Symmetric Determinantal Representations of Polynomials

Bruno Grenet* ${ }^{\dagger}$

Joint work with Erich L. Kaltofen ${ }^{\ddagger}$, Pascal Koiran* ${ }^{\dagger}$ and Natacha Portier* \dagger

$$
\begin{aligned}
& \text { *MC2 - LIP, ÉNS Lyon } \\
& \dagger \text { Theory Group - DCS, U. of Toronto } \\
& \ddagger \text { Dept. of Mathematics - North Carolina State U. }
\end{aligned}
$$

Montpellier - GT AIGCO - September 30, 2010

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0$.

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0 . \quad \rightsquigarrow$ disproved

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0 . ~ \rightsquigarrow$ disproved

- Drop condition $A_{0} \succeq 0 \rightsquigarrow$ exponential size matrices

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0 . \rightsquigarrow$ disproved

- Drop condition $A_{0} \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?

Motivation from Convex Geometry

- Linear Matrix Expression (LME): for A_{i} symmetric in $\mathbb{R}^{t \times t}$

$$
A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

- Lax conjecture: express a real zero polynomial f as

$$
f=\operatorname{det} A
$$

with A LME and $A_{0} \succeq 0 . \quad \rightsquigarrow$ disproved

- Drop condition $A_{0} \succeq 0 \rightsquigarrow$ exponential size matrices
- What about polynomial size matrices?
- Applications to Semi-Definite Programming

Valiant (1979)

- Arithmetic formula \rightsquigarrow Determinant

Valiant (1979)

- Arithmetic formula \rightsquigarrow Determinant

Valiant (1979)

- Arithmetic formula \rightsquigarrow Determinant

$$
\rightsquigarrow\left(\begin{array}{ccccccc}
0 & x_{1} & x_{1} & 0 & 0 & z & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & x_{2} & y & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 0 & 0 \\
y & 0 & 0 & 0 & 0 & 1 & x_{2} \\
-1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Valiant (1979)

- Arithmetic formula \rightsquigarrow Determinant

	$\rightsquigarrow\left(\begin{array}{ccccccc}0 & x_{1} & x_{1} & 0 & 0 & z & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & x_{2} & y & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ y & 0 & 0 & 0 & 0 & 1 & x_{2} \\ -1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
$=2 x_{1} \cdot\left(x_{2}+y\right)+z \cdot\left(x_{2}+y\right)$	

Toda (1992) \& Malod (2003)

- Weakly-skew circuit \rightsquigarrow Determinant

Toda (1992) \& Malod (2003)

- Weakly-skew circuit \rightsquigarrow Determinant

Toda (1992) \& Malod (2003)

- Weakly-skew circuit \rightsquigarrow Determinant

Toda (1992) \& Malod (2003)

- Weakly-skew circuit \rightsquigarrow Determinant

$\rightsquigarrow\left(\begin{array}{ccccccc}0 & y & x_{2} & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & x_{1} & z & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 2 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right)$
$=2 x_{1} \cdot\left(x_{2}+y\right)+z \cdot\left(x_{2}+y\right)$

Strategy

- Valiant's, Toda's and Malod's contructions \rightsquigarrow polynomial size matrices

Strategy

- Valiant's, Toda's and Malod's contructions \rightsquigarrow polynomial size matrices
- But nonsymmetric matrices

Strategy

- Valiant's, Toda's and Malod's contructions \rightsquigarrow polynomial size matrices
- But nonsymmetric matrices
- Is is possible to symmetrize their constructions?

Strategy

- Valiant's, Toda's and Malod's contructions \rightsquigarrow polynomial size matrices
- But nonsymmetric matrices
- Is is possible to symmetrize their constructions?
- Remark: valid for any field

Contents

- (Improved) Valiant's and Malod's constructions

Contents

- (Improved) Valiant's and Malod's constructions
- Symmetrization for fields of characteristic $\neq 2$

Contents

- (Improved) Valiant's and Malod's constructions
- Symmetrization for fields of characteristic $\neq 2$
- Case of characteristic 2

Outline

(1) Valiant's and Malod's constructions

(2) Symmetric determinantal representations

(3) Characteristic 2

Graph-theoretic interpretation of determinants

- Let G be a graph, A its adjacency matrix

Graph-theoretic interpretation of determinants

- Let G be a graph, A its adjacency matrix

$$
\operatorname{det} A=\sum_{\sigma}(-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

