Acceptable Complexity Measures of Theorems

Bruno Grenet

École Normale Supérieure de Lyon http://perso.ens-lyon.fr/bruno.grenet/

November 12, 2008
LIF, Marseille

Historical Overview

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?
- Why are they unprovable?

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?
- Why are they unprovable?
- 1974: Chaitin proposes his "heuristic principle"

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?
- Why are they unprovable?
- 1974: Chaitin proposes his "heuristic principle"

The theorems of a finitely-specified theory cannot be significantly more complex than the theory itself.

Historical Overview

- 1931: Gödel publishes his Incompleteness Theorem

Some true mathematical statements are unprovable.

- Are there many such statements?
- Are there natural such statements?
- Why are they unprovable?
- 1974: Chaitin proposes his "heuristic principle"

The theorems of a finitely-specified theory cannot be significantly more complex than the theory itself.

- 2005: Calude and Jürgensen prove the "heuristic principle"

Goal

- $\delta(x)=H(x)-|x|$ where H is the program-size complexity.

Goal

- $\delta(x)=H(x)-|x|$ where H is the program-size complexity.
- Is it the only measure satisfying the heuristic principle?

Goal

- $\delta(x)=H(x)-|x|$ where H is the program-size complexity.
- Is it the only measure satisfying the heuristic principle?

Gillepsie Beach, South Island

Outline

(1) A few definitions
(2) About δ
(3) Acceptable Complexity Measures
(4) An Independence Result
(5) Other measures?

Outline

(1) A few definitions

(3) Acceptable Complexity Measures

4 An Independence Result
(5) Other measures?

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements
- X_{i}^{*} : set of finite strings on X_{i}, including the empty string λ

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements
- X_{i}^{*} : set of finite strings on X_{i}, including the empty string λ
- $|w|_{i}$: length of w

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements
- X_{i}^{*} : set of finite strings on X_{i}, including the empty string λ
- $|w|_{i}$: length of w
- Gödel numbering for the language L : computable one-to-one function $g: L \rightarrow X_{2}^{*}$

Aphabets and strings

For $i \geq 2$,

- X_{i} : alphabet with i elements
- X_{i}^{*} : set of finite strings on X_{i}, including the empty string λ
- $|w|_{i}$: length of w
- Gödel numbering for the language L : computable one-to-one function $g: L \rightarrow X_{2}^{*}$
- G : set of all the Gödel numberings

Self-delimiting Turing Machines

- Prefix-free set: $u \in S$ implies that $u v \notin S(v \neq \lambda)$

Self-delimiting Turing Machines

- Prefix-free set: $u \in S$ implies that $u v \notin S(v \neq \lambda)$
- $\mathrm{PROG}_{T}=\left\{x \in X_{i}^{*}: T(x) \downarrow\right\}$

Self-delimiting Turing Machines

- Prefix-free set: $u \in S$ implies that $u v \notin S(v \neq \lambda)$
- $\mathrm{PROG}_{T}=\left\{x \in X_{i}^{*}: T(x) \downarrow\right\}$
- Self-delimiting Turing Machine: $P R O G_{T}$ is prefix-free

Self-delimiting Turing Machines

- Prefix-free set: $u \in S$ implies that $u v \notin S(v \neq \lambda)$
- $\mathrm{PROG}_{T}=\left\{x \in X_{i}^{*}: T(x) \downarrow\right\}$
- Self-delimiting Turing Machine: $P R O G_{T}$ is prefix-free
- Kraft's inequality: for a prefix-free set S, note $r_{k}=\operatorname{card}\left\{x \in S:|x|_{i}=k\right\}$. Then

$$
\sum_{k=1}^{\infty} r_{k} \cdot i^{-k} \leq 1
$$

Kraft-Chaitin Theorem

Let $\left(n_{k}\right)_{k \in \mathbb{N}}$ be a computable sequence of non-negative integers such that

$$
\sum_{k=1}^{\infty} i^{-n_{k}} \leq 1
$$

Then we can effectively construct a prefix-free sequence of strings $\left(w_{k}\right)_{k \in \mathbb{N}}$ such that for each $k \geq 1,\left|w_{k}\right|_{i}=n_{k}$.

Program-size complexity

Definition

$H_{i, T}(x)=\min \left\{|y|_{i}: y \in X_{i}^{*}\right.$ and $\left.T(y)=x\right\}$

Program-size complexity

Definition

$H_{i, T}(x)=\min \left\{|y|_{i}: y \in X_{i}^{*}\right.$ and $\left.T(y)=x\right\}$

Invariance Theorem

There exists a universal machine U_{i} such that for every T, there exists c such that

$$
H_{i, U_{i}}(x) \leq H_{i, T}(x)+c
$$

Program-size complexity

Definition

$H_{i, T}(x)=\min \left\{|y|_{i}: y \in X_{i}^{*}\right.$ and $\left.T(y)=x\right\}$

Invariance Theorem

There exists a universal machine U_{i} such that for every T, there exists c such that

$$
H_{i, U_{i}}(x) \leq H_{i, T}(x)+c
$$

$$
H_{i} \triangleq H_{i, U_{i}}
$$

Program-size complexity

Definition
 $H_{i, T}(x)=\min \left\{|y|_{i}: y \in X_{i}^{*}\right.$ and $\left.T(y)=x\right\}$

Invariance Theorem

There exists a universal machine U_{i} such that for every T, there exists c such that

$$
H_{i, U_{i}}(x) \leq H_{i, T}(x)+c
$$

$$
H_{i} \triangleq H_{i, U_{i}}
$$

Definition

 x^{*} is the lexicographically first string of length $H_{i}(x)$ such that $U_{i}\left(x^{*}\right)=x$.
Outline

(1) A few definitions

(2) About δ

(3) Acceptable Complexity Measures

4 An Independence Result

(5) Other measures?

Definitions

Definition

$$
\delta_{i}(x)=H_{i}(x)-|x|_{i}, i \geq 2
$$

Definitions

Definition

$$
\delta_{i}(x)=H_{i}(x)-|x|_{i}, i \geq 2
$$

Definition

$$
\delta_{g}(u)=H_{2}(g(u))-\left\lceil\log _{2}(i) \cdot|x|_{i}\right\rceil \text {, }
$$

where g is a Gödel numbering.

