: a matrix A of dimension
(e+i+1)st detA=¢p

@ In between: a graph G...
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Malod's construction (1/3)

@ Input: a weakly-skew circuit of
size e with 7 variable inputs
representing ¢

@ Output: a matrix A of dimension
(e+i+1)st detA=¢p

@ In between: a graph G...

@ ,: polynomial computed by
gate «

@ Reusable gate: not in a closed e=5and /=4
subcircuit
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Valiant's and Malod’s constructions

Malod's construction (2/3)
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Valiant's and Malod’s constructions

Malod's construction (2/3)
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Malod's construction (2/3)

S
® — o
t
SR X 2’
: : O
! F \
o N
[} 4 U
g — ]
2

® tn: f’s’i

Bruno Grenet (LIP — ENS Lyon) Symm. Det. Rep. of Polynomials Montpellier — 30/09/2010 13 / 36




Valiant's and Malod’s constructions

Malod's construction (2/3)

Invariant

For each reusable gate «,
there exists t, s.t.

w(s = to) = ¢a-
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Malod's construction (3/3)

@ As in Valiant's, G ~~ G’: same idea
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Malod's construction (3/3)

@ As in Valiant's, G ~~ G’: same idea

Theorem

For a ws circuit of size e with i variable inputs representing , this

construction yields a size-(e 4+ i + 1). The determinant of its adjacency
matrix equals .
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Outline

© Symmetric determinantal representations
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Symmetric determinantal representations

Introduction

Symmetric matrices <= undirected graphs

Difficulty: no DAG anymore!

@ Solution: some changes in the construction, and new invariants

N.B.: char(K) # 2 in this section
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Symmetric determinantal representations

Case of formulas
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Symmetric determinantal representations

Case of formulas

S
®1
—> (G
. ! S1 S1
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P1 t
—_— -1
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Symmetric determinantal representations

Case of formulas

S
®1
—> (G
‘ ! S1 S1
& / -

T u
—_—
v
~1
S i1 t1
Invariants
P1 t

—_— “1p= —1)IPI/2+
0 o= X (P

s-t-paths P

@ and. ..

t
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Symmetric determinantal representations

Invariants for formula’s construction

° o= Z (_1)|P\/2+1

s-t-paths P A
—> (Gy

t

Q , ——
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Symmetric determinantal representations

Invariants for formula’s construction

° o= Z (_1)|P\/2+1

s-t-paths P A

@ |G| is even, every cycle in G is — (&
even, and every s-t-path is even s
Q , —
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Symmetric determinantal representations

Invariants for formula’s construction

cp= 3 (VPP

s-t-paths P A
@ |G| is even, every cycle in G is — (&
even, and every s-t-path is even 1

e G\ {s,t} is either empty or has

a unique cycle cover
—_—
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Symmetric determinantal representations

Invariants for formula’s construction

cp= 3 (VPP

s-t-paths P S
@ |G| is even, every cycle in G is — G1
even, and every s-t-path is even

e G\ {s,t} is either empty or has

a unique cycle cover
~ Perfect matching of weight 1 Q ,
—_
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Symmetric determinantal representations

Invariants for formula’s construction

°op= Y (- w(P) ,
s-t-paths P 's

@ |G| is even, every cycle in G is — 01
even, and every s-t-path is even 1
e G\ {s,t} is either empty or has

a unique cycle cover
~ Perfect matching of weight 1
_—
e For any s-t-path P, G\ P is

either empty or has a unique
cycle cover
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Symmetric determinantal representations

Invariants for formula’s construction

cp= 3 (VPP

s-t-paths P A
@ |G| is even, every cycle in G is O — @)
even, and every s-t-path is even 1

e G\ {s,t} is either empty or has

®
a unique cycle cover
~ Perfect matching of weight 1
) O —_—>
e For any s-t-path P, G\ P is
®

either empty or has a unique
cycle cover

~ Perfect matching of weight 1
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Symmetric determinantal representations