Graph-theoretic interpretation of determinants

- Let G be a graph, A its adjacency matrix

$$
\operatorname{det} A=\sum_{\sigma}(-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

- permutation in $A=$ cycle cover in G

Graph-theoretic interpretation of determinants

- Let G be a graph, A its adjacency matrix

$$
\operatorname{det} A=\sum_{\sigma}(-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

- permutation in $A=$ cycle cover in G
- Up to signs, $\operatorname{det} A=$ sum of the weights of cycle covers in G

Valiant's construction (1/3)

- Input: a formula representing a polynomial $\varphi \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ of size e

Valiant's construction (1/3)

- Input: a formula representing a polynomial $\varphi \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ of size e

Size of a formula : number of computation gates

Valiant's construction (1/3)

- Input: a formula representing a polynomial $\varphi \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ of size e

Size of a formula : number of computation gates

- Output: a matrix A of dimension $(e+1)$, with entries in $\mathbb{K} \cup\left\{X_{1}, \ldots, X_{n}\right\}$, s.t. $\operatorname{det} A=\varphi$

Valiant's construction (1/3)

- Input: a formula representing a polynomial $\varphi \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ of size e

Size of a formula : number of computation gates

- Output: a matrix A of dimension $(e+1)$, with entries in $\mathbb{K} \cup\left\{X_{1}, \ldots, X_{n}\right\}$, s.t. $\operatorname{det} A=\varphi$
- In between: a graph G of size $(e+1)$ whose adjacency matrix is A

Valiant's construction (2/3)

Valiant's construction (2/3)

Valiant's construction (2/3)

Valiant's construction (2/3)

Valiant's construction (3/3)

- G s.t. $\varphi= \pm \quad \sum(-1)^{|P|} w(P)$, with s, t distinguished s-t-paths P

Valiant's construction (3/3)

- G s.t. $\varphi= \pm \quad \sum(-1)^{|P|} w(P)$, with s, t distinguished s-t-paths P
$\rightsquigarrow G^{\prime}$: merge s and $t+$ add weight-1 loops on vertices $\neq s$.

Valiant's construction (3/3)

- G s.t. $\varphi= \pm \quad \sum(-1)^{|P|} w(P)$, with s, t distinguished s-t-paths P
$\rightsquigarrow G^{\prime}$: merge s and $t+$ add weight-1 loops on vertices $\neq s$.
- s-t-paths $\rightsquigarrow b i g$ cycles

Valiant's construction (3/3)

- G s.t. $\varphi= \pm \quad \sum(-1)^{|P|} w(P)$, with s, t distinguished s-t-paths P
$\rightsquigarrow G^{\prime}$: merge s and $t+$ add weight-1 loops on vertices $\neq s$.
- s-t-paths $\rightsquigarrow b i g$ cycles
- Cycle cover in G^{\prime} : One big cycle + loops

Valiant's construction (3/3)

- G s.t. $\varphi= \pm \quad \sum(-1)^{|P|} w(P)$, with s, t distinguished s-t-paths P
$\rightsquigarrow G^{\prime}$: merge s and $t+$ add weight-1 loops on vertices $\neq s$.
- s-t-paths \rightsquigarrow big cycles
- Cycle cover in G^{\prime} : One big cycle + loops

Theorem

For a size-e formula, this construction yields a size-($e+1$) graph. Let A be the adjacency matrix of G. Then $\operatorname{det}(A)=\varphi$.

Malod's construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ

Malod's construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ

Malod's construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ

$$
e=5 \text { and } i=4
$$

Malod's construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension $(e+i+1)$ s.t. $\operatorname{det} A=\varphi$

$$
e=5 \text { and } i=4
$$

Malod's construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension $(e+i+1)$ s.t. $\operatorname{det} A=\varphi$
- In between: a graph G...

$$
e=5 \text { and } i=4
$$

Malod's construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension $(e+i+1)$ s.t. $\operatorname{det} A=\varphi$
- In between: a graph G...

- φ_{α} : polynomial computed by gate α

$$
e=5 \text { and } i=4
$$

Malod's construction (1/3)

- Input: a weakly-skew circuit of size e with i variable inputs representing φ
- Output: a matrix A of dimension $(e+i+1)$ s.t. $\operatorname{det} A=\varphi$
- In between: a graph G...