Invariance of the measure

Theorem

There exists a constant c such that

$$
\left|H_{2}(g(u))-\log _{2}(i) \cdot H_{i}(u)\right| \leq c .
$$

Invariance of the measure

Theorem

There exists a constant c such that

$$
\left|H_{2}(g(u))-\log _{2}(i) \cdot H_{i}(u)\right| \leq c .
$$

Corollary

- With the same constant c as in the theorem, it holds that

$$
\left|\delta_{g}(u)-\log _{2}(i) \cdot \delta_{i}(u)\right| \leq c+1
$$

Invariance of the measure

Theorem

There exists a constant c such that

$$
\left|H_{2}(g(u))-\log _{2}(i) \cdot H_{i}(u)\right| \leq c
$$

Corollary

- With the same constant c as in the theorem, it holds that

$$
\left|\delta_{g}(u)-\log _{2}(i) \cdot \delta_{i}(u)\right| \leq c+1
$$

- For every g and g^{\prime}, there exists a constant d such that

$$
\left|H_{2}(g(u))-H_{2}\left(g^{\prime}(u)\right)\right| \leq d \text { and }\left|\delta_{g}(u)-\delta_{g^{\prime}}(u)\right| \leq d+1 .
$$

Proof sketch for the theorem - 1

$$
H_{2}(g(u)) \leq \log _{2}(i) \cdot H_{i}(u)+c_{1} .
$$

Proof sketch for the theorem - 1

$$
H_{2}(g(u)) \leq \log _{2}(i) \cdot H_{i}(u)+c_{1} .
$$

- $n_{w} \triangleq\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil$

Proof sketch for the theorem - 1

$$
H_{2}(g(u)) \leq \log _{2}(i) \cdot H_{i}(u)+c_{1} .
$$

- $n_{w} \triangleq\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil$

$$
\sum_{w \in P R O G_{U_{i}}} 2^{-n_{w}}=\sum_{w \in P R O G_{U_{i}}} 2^{-\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil} \leq \sum_{w \in P R O G_{U_{i}}} i^{-|w|_{i}} \leq 1
$$

Proof sketch for the theorem - 1

$$
H_{2}(g(u)) \leq \log _{2}(i) \cdot H_{i}(u)+c_{1} .
$$

- $n_{w} \triangleq\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil$

$$
\sum_{w \in P R O G_{U_{i}}} 2^{-n_{w}}=\sum_{w \in P R O G_{U_{i}}} 2^{-\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil} \leq \sum_{w \in P R O G_{U_{i}}} i^{-|w|_{i}} \leq 1
$$

- By Kraft-Chaitin Theorem, we can construct $\left\{s_{w} \in X_{2}^{*}: w \in P R O G_{U_{i}},\left|s_{w}\right|_{2}=n_{w}\right\}$, prefix-free and c.e.

Proof sketch for the theorem - 1

$$
H_{2}(g(u)) \leq \log _{2}(i) \cdot H_{i}(u)+c_{1} .
$$

- $n_{w} \triangleq\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil$

$$
\sum_{w \in P R O G_{U_{i}}} 2^{-n_{w}}=\sum_{w \in P R O G_{U_{i}}} 2^{-\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil} \leq \sum_{w \in P R O G_{U_{i}}} i^{-|w|_{i}} \leq 1
$$

- By Kraft-Chaitin Theorem, we can construct $\left\{s_{w} \in X_{2}^{*}: w \in P R O G_{U_{i}},\left|s_{w}\right|_{2}=n_{w}\right\}$, prefix-free and c.e.
- We define a machine C such that $C\left(s_{w}\right)=g\left(U_{i}(w)\right)$.

Proof sketch for the theorem - 1

$$
H_{2}(g(u)) \leq \log _{2}(i) \cdot H_{i}(u)+c_{1} .
$$

- $n_{w} \triangleq\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil$

$$
\sum_{w \in P R O G_{U_{i}}} 2^{-n_{w}}=\sum_{w \in P R O G_{U_{i}}} 2^{-\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil} \leq \sum_{w \in P R O G_{U_{i}}} i^{-|w|_{i}} \leq 1
$$

- By Kraft-Chaitin Theorem, we can construct $\left\{s_{w} \in X_{2}^{*}: w \in P R O G_{U_{i}},\left|s_{w}\right|_{2}=n_{w}\right\}$, prefix-free and c.e.
- We define a machine C such that $C\left(s_{w}\right)=g\left(U_{i}(w)\right)$.
- Note that $C\left(s_{w^{*}}\right)=g\left(U_{i}\left(w^{*}\right)\right)=g(w)$.

Proof sketch for the theorem - 1

$$
H_{2}(g(u)) \leq \log _{2}(i) \cdot H_{i}(u)+c_{1} .
$$

- $n_{w} \triangleq\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil$

$$
\sum_{w \in P R O G_{U_{i}}} 2^{-n_{w}}=\sum_{w \in P R O G_{U_{i}}} 2^{-\left\lceil\log _{2}(i) \cdot|w|_{i}\right\rceil} \leq \sum_{w \in P R O G_{U_{i}}} i^{-|w|_{i}} \leq 1
$$

- By Kraft-Chaitin Theorem, we can construct $\left\{s_{w} \in X_{2}^{*}: w \in P R O G_{U_{i}},\left|s_{w}\right|_{2}=n_{w}\right\}$, prefix-free and c.e.
- We define a machine C such that $C\left(s_{w}\right)=g\left(U_{i}(w)\right)$.
- Note that $C\left(s_{w^{*}}\right)=g\left(U_{i}\left(w^{*}\right)\right)=g(w)$.

$$
\begin{aligned}
H_{C}(g(w)) & \leq\left|s_{w^{*}}\right|_{2}=\left\lceil\log _{2}(i) \cdot\left|w^{*}\right|_{i}\right\rceil=\left\lceil\log _{2}(i) \cdot H_{i}(w)\right\rceil \\
& \leq \log _{2}(i) \cdot H_{i}(w)+1
\end{aligned}
$$

