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Representation of Univariate Polynomials

P(X ) = X 10 + 5X 6 + 3X 2 + 1

Representations
I Dense: [1, 0, 0, 0, 5, 0, 0, 0, 3, 0, 1]
I Sparse: {(10, 1), (6, 5), (2, 3), (0, 1)}

 Dense representation no longer relevant!
Sparse representation not always relevant either.
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Representation of Multivariate Polynomials

P(x , y , z) = x5y3z2 + 5xy4z + 3yz + 1

Representations
I Dense: [1, . . . , 5, . . . , 3, . . . , 1]
I Sparse: {(5; 3; 2, 1), (1; 4; 1, 5), (0; 1; 1, 3), (0, 1)}

 Dense representation no longer relevant!

Sparse representation not always relevant either.
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Arithmetic Circuits

Q(x , y , z) = x4 + 4 x3y + 6 x2y2 + 4 xy3 + x2z + 2 xyz

+ y2z + x2 + y4 + 2 xy + y2 + z2 + 2 z + 1

x y z 1

 Straight Line Programs
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Arithmetic Circuits
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Algebraic Complexity Theory

Complexity of a polynomial = size of its smallest circuit

I Which polynomials have low/high complexity?

I Polynomial complexity: Determinant
I Non-polynomial complexity: Permanent?

Conjecture (Algebraic P 6= NP)
The complexity of the permanent is super-polynomial.

“Algebraic P vs NP”

I (Boolean) Complexity of problems on circuits

I Polynomial Identity Testing
I Roots finding, factorization, . . .
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Permanent & Polynomial Identity Testing

I PIT: randomized polynomial-time algorithm
[Schwartz’80, Zippel’79, DeMillo-Lipton’78]

Theorem (Kabanets-Impagliazzo’03, Agrawal’05)
Derandomization of PIT algorithm

=⇒ Super-polynomial lower bound for the permanent

 Connections between PIT and lower bounds already in
[Heintz-Schnorr’80]
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The τ-conjecture

Conjecture (Shub & Smale, 1995)
For any f ∈ Z[X ] of complexity τ(f ),

#{n ∈ Z : f (n) = 0} ≤ poly(τ(f )).

Theorem (Bürgisser, 2006)
τ-conjecture

=⇒ super-polynomial lower bound for the permanent
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Sum of products of sparse polynomials

Definition
Let SPS(k,m, t,A) the class of polynomials

f (X ) =
k∑

i=1

m∏
j=1

fj(X )αij

where the fj ∈ R[X ] are t-sparse and 0 ≤ αij ≤ A.

I Descartes’ rule of signs:

t-sparse =⇒ at most 2t − 1 real roots
I
∏m

j=1 fj(X )αj : at most 2m(t − 1) + 1 real roots
I f is (k × tmA)-sparse
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The real τ-conjecture

Conjecture (Koiran, 2011)
Let f ∈ SPS(k ,m, t,A), then

#{x ∈ R : f (x) = 0} ≤ poly(k ,m, t,A)

Theorem (Koiran, 2011)
Real τ-conjecture

=⇒ Super-polynomial lower bound for the permanent

1. Upper bound on the number of real roots of
f ∈ SPS(k ,m, t,A)

2. Lower bound for the permanent
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Upper bound for the number of real roots of
SPS polynomials

Theorem
There exists C > 0 such that the number of real roots of any
f =

∑k
i=1

∏m
j=1 f

αij

j ∈ SPS(k,m, t,A) is at most

C ·
[
e ·
(
1 +

tm

2k−1 − 1

)]2k−1−1
.

I Independent of A.
I If k and m are fixed, this is polynomial in t .
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Case k = 2

Proposition
The polynomial

f =
m∏
j=1

f
αj

j +
m∏
j=1

f
βj
j

has at most 2mtm + 4m(t − 1) real roots.

Proof sketch. Let F = f /
∏

j f
αj

j = 1 +
∏

j f
βj−αj

j . Then

F ′ =
m∏
j=1

f
βj−αj−1
j︸ ︷︷ ︸

≤ 2m(t − 1) roots and poles

×
m∑
j=1

(βj − αj)f
′
j

∏
l 6=j

fl︸ ︷︷ ︸
≤ 2mtm − 1 roots

.
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The permanent family

PERn(x11, . . . , xnn) = per

x11 · · · x1n
...

...
xn1 · · · xnn

 =
∑
σ∈Sn

n∏
i=1

xiσ(i)

Conjecture (Algebraic P 6= NP)
n 7→ τ(PERn) grows faster than any polynomial function.

I The conjecture for depth-4 circuits implies the general case
[Agrawal-Vinay’08, Koiran’11]
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Multivariate SPS polynomials

Definition
(Pn)n≥0 ∈ mSPS(k,m) if

there exists a polynomial Q s.t.

Pn(x1, . . . , xQ(n)) =
k∑

i=1

m∏
j=1

f
αij,n

j ,n (~x)

where

I bitsize(αij ,n) ≤ Q(n);

I fj ,n is Q(n)-sparse;

I fj ,n has complexity at most Q(n).

I mSPS(k,m) ( depth-4 circuits
I Possibly exponential-size circuits
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Lower bound for the permanent

Theorem
For any fixed k and m, (PERn) does not have mSPS(k ,m) cir-
cuits.
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Conclusion

I First result toward the real τ-conjecture

I Implementation of Koiran’s Theorem in a particular case
I Links with Polynomial Identity Testing

I Update: Agrawal et al., arXiv:1111.0582

Open Problem
Let f , g be t-sparse polynomials.
 What is the maximum number of roots of fg + 1?

4t − 3 ≤ max
f ,g

#{x ∈ R : f (x)g(x) + 1 = 0} ≤ 2t2

arXiv:1107.1434
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