- φ_{α} : polynomial computed by gate α
- Reusable gate: not in a closed

$$
e=5 \text { and } i=4
$$ subcircuit

Malod's construction (2/3)

Malod's construction (2/3)

Malod's construction (2/3)

Malod's construction (2/3)

Invariant

For each reusable gate α, there exists t_{α} s.t.

$$
w\left(s \rightarrow t_{\alpha}\right)=\varphi_{\alpha} .
$$

Malod's construction (3/3)

- As in Valiant's, $G \rightsquigarrow G^{\prime}$: same idea

Malod's construction (3/3)

- As in Valiant's, $G \rightsquigarrow G^{\prime}$: same idea

Theorem

For a ws circuit of size e with i variable inputs representing φ, this construction yields a size-($e+i+1$). The determinant of its adjacency matrix equals φ.

Outline

(1) Valiant's and Malod's constructions

(2) Symmetric determinantal representations

(3) Characteristic 2

Introduction

- Symmetric matrices \Longleftrightarrow undirected graphs

Introduction

- Symmetric matrices \Longleftrightarrow undirected graphs
- Difficulty: no DAG anymore!

Introduction

- Symmetric matrices \Longleftrightarrow undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants

Introduction

- Symmetric matrices \Longleftrightarrow undirected graphs
- Difficulty: no DAG anymore!
- Solution: some changes in the construction, and new invariants
- N.B.: $\operatorname{char}(\mathbb{K}) \neq 2$ in this section

Case of formulas

Case of formulas

Case of formulas

Case of formulas

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every s - t-path is even

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every $s-t$-path is even
- $G \backslash\{s, t\}$ is either empty or has a unique cycle cover

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every $s-t$-path is even
- $G \backslash\{s, t\}$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- $|G|$ is even, every cycle in G is even, and every $s-t$-path is even
- $G \backslash\{s, t\}$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1
- For any s-t-path $P, G \backslash P$ is either empty or has a unique cycle cover

Invariants for formula's construction

- $\varphi=\sum_{s-t \text {-paths } P}(-1)^{|P| / 2+1} w(P)$
- |G| is even, every cycle in G is even, and every $s-t$-path is even
- $G \backslash\{s, t\}$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1
- For any s-t-path $P, G \backslash P$ is either empty or has a unique cycle cover

\rightsquigarrow Perfect matching of weight 1

From G to G^{\prime}

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd. An odd cycle in G^{\prime} has to go through c

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd. An odd cycle in G^{\prime} has to go through c
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in G

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd. An odd cycle in G^{\prime} has to go through c
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd. An odd cycle in G^{\prime} has to go through c
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G
- $(-1)^{|G / 2|+1}$ ensures that the signs are OK.

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd. An odd cycle in G^{\prime} has to go through c
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G
- $(-1)^{|G / 2|+1}$ ensures that the signs are OK.
- $1 / 2$: to deal with $s \rightarrow t$ and $t \rightarrow s$-paths, implies char $(\mathbb{K}) \neq 2$

From G to G^{\prime}

- $\left|G^{\prime}\right|$ is odd. An odd cycle in G^{\prime} has to go through c
- Cycle covers in $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G
- $(-1)^{|G / 2|+1}$ ensures that the signs are OK.
- $1 / 2$: to deal with $s \rightarrow t$ and $t \rightarrow s$-paths, implies $\operatorname{char}(\mathbb{K}) \neq 2$

Theorem

For a formula φ of size e, this construction yields a graph of size $2 e+3$. The determinant of its adjacency matrix equals φ.

Case of weakly-skew circuits

- Main difficulty:

Case of weakly-skew circuits

- Main difficulty:

- Definition: an path P is said acceptable if $G \backslash P$ admits a cycle cover

Constructions

Constructions

Constructions

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.
- $\varphi_{\alpha}=\sum_{\substack{\text { acceptable } \\ s-t_{\alpha} \text {-paths } P}}(-1)^{\frac{|P|-1}{2}} w(P)$

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.
- $\varphi_{\alpha}=\sum_{\substack{\text { acceptable } \\ s-t_{\alpha} \text {-paths } P}}(-1)^{\frac{|P|-1}{2}} w(P)$
- Every s - t_{α}-path is odd

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.
- $\varphi_{\alpha}=\sum_{\substack{\text { acceptable } \\ s-t_{\alpha} \text {-paths } P}}(-1)^{\frac{|\boldsymbol{P}|-1}{2}} w(P)$
- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.

- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.
- $\varphi_{\alpha}=\sum_{\substack{\text { acceptable } \\ s-t_{\alpha} \text {-paths } P}}(-1)^{\frac{|\mathbf{P}|-1}{2}} w(P)$
- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

- $|G|$ is odd, every cycle in G is even

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.
- $\varphi_{\alpha}=\sum_{\substack{\text { acceptable } \\ s-t_{\alpha} \text {-paths } P}}(-1)^{\frac{|P|-\mathbf{1}}{2}} w(P)$
- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

- $|G|$ is odd, every cycle in G is even
- $G \backslash\{s\}$ is either empty or has a unique cycle cover

Invariants in the case of weakly-skew circuits

- For each reusable α, there exists t_{α} s.t.
- $\varphi_{\alpha}=\sum_{\substack{\text { acceptable } \\ s-t_{\alpha} \text {-paths } P}}(-1)^{\frac{|\mathbf{P}|-1}{2}} w(P)$
- Every s - t_{α}-path is odd
- For a s - t_{α}-path $P, G \backslash P$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

- $|G|$ is odd, every cycle in G is even
- $G \backslash\{s\}$ is either empty or has a unique cycle cover
\rightsquigarrow Perfect matching of weight 1

From G to G^{\prime}

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G^{\prime}$.

From G to G^{\prime}

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G^{\prime}$.
- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.

From G to G^{\prime}

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G^{\prime}$.
- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path $P, G^{\prime} \backslash P$ has an only cycle cover, of weight 1 :

From G to G^{\prime}

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G^{\prime}$.
- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path $P, G^{\prime} \backslash P$ has an only cycle cover, of weight 1 :

Cycle covers of $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G.

From G to G^{\prime}

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G^{\prime}$.
- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path $P, G^{\prime} \backslash P$ has an only cycle cover, of weight 1 :

Cycle covers of $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G.

- With some sign considerations, we get:

From G to G^{\prime}

- Add an edge between s and t, of weight $\frac{1}{2}(-1)^{\frac{|G|-1}{2}} \rightsquigarrow G^{\prime}$.
- $\left|G^{\prime} \backslash\{s, t\}\right|$ is odd, cycles are even: no cycle cover with $s \leftrightarrow t$.
- As for every path $P, G^{\prime} \backslash P$ has an only cycle cover, of weight 1 :

Cycle covers of $G^{\prime} \Longleftrightarrow s \rightarrow t$-paths in $G \Longleftrightarrow t \rightarrow s$-paths in G.

- With some sign considerations, we get:

Theorem

For a weakly skew circuit of size e, with i input variables, computing a polynomial φ, this construction yields a graph G^{\prime} with $2(e+i)+1$ vertices. The adjacency matrix of G^{\prime} has its determinant equal to φ.

Outline

(1) Valiant's and Malod's constructions

(2) Symmetric determinantal representations

(3) Characteristic 2

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice \Longrightarrow permutations restricted to pairs and singleton

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice
\Longrightarrow permutations restricted to pairs and singleton
\Longrightarrow cycle covers replaced by monomer-dimer covers

Introduction

- Scalar $1 / 2$ in the constructions \Longrightarrow not valid for characteristic 2
- Very special case: cycles of length >2 are counted twice \Longrightarrow permutations restricted to pairs and singleton \Longrightarrow cycle covers replaced by monomer-dimer covers

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Use Malod's construction on P to get a digraph $G=(V, E)$

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Use Malod's construction on P to get a digraph $G=(V, E)$
- Define an undirected graph G^{\prime} as follows:

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Use Malod's construction on P to get a digraph $G=(V, E)$
- Define an undirected graph G^{\prime} as follows:
- Duplicate each $v \in V$ as v_{s} and v_{t}.

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Use Malod's construction on P to get a digraph $G=(V, E)$
- Define an undirected graph G^{\prime} as follows:
- Duplicate each $v \in V$ as v_{s} and v_{t}.
- Replace an arc (u, v) by an edge $\left\{u_{s}, v_{t}\right\}$.