Proof sketch for the theorem - 2

$\log _{2}(i) \cdot H_{i}(u) \leq H_{2}(g(u))+c_{2}$

Proof sketch for the theorem - 2

$$
\log _{2}(i) \cdot H_{i}(u) \leq H_{2}(g(u))+c_{2}
$$

- $m_{w} \triangleq\left\lceil\log _{i}(2) \cdot|w|_{2}\right\rceil$

Proof sketch for the theorem - 2

$$
\log _{2}(i) \cdot H_{i}(u) \leq H_{2}(g(u))+c_{2}
$$

- $m_{w} \triangleq\left\lceil\log _{i}(2) \cdot|w|_{2}\right\rceil$

$$
\sum_{w \in P R O G_{U_{2}}} i^{-m_{w}} \leq \sum_{w \in P R O G_{U_{2}}} 2^{-|w|_{2}} \leq 1
$$

Proof sketch for the theorem - 2

$$
\log _{2}(i) \cdot H_{i}(u) \leq H_{2}(g(u))+c_{2}
$$

- $m_{w} \triangleq\left\lceil\log _{i}(2) \cdot|w|_{2}\right\rceil$

$$
\sum_{w \in P R O G_{U_{2}}} i^{-m_{w}} \leq \sum_{w \in P R O G_{U_{2}}} 2^{-|w|_{2}} \leq 1
$$

- By Kraft-Chaitin Theorem, we can construct $\left\{t_{w} \in X_{i}^{*}: w \in P R O G_{U_{2}},\left|t_{w}\right|_{i}=m_{w}\right\}$, prefix-free and c.e.

Proof sketch for the theorem - 2

$$
\log _{2}(i) \cdot H_{i}(u) \leq H_{2}(g(u))+c_{2}
$$

- $m_{w} \triangleq\left\lceil\log _{i}(2) \cdot|w|_{2}\right\rceil$

$$
\sum_{w \in P R O G_{U_{2}}} i^{-m_{w}} \leq \sum_{w \in P R O G_{U_{2}}} 2^{-|w|_{2}} \leq 1
$$

- By Kraft-Chaitin Theorem, we can construct $\left\{t_{w} \in X_{i}^{*}: w \in P R O G_{U_{2}},\left|t_{w}\right|_{i}=m_{w}\right\}$, prefix-free and c.e.
- We define a machine D such that $D\left(t_{w}\right)=u$ if $U_{2}(w)=g(u)$ (possible because g is $1-1$).

Proof sketch for the theorem - 2

$$
\log _{2}(i) \cdot H_{i}(u) \leq H_{2}(g(u))+c_{2}
$$

- $m_{w} \triangleq\left\lceil\log _{i}(2) \cdot|w|_{2}\right\rceil$

$$
\sum_{w \in \text { PROG }_{U_{2}}} i^{-m_{w}} \leq \sum_{w \in P_{R O G} G_{U_{2}}} 2^{-|w|_{2}} \leq 1
$$

- By Kraft-Chaitin Theorem, we can construct $\left\{t_{w} \in X_{i}^{*}: w \in P R O G_{U_{2}},\left|t_{w}\right|_{i}=m_{w}\right\}$, prefix-free and c.e.
- We define a machine D such that $D\left(t_{w}\right)=u$ if $U_{2}(w)=g(u)$ (possible because g is $1-1$).
- If $U_{2}(w)=g(u)$,

$$
H_{D}(u) \leq\left\lceil\log _{i}(2) \cdot|w|_{2}\right\rceil \leq \log _{i}(2) \cdot|w|_{2}+1 \leq \log _{i}(2) \cdot H_{2}(g(u))+d
$$

Complexity of well-formed formulae

Lemma

Let x be a wff. Then $H_{i}(x) \leq|x|_{i}+\mathcal{O}(1)$.

Complexity of well-formed formulae

Lemma

Let x be a wff. Then $H_{i}(x) \leq|x|_{i}+\mathcal{O}(1)$.

- We define a machine C such that $H_{C}(x) \leq|x|_{i}+2$.

Complexity of well-formed formulae

Lemma

Let x be a wff. Then $H_{i}(x) \leq|x|_{i}+\mathcal{O}(1)$.

- We define a machine C such that $H_{C}(x) \leq|x|_{i}+2$.
- Define C by $C(x)=x$ if x is well-formed, $C(x)=\uparrow$ else.

Complexity of well-formed formulae

Lemma

Let x be a wff. Then $H_{i}(x) \leq|x|_{i}+\mathcal{O}(1)$.

- We define a machine C such that $H_{C}(x) \leq|x|_{i}+2$.
- Define C by $C(x)=x$ if x is well-formed, $C(x)=\uparrow$ else.
- $P R O G_{C}$ is not prefix-free.

Complexity of well-formed formulae

Lemma
Let x be a wff. Then $H_{i}(x) \leq|x|_{i}+\mathcal{O}(1)$.

- We define a machine C such that $H_{C}(x) \leq|x|_{i}+2$.
- Define C by $C(x)=x$ if x is well-formed, $C(x)=\uparrow$ else.
- $P R O G_{C}$ is not prefix-free.
- Change in the definition: $C(x y)=x$ if x is well-formed, $C(z)=\uparrow$ in all other cases. Here $y=++$ or any ill-formed formula such that $x y z$ is ill-formed.

Complexity of well-formed formulae

Lemma

Let x be a wff. Then $H_{i}(x) \leq|x|_{i}+\mathcal{O}(1)$.

- We define a machine C such that $H_{C}(x) \leq|x|_{i}+2$.
- Define C by $C(x)=x$ if x is well-formed, $C(x)=\uparrow$ else.
- $P R O G_{C}$ is not prefix-free.
- Change in the definition: $C(x y)=x$ if x is well-formed, $C(z)=\uparrow$ in all other cases. Here $y=++$ or any ill-formed formula such that $x y z$ is ill-formed.

Can we improve the bound?

Main theorem on δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.

Main theorem on δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.
- \mathcal{T} : set of theorems that \mathcal{F} proves.

