The Limited Power of Powering Polynomial Identity Testing and a Depth-four Lower Bound for the Permanent

Bruno Grenet

ÉNS Lyon

Pascal Koiran

ÉNS Lyon

Natacha Portier

ÉNS Lyon

Yann Strozecki

U. Paris Sud XI

FSTTCS IIT Bombay, India – December 12, 2011

Representation of Univariate Polynomials

$$P(X) = X^{10} + 5X^6 + 3X^2 + 1$$

Representations

- ► Dense: [1,0,0,0,5,0,0,0,3,0,1]
- ► Sparse: {(10, 1), (6, 5), (2, 3), (0, 1)}

Representation of Multivariate Polynomials

$$P(x, y, z) = x^5 y^3 z^2 + 5xy^4 z + 3yz + 1$$

Representations

- ▶ Dense: [1, ..., 5, ..., 3, ..., 1]
- ► Sparse: {(5; 3; 2, 1), (1; 4; 1, 5), (0; 1; 1, 3), (0, 1)}

→ Dense representation no longer relevant!

Representation of Multivariate Polynomials

$$P(x, y, z) = x^5 y^3 z^2 + 5xy^4 z + 3yz + 1$$

Representations

- ▶ Dense: [1, ..., 5, ..., 3, ..., 1]
- ► Sparse: {(5; 3; 2, 1), (1; 4; 1, 5), (0; 1; 1, 3), (0, 1)}

→ Dense representation no longer relevant!
Sparse representation not always relevant either.

$Q(x, y, z) = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + x^{2}z + 2xyz$ $+ y^{2}z + x^{2} + y^{4} + 2xy + y^{2} + z^{2} + 2z + 1$

$Q(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$

$Q(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$

$Q(x, y, z) = (x + y)^4 + (z + 1)^2 + (x + y)^2(z + 1)$

~ Straight Line Programs

Complexity of a polynomial = size of its smallest circuit

► Which polynomials have low/high complexity?

- ► Which polynomials have low/high complexity?
 - Polynomial complexity: Determinant

$$\det ((x_{ij})_{1 \le i,j \le n}) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n x_{i\sigma(i)}$$

- ► Which polynomials have low/high complexity?
 - Polynomial complexity: Determinant
 - ► Non-polynomial complexity: Permanent?

per
$$((x_{ij})_{1 \le i,j \le n}) = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

- Which polynomials have low/high complexity?
 - Polynomial complexity: Determinant
 - "Algebraic P vs NP" Non-polynomial complexity: Permanent?

per
$$((x_{ij})_{1 \le i,j \le n}) = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

Complexity of a polynomial = size of its smallest circuit

- ► Which polynomials have low/high complexity?
 - Polynomial complexity: Determinant
- { "Algebraic P vs NP"
- ► Non-polynomial complexity: Permanent?

Conjecture (Algebraic $P \neq NP$) <u>The complexity of the permanent is super-polynomial.</u>

per
$$((x_{ij})_{1 \le i,j \le n}) = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

Complexity of a polynomial = size of its smallest circuit

- Which polynomials have low/high complexity?
 - Polynomial complexity: Determinant
 - ► Non-polynomial complexity: Permanent?

Conjecture (Algebraic $P \neq NP$)

The complexity of the permanent is super-polynomial.

(Boolean) Complexity of problems on circuits

"Algebraic P vs NP"

Complexity of a polynomial = size of its smallest circuit

- ► Which polynomials have low/high complexity?
 - Polynomial complexity: Determinant
 - ► Non-polynomial complexity: Permanent?

Conjecture (Algebraic $P \neq NP$)

The complexity of the permanent is super-polynomial.

- ► (Boolean) Complexity of problems on circuits
 - Polynomial Identity Testing

"Algebraic P vs NP"

Complexity of a polynomial = size of its smallest circuit

- ► Which polynomials have low/high complexity?
 - Polynomial complexity: Determinant
 - ► Non-polynomial complexity: Permanent?