From G to G’

D=
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Symmetric determinantal representations

From G to G’

v

~
D=

@ |G'| is odd. An odd cycle in G’ has to go through ¢
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Symmetric determinantal representations

From G to G’

v

~
D=

@ |G'| is odd. An odd cycle in G’ has to go through ¢
e Cycle covers in G <= s — t-pathsin G
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From G to G

@ |G'| is odd. An odd cycle in G’ has to go through ¢
o Cycle covers in G’ <= s — t-paths in G <= t — s-pathsin G
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From G to G

@ |G'| is odd. An odd cycle in G’ has to go through ¢
o Cycle covers in G’ <= s — t-paths in G <= t — s-pathsin G
o (—1)¢/2%1 ensures that the signs are OK.
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From G to G

|G'| is odd. An odd cycle in G’ has to go through ¢

Cycle covers in G’ <= s — t-pathsin G <= t — s-pathsin G
(—1)I¢/2+1 ensures that the signs are OK.

1/2: to deal with s — t and t — s-paths, implies char(K) # 2
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Symmetric determinantal representations

From G to G’

~
N[

|G'| is odd. An odd cycle in G’ has to go through ¢

Cycle covers in G’ <= s — t-pathsin G <= t — s-pathsin G
(—1)I¢/2+1 ensures that the signs are OK.

1/2: to deal with s — t and t — s-paths, implies char(K) # 2

Theorem

For a formula ¢ of size e, this construction yields a graph of size 2e + 3.
The determinant of its adjacency matrix equals .

Bruno Grenet (LIP — ENS Lyon) Symm. Det. Rep. of Polynomials Montpellier — 30/09/2010 19 / 36



Case of weakly-skew circuits

o Main difficulty:
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Case of weakly-skew circuits

o Main difficulty:

@ Definition: an path P is said acceptable if G\ P admits a cycle cover
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Symmetric determinantal representations

Constructions

®
Q
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Constructions

ta= t;’j
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Invariants in the case of weakly-skew circuits

@ For each reusable «, there exists t,, s.t.
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Invariants in the case of weakly-skew circuits

@ For each reusable «, there exists t,, s.t.

|P] -1
> ea= Y (-1)= w(P)
acceptable
s-to-paths P
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Invariants in the case of weakly-skew circuits

@ For each reusable «, there exists t,, s.t.

[P|—1
> ea= Y (-1)= w(P)
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s-to-paths P
» Every s-t,-path is odd
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Symmetric determinantal representations

Invariants in the case of weakly-skew circuits
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Symmetric determinantal representations

Invariants in the case of weakly-skew circuits

@ For each reusable «, there exists t,, s.t.
|P

S pa= > (-1 w(P)

acceptable
s-to-paths P

» Every s-t,-path is odd
» For a s-t,-path P, G\ P is either
empty or has a unique cycle cover
~ Perfect matching of weight 1

e |G| is odd, every cycle in G is even

@ G\ {s} is either empty or has a unique
cycle cover

~+ Perfect matching of weight 1
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/
From G to G

|G|-1

@ Add an edge between s and t, of weight %(—1)7 ~ G
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/
From G to G

|G|-1

@ Add an edge between s and t, of weight %(—1) 2~ G

e |G'\ {s, t}| is odd, cycles are even: no cycle cover with s <> t.

@ As for every path P, G\ P has an only cycle cover, of weight 1:
Cycle covers of G’ <= s — t-pathsin G <= t — s-pathsin G.

e With some sign considerations, we get:

Theorem

For a weakly skew circuit of size e, with i input variables, computing a
polynomial ¢, this construction yields a graph G’ with 2(e + i) + 1 vertices.
The adjacency matrix of G’ has its determinant equal to .
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Outline

© Characteristic 2
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Characteristic 2

Introduction

@ Scalar 1/2 in the constructions = not valid for characteristic 2
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Characteristic 2

Introduction

@ Scalar 1/2 in the constructions = not valid for characteristic 2
@ Very special case: cycles of length > 2 are counted twice
— permutations restricted to pairs and singleton

— cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric
matrices in characteristic 27
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Characteristic 2

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i

input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p?> = det A.
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@ Define an undirected graph G’ as follows:
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Characteristic 2

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i

input variables. Then there exists a symmetric matrix A of size 2(e + i) + 2
such that p?> = det A.