Main theorem on δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.
- \mathcal{T} : set of theorems that \mathcal{F} proves.

Theorem

There exists a constant $N_{\mathcal{F}}$ such that for all $x \in \mathcal{T}, \delta_{g}(x)<N_{\mathcal{F}}$.

Main theorem on δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.
- \mathcal{T} : set of theorems that \mathcal{F} proves.

Theorem

There exists a constant $N_{\mathcal{F}}$ such that for all $x \in \mathcal{T}, \delta_{g}(x)<N_{\mathcal{F}}$.

- By the previous lemma, for every $x \in \mathcal{T}, \delta_{i}(x) \leq c$.

Main theorem on δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.
- \mathcal{T} : set of theorems that \mathcal{F} proves.

Theorem

There exists a constant $N_{\mathcal{F}}$ such that for all $x \in \mathcal{T}, \delta_{g}(x)<N_{\mathcal{F}}$.

- By the previous lemma, for every $x \in \mathcal{T}, \delta_{i}(x) \leq c$.
- As $\left|\delta_{g}(x)-\log _{2}(i) \cdot \delta_{i}(x)\right| \leq d, \delta_{g}(x) \leq d+\log _{2}(i) \cdot c$.

Main theorem on δ_{g}

- \mathcal{F} : finitely-specified, arithmetically sound and consistent theory, strong enough to formalize arithmetic.
- \mathcal{T} : set of theorems that \mathcal{F} proves.

Theorem

There exists a constant $N_{\mathcal{F}}$ such that for all $x \in \mathcal{T}, \delta_{g}(x)<N_{\mathcal{F}}$.

- By the previous lemma, for every $x \in \mathcal{T}, \delta_{i}(x) \leq c$.
- As $\left|\delta_{g}(x)-\log _{2}(i) \cdot \delta_{i}(x)\right| \leq d, \delta_{g}(x) \leq d+\log _{2}(i) \cdot c$.

Proposition

$\forall N>0, \lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n, \delta_{g}(x) \leq N\right\}=0$

Outline

(1) A few definitions

(3) Acceptable Complexity Measures

4 An Independence Result

(5) Other measures?

Introduction

Are there other measures satisfying the heuristic principle?

Introduction

Are there other measures satisfying the heuristic principle?

- Definition of a notion of acceptable complexity measure

Introduction

Are there other measures satisfying the heuristic principle?

- Definition of a notion of acceptable complexity measure
- Properties of those measures

Introduction

Are there other measures satisfying the heuristic principle?

- Definition of a notion of acceptable complexity measure
- Properties of those measures
- Which measures are acceptable?

Complexity Measure Builder

Definition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function. Then we define the complexity measure builder ρ by

$$
\begin{aligned}
\rho: G & \rightarrow\left[X_{i}^{*} \rightarrow \mathbb{Q}\right] \\
g & \mapsto \rho_{g}
\end{aligned}
$$

where $\rho_{g}(u)=\hat{\rho}_{i}\left(H_{2}(g(u)),|u|_{i}\right)$.

Complexity Measure Builder

Definition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function. Then we define the complexity measure builder ρ by

$$
\begin{aligned}
\rho: G & \rightarrow\left[X_{i}^{*} \rightarrow \mathbb{Q}\right] \\
g & \mapsto \rho_{g}
\end{aligned}
$$

where $\rho_{g}(u)=\hat{\rho}_{i}\left(H_{2}(g(u)),|u|_{i}\right)$.

- $\hat{\rho}_{i}$: witness of the builder

Complexity Measure Builder

Definition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function. Then we define the complexity measure builder ρ by

$$
\begin{aligned}
\rho: G & \rightarrow\left[X_{i}^{*} \rightarrow \mathbb{Q}\right] \\
g & \mapsto \rho_{g}
\end{aligned}
$$

where $\rho_{g}(u)=\hat{\rho}_{i}\left(H_{2}(g(u)),|u|_{i}\right)$.

- $\hat{\rho}_{i}:$ witness of the builder
- ρ_{g} : complexity measure

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$
- Independence on the Gödel numbering

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$
- Independence on the Gödel numbering

Proposition

There exists N such that for all $M \geq N,\left\{x \in X_{i}^{*}: \rho_{g}(x) \leq M\right\}$ is infinite.

Acceptable Builder

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

- Heuristic principle
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$
- Lower bound on the complexity
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$
- Independence on the Gödel numbering

Proposition

There exists N such that for all $M \geq N,\left\{x \in X_{i}^{*}: \rho_{g}(x) \leq M\right\}$ is infinite.

Proposition

The function δ_{g} is an acceptable complexity measure.

And what about H ?

Proposition

The program-size complexity is not an acceptable complexity measure.

And what about H ?

Proposition

The program-size complexity is not an acceptable complexity measure.
(i) If $\mathcal{F} \vdash x$, then $H_{2}(g(x))<N_{\mathcal{F}}$.

And what about H ?

Proposition

The program-size complexity is not an acceptable complexity measure.
(i) $X \quad \operatorname{card}\left\{x \in X_{i}^{*}: H_{2}(g(x)) \leq N\right\} \leq 2^{N}$

And what about H ?

Proposition

The program-size complexity is not an acceptable complexity measure.
(i) $X \operatorname{card}\left\{x \in X_{i}^{*}: H_{2}(g(x)) \leq N\right\} \leq 2^{N}$
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.H_{2}(g(x)) \leq N\right\}=0$

And what about H ?

Proposition

The program-size complexity is not an acceptable complexity measure.
(i) $X \operatorname{card}\left\{x \in X_{i}^{*}: H_{2}(g(x)) \leq N\right\} \leq 2^{N}$
(ii) $\sqrt{ } \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, H_{2}(g(x)) \leq N\right\}=\emptyset$ for large enough n

And what about H ?

Proposition

The program-size complexity is not an acceptable complexity measure.
(i) $X \operatorname{card}\left\{x \in X_{i}^{*}: H_{2}(g(x)) \leq N\right\} \leq 2^{N}$
(ii) $\sqrt{ } \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, H_{2}(g(x)) \leq N\right\}=\emptyset$ for large enough n
(iii) $\left|H_{2}(g(x))-H_{2}\left(g^{\prime}(x)\right)\right| \leq c$

And what about H ?