Conjecture (Algebraic $P \neq NP$)

The complexity of the permanent is super-polynomial.

► (Boolean) Complexity of problems on circuits

- Polynomial Identity Testing
- ► Roots finding, factorization, ...

"Algebraic P vs NP"

Permanent & Polynomial Identity Testing

 PIT: randomized polynomial-time algorithm [Schwartz'80, Zippel'79, DeMillo-Lipton'78]

Permanent & Polynomial Identity Testing

 PIT: randomized polynomial-time algorithm [Schwartz'80, Zippel'79, DeMillo-Lipton'78]

Theorem (Kabanets-Impagliazzo'03, Agrawal'05)

Derandomization of PIT algorithm

 \implies Super-polynomial lower bound for the permanent

Permanent & Polynomial Identity Testing

 PIT: randomized polynomial-time algorithm [Schwartz'80, Zippel'79, DeMillo-Lipton'78]

Theorem (Kabanets-Impagliazzo'03, Agrawal'05)

∽→ Connections between PIT and lower bounds already in [Heintz-Schnorr'80]

The τ -conjecture

Conjecture (Shub & Smale, 1995) For any $f \in \mathbb{Z}[X]$ of complexity $\tau(f)$, $\#\{n \in \mathbb{Z} : f(n) = 0\} \le \operatorname{poly}(\tau(f)).$

The τ -conjecture

Conjecture (Shub & Smale, 1995) For any $f \in \mathbb{Z}[X]$ of complexity $\tau(f)$, $\#\{n \in \mathbb{Z} : f(n) = 0\} \le poly(\tau(f)).$

Theorem (Bürgisser, 2006)

 τ -conjecture

 \implies super-polynomial lower bound for the permanent

Definition Let SPS(k, m, t, A) the class of polynomials $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j(X)^{\alpha_{ij}}$ where the $f_j \in \mathbb{R}[X]$ are t-sparse and $0 \le \alpha_{ij} \le A$.

Definition Let SPS(k, m, t, A) the class of polynomials $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j(X)^{\alpha_{ij}}$ where the $f_j \in \mathbb{R}[X]$ are t-sparse and $0 \le \alpha_{ij} \le A$.

• Descartes' rule of signs: t-sparse $\implies \leq 2t - 1$ real roots

Definition Let SPS(k, m, t, A) the class of polynomials $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j(X)^{\alpha_{ij}}$ where the $f_j \in \mathbb{R}[X]$ are *t*-sparse and $0 \le \alpha_{ij} \le A$.

- Descartes' rule of signs: t-sparse $\implies \leq 2t 1$ real roots
- $\prod_{j=1}^{m} f_j(X)^{\alpha_j}$: at most 2m(t-1) + 1 real roots

Definition Let SPS(k, m, t, A) the class of polynomials $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j(X)^{\alpha_{ij}}$ where the $f_j \in \mathbb{R}[X]$ are *t*-sparse and $0 \le \alpha_{ij} \le A$.

- Descartes' rule of signs: t-sparse $\implies \leq 2t-1$ real roots
- $\prod_{j=1}^{m} f_j(X)^{\alpha_j}$: at most 2m(t-1) + 1 real roots
- f is $(k \times t^{mA})$ -sparse

Definition Let SPS(k, m, t, A) the class of polynomials $f(X) = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j(X)^{\alpha_{ij}}$ where the $f_j \in \mathbb{R}[X]$ are *t*-sparse and $0 \le \alpha_{ij} \le A$.