@ Use Malod's construction on P to get a digraph G = (V, E)
@ Define an undirected graph G’ as follows:
» Duplicate each v € V as vs and v;.
» Replace an arc (u, v) by an edge {us, v;}.
@ Denote by M and A the respective adjacency matrices of G and G’
@ Cycle Coversin G <= Perfect Matching in G’

~ detM = Z w(u) (o ranges over the Perfect Matchings)
I

2
@ As there is no loop in G', det A = E w(p)? = (E W(M))
12 123
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o It appears to be related to an open problem of Biirgisser:

Is the partial permanent VNP-complete in characteristic 27
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Characteristic 2

Valiant's classes

e Complexity of a polynomial: size of the smallest circuit computing it.
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Valiant's classes

e Complexity of a polynomial: size of the smallest circuit computing it.

Definition
A family (f,) of polynomials is in VP if for all n, the number of variables,
the degree, and the complexity of f, are polynomially bounded in n.
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Definition
A family (f,) of polynomials is in VP if for all n, the number of variables,
the degree, and the complexity of f, are polynomially bounded in n.

A family (f,) of polynomials is in VNP if there exists a family
(gn(y1,- -, Yu(m))) € VP s.t.

f,,(Xl,...,Xu(n)) = Z gn(Xl,...,Xu(n),g).
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Characteristic 2

Valiant's classes

e Complexity of a polynomial: size of the smallest circuit computing it.

Definition
A family (f,) of polynomials is in VP if for all n, the number of variables,
the degree, and the complexity of f, are polynomially bounded in n.

A family (f,) of polynomials is in VNP if there exists a family
(gn(y1,- -, Yu(m))) € VP s.t.

f,,(Xl,...,Xu(n)) = Z gn(Xl,...,Xu(n),g).
ee{0,1}v(n)~un)

e (DET,) € VP, (PER,) € VNP, ...
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VNP-completeness

Definition
A family (g,) is a p-projection of a family (f,) is there exists a polynomial ¢
s.t. for all n, go(x) = fyn)(a1, ..., an), with a1,...,an € KU {x1,..., X}
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VNP-completeness

Definition
A family (gn) is a p-projection of a family (f,) is there exists a polynomial ¢
s.t. for all n, go(x) = fyn)(a1, ..., an), with a1,...,an € KU {x1,..., X}

A family (f,) € VNP is VNP-complete if every family in VNP is a
p-projection of (f,).

e (PER,) is VNP-complete in characteristic # 2
e (HC,) is VNP-complete (in any characteristic)
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Partial Permanent

per* M = Z H M,-m(,-)

T iedef(n)

where 7 ranges over the injective partial maps from [n] to [n].
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Characteristic 2

Partial Permanent

per' M = Z H M; (i)

™ jedef()

where 7 ranges over the injective partial maps from [n] to [n].

Lemma

Let G = Kp,n. Let A and B be the respective adjacency and biadjacency
matrices of G. Then in characteristic 2,

det(A + h,) = (per* B)?

where b, is the identity matrix.
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Characteristic 2

Partial Permanent

per' M = Z H M; (i)

™ jedef()

where 7 ranges over the injective partial maps from [n] to [n].

Lemma

Let G = Kp,n. Let A and B be the respective adjacency and biadjacency
matrices of G. Then in characteristic 2,

det(A + h,) = (per* B)?

where b, is the identity matrix.

Same kind of ideas as the previous proof.