Proposition

The program-size complexity is not an acceptable complexity measure.
(i) $X \operatorname{card}\left\{x \in X_{i}^{*}: H_{2}(g(x)) \leq N\right\} \leq 2^{N}$
(ii) $\sqrt{ } \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, H_{2}(g(x)) \leq N\right\}=\emptyset$ for large enough n
(iii) $\sqrt{ }$ Already seen as a corollary.

Outline

(1) A few definitions

(3) Acceptable Complexity Measures
(4) An Independence Result
(5) Other measures?

Introduction

- Study of two complexity builders, not acceptable.

Introduction

- Study of two complexity builders, not acceptable.
- Independence of the three conditions in the definition.

First example

Definition

$$
\hat{\rho}_{i}^{1}(x, y)= \begin{cases}x / y, & \text { if } y \neq 0 \\ 0, & \text { else }\end{cases}
$$

First example

Definition

$$
\begin{gathered}
\hat{\rho}_{i}^{1}(x, y)= \begin{cases}x / y, & \text { if } y \neq 0 \\
0, & \text { else }\end{cases} \\
\rho_{g}^{1}(x)= \begin{cases}\frac{H_{2}(g(x))}{|x|_{i}}, & \text { if } x \neq \lambda, \\
0, & \text { else }\end{cases}
\end{gathered}
$$

First example

Definition

$$
\begin{gathered}
\hat{\rho}_{i}^{1}(x, y)= \begin{cases}x / y, & \text { if } y \neq 0 \\
0, & \text { else }\end{cases} \\
\rho_{g}^{1}(x)= \begin{cases}\frac{H_{2}(g(x))}{|x|_{i}}, & \text { if } x \neq \lambda, \\
0, & \text { else. }\end{cases}
\end{gathered}
$$

Definition

$$
\rho_{i}^{1}(x)= \begin{cases}\frac{H_{i}(x)}{|x|_{i}}, & \text { if } x \neq \lambda \\ 0, & \text { else }\end{cases}
$$

Second example

Definition

$$
\hat{\rho}_{i}^{2}(x, y)= \begin{cases}x /\left\lceil\log _{i} y\right\rceil, & \text { if } y>1 \\ 0, & \text { else }\end{cases}
$$

Second example

Definition

$$
\begin{aligned}
& \hat{\rho}_{i}^{2}(x, y)= \begin{cases}x /\left\lceil\log _{i} y\right\rceil, & \text { if } y>1, \\
0, & \text { else. }\end{cases} \\
& \rho_{g}^{2}(x)= \begin{cases}\frac{H_{2}(g(x))}{\left.\left|\log _{i}\right| x\right|_{i} \mid}, & \text { if }|x|_{i}>1, \\
0, & \text { else. }\end{cases}
\end{aligned}
$$

Second example

Definition

$$
\begin{aligned}
& \hat{\rho}_{i}^{2}(x, y)= \begin{cases}x /\left\lceil\log _{i} y\right\rceil, & \text { if } y>1, \\
0, & \text { else. }\end{cases} \\
& \rho_{g}^{2}(x)= \begin{cases}\frac{H_{2}(g(x))}{\left.\left|\log _{j}\right| x\right|_{i} \mid}, & \text { if }|x|_{i}>1, \\
0, & \text { else. }\end{cases}
\end{aligned}
$$

Definition

$$
\rho_{i}^{2}(x)= \begin{cases}\frac{H_{i}(x)}{\left|\log _{i}\right| x x_{i}}, & \text { if }|x|_{i}>1, \\ 0, & \text { else. }\end{cases}
$$

Invariance of the both measures

Lemma

$$
\left|\rho_{g}^{1}(u)-\log _{2}(i) \cdot \rho_{i}^{1}(u)\right| \leq c_{1}
$$

Invariance of the both measures

Lemma

$$
\left|\rho_{g}^{1}(u)-\log _{2}(i) \cdot \rho_{i}^{1}(u)\right| \leq c_{1}
$$

Lemma

$$
\left|\rho_{g}^{2}(u)-\log _{2}(i) \cdot \rho_{i}^{2}(u)\right| \leq c_{2}
$$

Invariance of the both measures

Lemma

$$
\left|\rho_{g}^{1}(u)-\log _{2}(i) \cdot \rho_{i}^{1}(u)\right| \leq c_{1}
$$

Lemma

$$
\left|\rho_{g}^{2}(u)-\log _{2}(i) \cdot \rho_{i}^{2}(u)\right| \leq c_{2}
$$

- We can use the results about δ_{g}.

ρ_{g}^{1} is not acceptable

Lemma
There exists M such that for all $x \in X_{i}^{*}, \rho_{g}^{1}(x) \leq M$.

ρ_{g}^{1} is not acceptable

Lemma

There exists M such that for all $x \in X_{i}^{*}, \rho_{g}^{1}(x) \leq M$.

- $H_{i}(x) \leq|x|_{i}+\alpha \cdot \log _{i}|x|_{i}+\beta$

ρ_{g}^{1} is not acceptable

Lemma

There exists M such that for all $x \in X_{i}^{*}, \rho_{g}^{1}(x) \leq M$.

- $H_{i}(x) \leq|x|_{i}+\alpha \cdot \log _{i}|x|_{i}+\beta$

Proposition

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}^{1}(x)<N_{\mathcal{F}}$.

ρ_{g}^{1} is not acceptable

Lemma

There exists M such that for all $x \in X_{i}^{*}, \rho_{g}^{1}(x) \leq M$.

- $H_{i}(x) \leq|x|_{i}+\alpha \cdot \log _{i}|x|_{i}+\beta$

Proposition

The bound is always valid.

ρ_{g}^{1} is not acceptable

Lemma

There exists M such that for all $x \in X_{i}^{*}, \rho_{g}^{1}(x) \leq M$.