- Descartes' rule of signs: t-sparse $\implies \leq 2t-1$ real roots
- $\prod_{j=1}^{m} f_j(X)^{\alpha_j}$: at most 2m(t-1) + 1 real roots
- f is $(k \times t^{mA})$ -sparse
- ► Known techniques: 2^{O((kmt)²)}

[Khovanskii'80, Risler'85]

The real τ -conjecture

Conjecture (Koiran, 2011)

Let $f \in SPS(k, m, t, A)$, then

 $\#\{x \in \mathbb{R} : f(x) = 0\} \le \operatorname{poly}(k, m, t, A)$

The real τ -conjecture

Conjecture (Koiran, 2011)

Let $f \in SPS(k, m, t, A)$, then

 $\#\{x \in \mathbb{R} : f(x) = 0\} \le \operatorname{poly}(\overline{k, m, t, A})$

Theorem (Koiran, 2011)

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

The real τ -conjecture

Conjecture (Koiran, 2011)

Let $f \in SPS(k, m, t, A)$, then

 $\#\{x \in \mathbb{R} : f(x) = 0\} \leq \operatorname{poly}(k, m, t, A)$

Theorem (Koiran, 2011)

Real τ -conjecture

 \implies Super-polynomial lower bound for the permanent

- 1. Upper bound on # real roots of $f \in SPS(k, m, t, A)$
- 2. Lower bound for the permanent
- 3. Links with Polynomial Identity Testing

Upper bound for the number of real roots of SPS polynomials

Theorem

There exists C > 0 such that the number of real roots of any $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}} \in SPS(k, m, t, A)$ is at most

$$C \cdot \left[e \cdot \left(1 + \frac{t^m}{2^{k-1} - 1} \right) \right]^{2^{k-1} - 1}$$

Upper bound for the number of real roots of SPS polynomials

Theorem

There exists C > 0 such that the number of real roots of any $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{ij}} \in SPS(k, m, t, A)$ is at most $C \cdot \left[e \cdot \left(1 + \frac{t^{m}}{2^{k-1} - 1} \right) \right]^{2^{k-1} - 1}.$

Upper bound for the number of real roots of SPS polynomials

Theorem

There exists C > 0 such that the number of real roots of any $f = \sum_{i=1}^{k} \prod_{j=1}^{m} f_j^{\alpha_{ij}} \in SPS(k, m, t, A)$ is at most

$$C \cdot \left[e \cdot \left(1 + \frac{t^m}{2^{k-1} - 1} \right) \right]^{2^{k-1} - 1}$$

- ► Independent of A.
- If k and m are fixed, this is polynomial in t.

Case k = 2

Proposition

The polynomial

$$f=\prod_{j=1}^m f_j^{lpha_j}+\prod_{j=1}^m f_j^{eta_j}$$

has at most $2mt^m + 4m(t-1)$ real roots.

Case k = 2

Proposition

The polynomial

$$f=\prod_{j=1}^m f_j^{lpha_j}+\prod_{j=1}^m f_j^{eta_j}$$

has at most $2mt^m + 4m(t-1)$ real roots.

Proof sketch. Let $F = f / \prod_j f_j^{\alpha_j} = 1 + \prod_j f_j^{\beta_j - \alpha_j}$.

Case k = 2

Proposition

The polynomial

$$\mathcal{F}=\prod_{j=1}^m f_j^{lpha_j}+\prod_{j=1}^m f_j^{eta_j}$$

has at most $2mt^m + 4m(t-1)$ real roots.

Proof sketch. Let $F = f / \prod_j f_j^{\alpha_j} = 1 + \prod_j f_j^{\beta_j - \alpha_j}$. Then

$$F' = \prod_{\substack{j=1\\ \leq 2m(t-1) \text{ roots and poles}}}^{m} f_j^{\beta_j - \alpha_j - 1} \times \sum_{\substack{j=1\\ \leq 2mt^m - 1 \text{ roots}}}^{m} (\beta_j - \alpha_j) f_j' \prod_{l \neq j} f_l.$$

The permanent family

$$\mathsf{PER}_n(x_{11},\ldots,x_{nn}) = \mathsf{per}\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

The permanent family

$$\mathsf{PER}_n(x_{11},\ldots,x_{nn}) = \mathsf{per}\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

Conjecture (Algebraic $P \neq NP$)

 $n \mapsto \tau(\mathsf{PER}_n)$ grows faster than any polynomial function.