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Use Malod's construction on P to get a digraph $G=(V, E)$
- Define an undirected graph G^{\prime} as follows:
- Duplicate each $v \in V$ as v_{s} and v_{t}.
- Replace an arc (u, v) by an edge $\left\{u_{s}, v_{t}\right\}$.
- Denote by M and A the respective adjacency matrices of G and G^{\prime}

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Use Malod's construction on P to get a digraph $G=(V, E)$
- Define an undirected graph G^{\prime} as follows:
- Duplicate each $v \in V$ as v_{s} and v_{t}.
- Replace an arc (u, v) by an edge $\left\{u_{s}, v_{t}\right\}$.
- Denote by M and A the respective adjacency matrices of G and G^{\prime}
- Cycle Covers in $G \Longleftrightarrow$ Perfect Matching in G^{\prime}

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Use Malod's construction on P to get a digraph $G=(V, E)$
- Define an undirected graph G^{\prime} as follows:
- Duplicate each $v \in V$ as v_{s} and v_{t}.
- Replace an arc (u, v) by an edge $\left\{u_{s}, v_{t}\right\}$.
- Denote by M and A the respective adjacency matrices of G and G^{\prime}
- Cycle Covers in $G \Longleftrightarrow$ Perfect Matching in G^{\prime}
$\rightsquigarrow \operatorname{det} M=\sum_{\mu} w(\mu)(\mu$ ranges over the Perfect Matchings)

A positive result

Theorem

Let p be a polynomial, represented by a weakly-skew circuit of size e with i input variables. Then there exists a symmetric matrix A of size $2(e+i)+2$ such that $p^{2}=\operatorname{det} A$.

- Use Malod's construction on P to get a digraph $G=(V, E)$
- Define an undirected graph G^{\prime} as follows:
- Duplicate each $v \in V$ as v_{s} and v_{t}.
- Replace an arc (u, v) by an edge $\left\{u_{s}, v_{t}\right\}$.
- Denote by M and A the respective adjacency matrices of G and G^{\prime}
- Cycle Covers in $G \Longleftrightarrow$ Perfect Matching in G^{\prime}
$\rightsquigarrow \operatorname{det} M=\sum_{\mu} w(\mu)(\mu$ ranges over the Perfect Matchings)
- As there is no loop in $G^{\prime}, \operatorname{det} A=\sum_{\mu} w(\mu)^{2}=\left(\sum_{\mu} w(\mu)\right)^{2}$

Application

- This result raises the question:

Application

- This result raises the question:

If p^{2} has a small weakly-skew circuit, what about p ?

Application

- This result raises the question:

If p^{2} has a small weakly-skew circuit, what about p ?

- In technical terms:

Application

- This result raises the question:

If p^{2} has a small weakly-skew circuit, what about p ?

- In technical terms:

If f is a family of polynomials s.t. $f^{2} \in \mathrm{VP}$, does f belong to VP?

Application

- This result raises the question:

If p^{2} has a small weakly-skew circuit, what about p ?

- In technical terms:

If f is a family of polynomials s.t. $f^{2} \in \mathrm{VP}$, does f belong to VP?

- It appears to be related to an open problem of Bürgisser:

Application

- This result raises the question:

If p^{2} has a small weakly-skew circuit, what about p ?

- In technical terms:

If f is a family of polynomials s.t. $f^{2} \in \mathrm{VP}$, does f belong to VP?

- It appears to be related to an open problem of Bürgisser:

Is the partial permanent VNP-complete in characteristic 2?

Valiant's classes

- Complexity of a polynomial: size of the smallest circuit computing it.

Valiant's classes

- Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family $\left(f_{n}\right)$ of polynomials is in VP if for all n, the number of variables, the degree, and the complexity of f_{n} are polynomially bounded in n.

Valiant's classes

- Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family $\left(f_{n}\right)$ of polynomials is in VP if for all n, the number of variables, the degree, and the complexity of f_{n} are polynomially bounded in n.

A family $\left(f_{n}\right)$ of polynomials is in VNP if there exists a family $\left(g_{n}\left(y_{1}, \ldots, y_{v(n)}\right)\right) \in \mathrm{VP}$ s.t.

$$
f_{n}\left(x_{1}, \ldots, x_{u(n)}\right)=\sum_{\bar{\epsilon} \in\{0,1\}^{\vee(n)-u(n)}} g_{n}\left(x_{1}, \ldots, x_{u(n)}, \bar{\epsilon}\right) .
$$

Valiant's classes

- Complexity of a polynomial: size of the smallest circuit computing it.

Definition

A family $\left(f_{n}\right)$ of polynomials is in VP if for all n, the number of variables, the degree, and the complexity of f_{n} are polynomially bounded in n.