- $H_{i}(x) \leq|x|_{i}+\alpha \cdot \log _{i}|x|_{i}+\beta$

Proposition

(i) $\sqrt{ }$ The bound is always valid.
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}^{1}(x) \leq N\right\}=0$

ρ_{g}^{1} is not acceptable

Lemma

There exists M such that for all $x \in X_{i}^{*}, \rho_{g}^{1}(x) \leq M$.

- $H_{i}(x) \leq|x|_{i}+\alpha \cdot \log _{i}|x|_{i}+\beta$

Proposition

(i) $\sqrt{ }$ The bound is always valid.
(ii) $X \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, \rho_{g}^{1}(x) \leq N\right\}=X_{i}^{n}$ for N big enough.

ρ_{g}^{1} is not acceptable

Lemma

There exists M such that for all $x \in X_{i}^{*}, \rho_{g}^{1}(x) \leq M$.

- $H_{i}(x) \leq|x|_{i}+\alpha \cdot \log _{i}|x|_{i}+\beta$

Proposition

(i) $\sqrt{ }$ The bound is always valid.
(ii) $X \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, \rho_{g}^{1}(x) \leq N\right\}=X_{i}^{n}$ for N big enough.
(iii) $\left|\rho_{g}^{1}(x)-\rho_{g^{\prime}}^{1}(x)\right| \leq c$

ρ_{g}^{1} is not acceptable

Lemma

There exists M such that for all $x \in X_{i}^{*}, \rho_{g}^{1}(x) \leq M$.

- $H_{i}(x) \leq|x|_{i}+\alpha \cdot \log _{i}|x|_{i}+\beta$

Proposition

(i) $\sqrt{ }$ The bound is always valid.
(ii) $X \quad\left\{x \in X_{i}^{*}:|x|_{i}=n, \rho_{g}^{1}(x) \leq N\right\}=X_{i}^{n}$ for N big enough.
(iii) $\sqrt{ }$ As for δ.
ρ_{g}^{2} is not acceptable either

Proposition

(i) If $\mathcal{F} \vdash x$, then $\rho_{g}^{2}(x)<N_{\mathcal{F}}$.
ρ_{g}^{2} is not acceptable either

Proposition

(i) X See below.
ρ_{g}^{2} is not acceptable either

Proposition

(i) X See below.
(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}^{2}(x) \leq N\right\}=0$

ρ_{g}^{2} is not acceptable either

Proposition

(i) X See below.
(ii) $\sqrt{ }$ Long proof (via Kraft-Chaitin Theorem).

ρ_{g}^{2} is not acceptable either

Proposition
(i) X See below.
(ii) \checkmark Long proof (via Kraft-Chaitin Theorem).
(iii) $\left|\rho_{g}^{2}(x)-\rho_{g^{\prime}}^{2}(x)\right| \leq c$
ρ_{g}^{2} is not acceptable either
Proposition
(i) X See below.
(ii) \checkmark Long proof (via Kraft-Chaitin Theorem).
(iii) $\checkmark C f$ previous slide.
ρ_{g}^{2} is not acceptable either

Proposition

(i) X See below.
(ii) $\sqrt{ }$ Long proof (via Kraft-Chaitin Theorem).
(iii) $\sqrt{ } \quad$ Cf previous slide.

- If (i) holds, $\operatorname{card}\{x \in \mathcal{T}:|x|=n\} \leq \alpha \cdot n^{\beta \cdot N_{\mathcal{F}}}$.
ρ_{g}^{2} is not acceptable either

Proposition

(i) X See below.
(ii) $\sqrt{ }$ Long proof (via Kraft-Chaitin Theorem).
(iii) $\sqrt{ } \quad$ Cf previous slide.

- If (i) holds, card $\{x \in \mathcal{T}:|x|=n\} \leq \alpha \cdot n^{\beta \cdot N_{\mathcal{F}}}$.
- There is an exponential number of provable formulae like

$$
\forall x_{1} \exists x_{2} \exists x_{3} \ldots \forall x_{k} \bigwedge_{l=1}^{k}\left(x_{l}=x_{l}\right)
$$

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".
(i) Upper bound: the complexity of the theorems has to be bounded.

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".
(i) Upper bound: the complexity of the theorems has to be bounded.
(ii) Lower bound: avoid trivial measures.

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".
(i) Upper bound: the complexity of the theorems has to be bounded.
(ii) Lower bound: avoid trivial measures.
(iii) Independence from the chosen language.

Intuitive Results and Independence

- ρ^{1} is "too small" and ρ^{2} is "too big".
(i) Upper bound: the complexity of the theorems has to be bounded.
(ii) Lower bound: avoid trivial measures.
(iii) Independence from the chosen language.

Theorem

The three conditions are independent from each other.

Proof of the independence (1)

If $H_{2}(g(x))=H_{2}\left(g^{\prime}(x)\right)$ hold for all but finitely many $x \in X_{i}^{*}$.

Proof of the independence (1)

If $H_{2}(g(x))=H_{2}\left(g^{\prime}(x)\right)$ hold for all but finitely many $x \in X_{i}^{*}$.

- $\rho_{g}(x)=\hat{\rho}_{i}\left(H_{2}(g(x)),|x|_{i}\right)=\hat{\rho}_{i}\left(H_{2}\left(g^{\prime}(x)\right),|x|_{i}\right)=\rho_{g^{\prime}}(x)$

Proof of the independence (1)

If $H_{2}(g(x))=H_{2}\left(g^{\prime}(x)\right)$ hold for all but finitely many $x \in X_{i}^{*}$.

- $\rho_{g}(x)=\hat{\rho}_{i}\left(H_{2}(g(x)),|x|_{i}\right)=\hat{\rho}_{i}\left(H_{2}\left(g^{\prime}(x)\right),|x|_{i}\right)=\rho_{g^{\prime}}(x)$
- max $\left\{\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right|: x \in X_{i}^{*}\right\}=c<\infty$

Proof of the independence (1)

If $H_{2}(g(x))=H_{2}\left(g^{\prime}(x)\right)$ hold for all but finitely many $x \in X_{i}^{*}$.