Bruno Grenet (LIP — ENS Lyon) Symm. Det. Rep. of Polynomials Montpellier — 30/09/2010 30/ 36



Partial permanents as family of polynomials

(PER},): family of polynomials defined as partial permanents of n x n
matrices of indeterminates.
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Partial permanents as family of polynomials

(PER},): family of polynomials defined as partial permanents of n x n
matrices of indeterminates.

((PER*)2): family of polynomials defined as square of partial permanents
of n X n matrices of indeterminates.

Theorem
((PER*)2) € VP in characteristic 2.
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Partial permanents as family of polynomials

(PER},): family of polynomials defined as partial permanents of n x n
matrices of indeterminates.

((PER*)2): family of polynomials defined as square of partial permanents
of n X n matrices of indeterminates.

Theorem
((PER*)2) € VP in characteristic 2.

Proof. ((PER*)2) is a p-projection of (DET,).

n
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Answer to Biirgisser's problem

Problem J

Is the partial permanent VNP-complete in characteristic 27
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Answer to Biirgisser's problem

Problem
Is the partial permanent VNP-complete in characteristic 27

Theorem
If it is the case, ®P /poly = NC?/poly, and PH = ¥,.
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Characteristic 2

Answer to Biirgisser's problem

Problem
Is the partial permanent VNP-complete in characteristic 27

Theorem
If it is the case, ®P /poly = NC?/poly, and PH = ¥,.

v

Proof sketch. If the case arises, VNP? C VP. This translates into boolean
complexity result via Biirgisser's boolean parts of Valiant's classes.
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A negative result?

Question

Which polynomials can be represented as determinant of symmetric
matrices in characteristic 27
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Characteristic 2

A negative result?

Question

Which polynomials can be represented as determinant of symmetric
matrices in characteristic 27

Conjecture

The polynomial xy + z has no such representation

Two-day-old Proof. To do on a board!
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Conclusion

@ We obtained Symmetric Determinantal Representations for Formulas
and Weakly-Skew Circuits of linear size
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@ Improvement of Valiant's and Malod's constructions
@ Actually, we fixed a flaw in Valiant's 30-year-old proof!
@ By-product (in characteristic # 2):

Theorem

Let M be an n x n matrix. Then there exists a symmetric matrix M’ of size
O(n°) s.t. det M = det M.
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@ By-product (in characteristic # 2):

Theorem

Let M be an n x n matrix. Then there exists a symmetric matrix M’ of size
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o For characteristic 2:
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and Weakly-Skew Circuits of linear size

@ Improvement of Valiant's and Malod's constructions
@ Actually, we fixed a flaw in Valiant's 30-year-old proof!
@ By-product (in characteristic # 2):

Theorem

Let M be an n x n matrix. Then there exists a symmetric matrix M’ of size
O(n°) s.t. det M = det M.

o For characteristic 2:

» Answer to Biirgisser's Open Problem
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Conclusion

@ We obtained Symmetric Determinantal Representations for Formulas
and Weakly-Skew Circuits of linear size

@ Improvement of Valiant's and Malod's constructions
@ Actually, we fixed a flaw in Valiant's 30-year-old proof!
@ By-product (in characteristic # 2):

Theorem

Let M be an n x n matrix. Then there exists a symmetric matrix M’ of size
O(n°) s.t. det M = det M.

o For characteristic 2:

» Answer to Biirgisser's Open Problem
> Proof (7) of a negative result (to be verified. . .)
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Future work

@ In Convex Geometry: K = R and polynomials are real zero
polynomials.
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@ In Convex Geometry: K = R and polynomials are real zero
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o Characterize polynomials with a symmetric determinantal
representation in characteristic 2.

Bruno Grenet (LIP — ENS Lyon) Symm. Det. Rep. of Polynomials Montpellier — 30/09/2010 35/ 36



Future work

@ In Convex Geometry: K = R and polynomials are real zero
polynomials.

~» what can be done in that precise case?

o Characterize polynomials with a symmetric determinantal
representation in characteristic 2.

@ Symmetric matrices in Valiant's theory?
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Thank youl
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