A family $\left(f_{n}\right)$ of polynomials is in VNP if there exists a family $\left(g_{n}\left(y_{1}, \ldots, y_{v(n)}\right)\right) \in \mathrm{VP}$ s.t.

$$
f_{n}\left(x_{1}, \ldots, x_{u(n)}\right)=\sum_{\bar{\epsilon} \in\{0,1\}^{\vee(n)-u(n)}} g_{n}\left(x_{1}, \ldots, x_{u(n)}, \bar{\epsilon}\right) .
$$

- $\left(\mathrm{DET}_{n}\right) \in \mathrm{VP},\left(\mathrm{PER}_{n}\right) \in \mathrm{VNP}, \ldots$

VNP-completeness

Definition

A family $\left(g_{n}\right)$ is a p-projection of a family $\left(f_{n}\right)$ is there exists a polynomial t s.t. for all $n, g_{n}(\bar{x})=f_{t(n)}\left(a_{1}, \ldots, a_{n}\right)$, with $a_{1}, \ldots, a_{n} \in \mathbb{K} \cup\left\{x_{1}, \ldots, x_{n}\right\}$.

VNP-completeness

Definition

A family $\left(g_{n}\right)$ is a p-projection of a family $\left(f_{n}\right)$ is there exists a polynomial t s.t. for all $n, g_{n}(\bar{x})=f_{t(n)}\left(a_{1}, \ldots, a_{n}\right)$, with $a_{1}, \ldots, a_{n} \in \mathbb{K} \cup\left\{x_{1}, \ldots, x_{n}\right\}$.

A family $\left(f_{n}\right) \in$ VNP is VNP-complete if every family in VNP is a p-projection of $\left(f_{n}\right)$.

VNP-completeness

Definition

A family $\left(g_{n}\right)$ is a p-projection of a family $\left(f_{n}\right)$ is there exists a polynomial t s.t. for all $n, g_{n}(\bar{x})=f_{t(n)}\left(a_{1}, \ldots, a_{n}\right)$, with $a_{1}, \ldots, a_{n} \in \mathbb{K} \cup\left\{x_{1}, \ldots, x_{n}\right\}$.

A family $\left(f_{n}\right) \in$ VNP is VNP-complete if every family in VNP is a p-projection of $\left(f_{n}\right)$.

- (PER_{n}) is VNP-complete in characteristic $\neq 2$

VNP-completeness

Definition

A family $\left(g_{n}\right)$ is a p-projection of a family $\left(f_{n}\right)$ is there exists a polynomial t s.t. for all $n, g_{n}(\bar{x})=f_{t(n)}\left(a_{1}, \ldots, a_{n}\right)$, with $a_{1}, \ldots, a_{n} \in \mathbb{K} \cup\left\{x_{1}, \ldots, x_{n}\right\}$.

A family $\left(f_{n}\right) \in$ VNP is VNP-complete if every family in VNP is a p-projection of $\left(f_{n}\right)$.

- (PER_{n}) is VNP-complete in characteristic $\neq 2$
- $\left(\mathrm{HC}_{n}\right)$ is VNP-complete (in any characteristic)

Partial Permanent

$$
\operatorname{per}^{*} M=\sum_{\pi} \prod_{i \in \operatorname{def}(\pi)} M_{i, \pi(i)}
$$

where π ranges over the injective partial maps from $[n]$ to $[n]$.

Partial Permanent

$$
\operatorname{per}^{*} M=\sum_{\pi} \prod_{i \in \operatorname{def}(\pi)} M_{i, \pi(i)}
$$

where π ranges over the injective partial maps from $[n]$ to $[n]$.

Lemma

Let $G=K_{n, n}$. Let A and B be the respective adjacency and biadjacency matrices of G. Then in characteristic 2 ,

$$
\operatorname{det}\left(A+I_{2 n}\right)=\left(\operatorname{per}^{*} B\right)^{2}
$$

where $I_{2 n}$ is the identity matrix.

Partial Permanent

$$
\operatorname{per}^{*} M=\sum_{\pi} \prod_{i \in \operatorname{def}(\pi)} M_{i, \pi(i)}
$$

where π ranges over the injective partial maps from $[n]$ to $[n]$.

Lemma

Let $G=K_{n, n}$. Let A and B be the respective adjacency and biadjacency matrices of G. Then in characteristic 2 ,

$$
\operatorname{det}\left(A+I_{2 n}\right)=\left(\operatorname{per}^{*} B\right)^{2}
$$

where $I_{2 n}$ is the identity matrix.
Same kind of ideas as the previous proof.