- $\rho_{g}(x)=\hat{\rho}_{i}\left(H_{2}(g(x)),|x|_{i}\right)=\hat{\rho}_{i}\left(H_{2}\left(g^{\prime}(x)\right),|x|_{i}\right)=\rho_{g^{\prime}}(x)$
- max $\left\{\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right|: x \in X_{i}^{*}\right\}=c<\infty$
- For all $x \in X_{i}^{*},\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$

Proof of the independence (1)

If $H_{2}(g(x))=H_{2}\left(g^{\prime}(x)\right)$ hold for all but finitely many $x \in X_{i}^{*}$.

- $\rho_{g}(x)=\hat{\rho}_{i}\left(H_{2}(g(x)),|x|_{i}\right)=\hat{\rho}_{i}\left(H_{2}\left(g^{\prime}(x)\right),|x|_{i}\right)=\rho_{g^{\prime}}(x)$
- max $\left\{\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right|: x \in X_{i}^{*}\right\}=c<\infty$
- For all $x \in X_{i}^{*},\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$
- ρ satisfy (iii).

Proof of the independence (2)

If $H_{2}(g(x)) \neq H_{2}\left(g^{\prime}(x)\right)$ hold for infinitely many $x \in X_{i}^{*}\left({ }^{*}\right)$.

Proof of the independence (2)

If $H_{2}(g(x)) \neq H_{2}\left(g^{\prime}(x)\right)$ hold for infinitely many $x \in X_{i}^{*}\left({ }^{*}\right)$.

- Define ρ_{g} by $x \mapsto \delta_{g}(x)^{2}$.

Proof of the independence (2)

If $H_{2}(g(x)) \neq H_{2}\left(g^{\prime}(x)\right)$ hold for infinitely many $x \in X_{i}^{*}\left({ }^{*}\right)$.

- Define ρ_{g} by $x \mapsto \delta_{g}(x)^{2}$.
(i) If $\mathcal{F} \vdash x$, then $\rho_{g}(x)<N_{\mathcal{F}}$.

Proof of the independence (2)

If $H_{2}(g(x)) \neq H_{2}\left(g^{\prime}(x)\right)$ hold for infinitely many $x \in X_{i}^{*}\left(^{*}\right)$.

- Define ρ_{g} by $x \mapsto \delta_{g}(x)^{2}$.
(i)

$$
\delta_{\boldsymbol{g}}(x)<N_{\mathcal{F}} \Longrightarrow \rho_{\boldsymbol{g}}(x)<N_{\mathcal{F}}^{2} .
$$

Proof of the independence (2)

If $H_{2}(g(x)) \neq H_{2}\left(g^{\prime}(x)\right)$ hold for infinitely many $x \in X_{i}^{*}\left({ }^{*}\right)$.

- Define ρ_{g} by $x \mapsto \delta_{g}(x)^{2}$.
(i)

$$
\delta_{g}(x)<N_{\mathcal{F}} \Longrightarrow \rho_{g}(x)<N_{\mathcal{F}}^{2} .
$$

(ii) $\lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N\right\}=0$

Proof of the independence (2)

If $H_{2}(g(x)) \neq H_{2}\left(g^{\prime}(x)\right)$ hold for infinitely many $x \in X_{i}^{*}\left(^{*}\right)$.

- Define ρ_{g} by $x \mapsto \delta_{g}(x)^{2}$.
(i) $\sqrt{ } \delta_{g}(x)<N_{\mathcal{F}} \Longrightarrow \rho_{g}(x)<N_{\mathcal{F}}^{2}$.
(ii) $\sqrt{ } \leq \lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\delta_{g}(x) \leq \sqrt{N}\right\}=0$

Proof of the independence (2)

If $H_{2}(g(x)) \neq H_{2}\left(g^{\prime}(x)\right)$ hold for infinitely many $x \in X_{i}^{*}\left(^{*}\right)$.

- Define ρ_{g} by $x \mapsto \delta_{g}(x)^{2}$.
(i) $\sqrt{ } \delta_{g}(x)<N_{\mathcal{F}} \Longrightarrow \rho_{g}(x)<N_{\mathcal{F}}^{2}$.
(ii) $\sqrt{ } \leq \lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\delta_{g}(x) \leq \sqrt{N}\right\}=0$
(iii) $\left|\rho_{g}(x)-\rho_{g^{\prime}}(x)\right| \leq c$

Proof of the independence (2)

If $H_{2}(g(x)) \neq H_{2}\left(g^{\prime}(x)\right)$ hold for infinitely many $x \in X_{i}^{*}\left(^{*}\right)$.

- Define ρ_{g} by $x \mapsto \delta_{g}(x)^{2}$.
(i) $\sqrt{ } \delta_{g}(x)<N_{\mathcal{F}} \Longrightarrow \rho_{g}(x)<N_{\mathcal{F}}^{2}$.
(ii) $\sqrt{ } \leq \lim _{n \rightarrow \infty} i^{-n} \cdot \operatorname{card}\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\delta_{g}(x) \leq \sqrt{N}\right\}=0$
(iii) X Else, $\left({ }^{*}\right)$ is false.

Proof of the independence (3)

- ρ^{1} satisfies (i) and (iii) but not (ii).

Proof of the independence (3)

- ρ^{1} satisfies (i) and (iii) but not (ii).
- ρ^{2} satisfies (ii) and (iii) but not (i).

Proof of the independence (3)

- ρ^{1} satisfies (i) and (iii) but not (ii).
- ρ^{2} satisfies (ii) and (iii) but not (i).
- Either (iii) is always satisfied, or δ^{2} satisfies (i) and (ii) but not (iii).

Outline

(1) A few definitions

(3) Acceptable Complexity Measures

4 An Independence Result
(5) Other measures?

Introduction

Can we find other acceptable measures of complexity?

Introduction

Can we find other acceptable measures of complexity?

- We study two kinds of measures, defined by two kinds of witnesses:

Introduction

Can we find other acceptable measures of complexity?

- We study two kinds of measures, defined by two kinds of witnesses:
- linear in both variables,

Introduction

Can we find other acceptable measures of complexity?

- We study two kinds of measures, defined by two kinds of witnesses:
- linear in both variables,
- multiplicative variation of the program-size complexity.

Introduction

Can we find other acceptable measures of complexity?

- We study two kinds of measures, defined by two kinds of witnesses:
- linear in both variables,
- multiplicative variation of the program-size complexity.

Proposition

Suppose that ρ_{g} is acceptable. Then so is $\alpha \cdot \rho_{\mathrm{g}}+\beta, \alpha, \beta \in \mathbb{Q}, \alpha>0$.

Linear variations of the program-size complexity

Proposition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function, linear in both variables. If it defines an acceptable complexity measure, then

$$
\hat{\rho}_{i}(x, y)=a \cdot\left(x-\varepsilon \cdot\left\lceil\log _{2}(i) \cdot y\right\rceil\right)+b,
$$

where $1 / 2 \leq \varepsilon \leq 1$.

Linear variations of the program-size complexity

Proposition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function, linear in both variables. If it defines an acceptable complexity measure, then

$$
\hat{\rho}_{i}(x, y)=x-\varepsilon \cdot\left\lceil\log _{2}(i) \cdot y\right\rceil,
$$

where $1 / 2 \leq \varepsilon \leq 1$.

Linear variations of the program-size complexity

Proposition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function, linear in both variables. If it defines an acceptable complexity measure, then

$$
\hat{\rho}_{i}(x, y)=x-\varepsilon \cdot\left\lceil\log _{2}(i) \cdot y\right\rceil,
$$

where $1 / 2 \leq \varepsilon \leq 1$.

- If $\varepsilon>1$, then (ii) is not verified.

Linear variations of the program-size complexity

Proposition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function, linear in both variables. If it defines an acceptable complexity measure, then

$$
\hat{\rho}_{i}(x, y)=x-\varepsilon \cdot\left\lceil\log _{2}(i) \cdot y\right\rceil,
$$

where $1 / 2 \leq \varepsilon \leq 1$.

- If $\varepsilon>1$, then (ii) is not verified.
- If $\varepsilon<1 / 2$, then (i) is not verified.

Linear variations of the program-size complexity

Proposition

Let $\hat{\rho}_{i}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}$ be a computable function, linear in both variables. If it defines an acceptable complexity measure, then

$$
\hat{\rho}_{i}(x, y)=x-\varepsilon \cdot\left\lceil\log _{2}(i) \cdot y\right\rceil,
$$

where $1 / 2 \leq \varepsilon \leq 1$.

- If $\varepsilon>1$, then (ii) is not verified.
- If $\varepsilon<1 / 2$, then (i) is not verified.
- Between $1 / 2$ and 1 , your ideas are welcome!

Multiplicative variations of the program-size complexity

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

Multiplicative variations of the program-size complexity

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

- We suppose that ρ_{g} satisfies (i), and prove that it does not satisfy (ii).

Multiplicative variations of the program-size complexity

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

- We suppose that ρ_{g} satisfies (i), and prove that it does not satisfy (ii).
- $2^{c \cdot n} \leq \operatorname{card}\left\{x \in \mathcal{T}:|x|_{i}=n\right\}$

Multiplicative variations of the program-size complexity

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

- We suppose that ρ_{g} satisfies (i), and prove that it does not satisfy (ii).
- $2^{c \cdot n} \leq \operatorname{card}\left\{x \in \mathcal{T}:|x|_{i}=n\right\} \leq 2^{N_{\mathcal{F}} \cdot f(n)}$

Multiplicative variations of the program-size complexity

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

- We suppose that ρ_{g} satisfies (i), and prove that it does not satisfy (ii).
- $2^{\text {c.n }} \leq \operatorname{card}\left\{x \in \mathcal{T}:|x|_{i}=n\right\} \leq 2^{N_{\mathcal{F}} \cdot f(n)}$

Multiplicative variations of the program-size complexity

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

- We suppose that ρ_{g} satisfies (i), and prove that it does not satisfy (ii).
- $2^{c \cdot n} \leq \operatorname{card}\left\{x \in \mathcal{T}:|x|_{i}=n\right\} \leq 2^{N_{\mathcal{F}} \cdot f(n)}$
- $c \cdot n \leq N_{\mathcal{F}} \cdot f(n)$

Multiplicative variations of the program-size complexity

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

- We suppose that ρ_{g} satisfies (i), and prove that it does not satisfy (ii).
- $2^{c \cdot n} \leq \operatorname{card}\left\{x \in \mathcal{T}:|x|_{i}=n\right\} \leq 2^{N_{\mathcal{F}} \cdot f(n)}$
- $c \cdot n \leq N_{\mathcal{F}} \cdot f(n)$
- $\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N_{\mathcal{F}}\right\}=X_{i}^{n}$

Multiplicative variations of the program-size complexity

Proposition

Let $\rho_{g}(x)=H_{2}(g(x)) / f\left(|x|_{i}\right)$ where f is computable. Then ρ_{g} is not acceptable.

- We suppose that ρ_{g} satisfies (i), and prove that it does not satisfy (ii).
- $2^{c \cdot n} \leq \operatorname{card}\left\{x \in \mathcal{T}:|x|_{i}=n\right\} \leq 2^{N_{\mathcal{F}} \cdot f(n)}$
- $c \cdot n \leq N_{\mathcal{F}} \cdot f(n)$
- $\left\{x \in X_{i}^{*}:|x|_{i}=n\right.$ and $\left.\rho_{g}(x) \leq N_{\mathcal{F}}\right\}=X_{i}^{n}$
- (ii) is not verified.

Summary of the work

- Studying the results about δ_{g}

Summary of the work

- Studying the results about δ_{g}
- Some corrections

Summary of the work

- Studying the results about δ_{g}
- Some corrections
- Key elements in the proofs

Summary of the work

- Studying the results about δ_{g}
- Some corrections
- Key elements in the proofs
- Proposition of a general definition of acceptable complexity measure of theorems

Summary of the work

- Studying the results about δ_{g}
- Some corrections
- Key elements in the proofs
- Proposition of a general definition of acceptable complexity measure of theorems
- Studying those acceptable measures to find other ones (in progress)