Partial permanents as family of polynomials

(PER ${ }_{n}^{*}$): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.

Partial permanents as family of polynomials

(PER_{n}^{*}): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.
$\left(\left(\mathrm{PER}^{*}\right)_{n}^{2}\right)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Partial permanents as family of polynomials

(PER ${ }_{n}^{*}$): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.
$\left(\left(\operatorname{PER}^{*}\right)_{n}^{2}\right)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem
$\left(\left(\mathrm{PER}^{*}\right)_{n}^{2}\right) \in \mathrm{VP}$ in characteristic 2.

Partial permanents as family of polynomials

(PER_{n}^{*}): family of polynomials defined as partial permanents of $n \times n$ matrices of indeterminates.
$\left(\left(\text { PER }^{*}\right)_{n}^{2}\right)$: family of polynomials defined as square of partial permanents of $n \times n$ matrices of indeterminates.

Theorem
$\left(\left(\mathrm{PER}^{*}\right)_{n}^{2}\right) \in \mathrm{VP}$ in characteristic 2.
Proof. (($\left.\left.\mathrm{PER}^{*}\right)_{n}^{2}\right)$ is a p-projection of $\left(\mathrm{DET}_{n}\right)$.

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?
Theorem
If it is the case, $\oplus \mathrm{P} /$ poly $=\mathrm{NC}^{2} /$ poly, and $\mathrm{PH}=\Sigma_{2}$.

Answer to Bürgisser's problem

Problem

Is the partial permanent VNP-complete in characteristic 2?

Theorem
 If it is the case, $\oplus \mathrm{P} /$ poly $=\mathrm{NC}^{2} /$ poly, and $\mathrm{PH}=\Sigma_{2}$.

Proof sketch. If the case arises, $\mathrm{VNP}^{2} \subseteq \mathrm{VP}$. This translates into boolean complexity result via Bürgisser's boolean parts of Valiant's classes.

A negative result?

Question

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

A negative result?

Question

Which polynomials can be represented as determinant of symmetric matrices in characteristic 2?

Conjecture

The polynomial $x y+z$ has no such representation
Two-day-old Proof. To do on a board!

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- Actually, we fixed a flaw in Valiant's 30-year-old proof!

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- Actually, we fixed a flaw in Valiant's 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- Actually, we fixed a flaw in Valiant's 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M^{\prime} of size $O\left(n^{5}\right)$ s.t. $\operatorname{det} M=\operatorname{det} M^{\prime}$.

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- Actually, we fixed a flaw in Valiant's 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M^{\prime} of size $O\left(n^{5}\right)$ s.t. $\operatorname{det} M=\operatorname{det} M^{\prime}$.

- For characteristic 2 :

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- Actually, we fixed a flaw in Valiant's 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M^{\prime} of size $O\left(n^{5}\right)$ s.t. $\operatorname{det} M=\operatorname{det} M^{\prime}$.

- For characteristic 2:
- Answer to Bürgisser's Open Problem

Conclusion

- We obtained Symmetric Determinantal Representations for Formulas and Weakly-Skew Circuits of linear size
- Improvement of Valiant's and Malod's constructions
- Actually, we fixed a flaw in Valiant's 30-year-old proof!
- By-product (in characteristic $\neq 2$):

Theorem

Let M be an $n \times n$ matrix. Then there exists a symmetric matrix M^{\prime} of size $O\left(n^{5}\right)$ s.t. $\operatorname{det} M=\operatorname{det} M^{\prime}$.

- For characteristic 2:
- Answer to Bürgisser's Open Problem
- Proof (?) of a negative result (to be verified...)

Future work

- In Convex Geometry: $\mathbb{K}=\mathbb{R}$ and polynomials are real zero polynomials.

Future work

- In Convex Geometry: $\mathbb{K}=\mathbb{R}$ and polynomials are real zero polynomials.
\rightsquigarrow what can be done in that precise case?

Future work

- In Convex Geometry: $\mathbb{K}=\mathbb{R}$ and polynomials are real zero polynomials.
\rightsquigarrow what can be done in that precise case?
- Characterize polynomials with a symmetric determinantal representation in characteristic 2.

Future work

- In Convex Geometry: $\mathbb{K}=\mathbb{R}$ and polynomials are real zero polynomials.
\rightsquigarrow what can be done in that precise case?
- Characterize polynomials with a symmetric determinantal representation in characteristic 2.
- Symmetric matrices in Valiant's theory?

Thank you!