The permanent family

$$\mathsf{PER}_n(x_{11},\ldots,x_{nn}) = \mathsf{per}\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \prod_{i=1}^n x_{i\sigma(i)}$$

Conjecture (Algebraic $P \neq NP$) $n \mapsto \tau(PER_n)$ grows faster than any polynomial function.

 The conjecture for depth-4 circuits implies the general case [Agrawal-Vinay'08, Koiran'11]

Definition

 $(P_n)_{n\geq 0}\in \mathsf{mSPS}(k,m)$ if

$$P_n(x_1,...,x_{Q(n)}) = \sum_{i=1}^k \prod_{j=1}^m f_{j,n}^{\alpha_{ij,n}}(\vec{x})$$

•
$$f_{j,n}$$
 is $Q(n)$ -sparse;

Definition

 $(P_n)_{n\geq 0} \in \mathsf{mSPS}(k,m)$ if there exists a polynomial Q s.t.

$$P_n(x_1,...,x_{Q(n)}) = \sum_{i=1}^k \prod_{j=1}^m f_{j,n}^{\alpha_{ij,n}}(\vec{x})$$

- bitsize($\alpha_{ij,n}$) $\leq Q(n)$;
- $f_{j,n}$ is Q(n)-sparse;
- $f_{j,n}$ has complexity at most Q(n).

Definition

 $(P_n)_{n\geq 0} \in \mathsf{mSPS}(k,m)$ if there exists a polynomial Q s.t.

$$P_n(x_1,...,x_{Q(n)}) = \sum_{i=1}^k \prod_{j=1}^m f_{j,n}^{\alpha_{ij,n}}(\vec{x})$$

- bitsize($\alpha_{ij,n}$) $\leq Q(n)$;
- $f_{j,n}$ is Q(n)-sparse;
- ▶ $f_{j,n}$ has complexity at most Q(n). GRH is assumed.

Definition

 $(P_n)_{n\geq 0} \in \mathsf{mSPS}(k,m)$ if there exists a polynomial Q s.t.

$$P_n(x_1,...,x_{Q(n)}) = \sum_{i=1}^k \prod_{j=1}^m f_{j,n}^{\alpha_{ij,n}}(\vec{x})$$

- bitsize($\alpha_{ij,n}$) $\leq Q(n)$;
- $f_{j,n}$ is Q(n)-sparse;
- $f_{j,n}$ has complexity at most Q(n).

Definition

 $(P_n)_{n\geq 0} \in \mathsf{mSPS}(k,m)$ if there exists a polynomial Q s.t.

$$P_n(x_1,...,x_{Q(n)}) = \sum_{i=1}^k \prod_{j=1}^m f_{j,n}^{\alpha_{ij,n}}(\vec{x})$$

- bitsize $(\alpha_{ij,n}) \leq Q(n)$;
- $f_{j,n}$ is Q(n)-sparse;
- $f_{j,n}$ has complexity at most Q(n).
- exponential-size depth-4 circuits
- polynomial-size circuits with polynomial-depth

Lower bound for the permanent

Theorem

For any fixed k and m, (PER_n) does not have mSPS(k, m) circuits.

Lower bound for the permanent

Theorem

For any fixed k and m, (PER_n) does not have mSPS(k, m) circuits.

Proof sketch. (PER_n) \in mSPS(k, m)

$$\implies \mathsf{PW}_n(X) = \prod_{i=1}^{2^n} (X-i) \in \mathsf{SPS}(k, m, \mathsf{poly}(n), 2^{\mathsf{poly}(n)})$$

Lower bound for the permanent

Theorem

For any fixed k and m, (PER_n) does not have mSPS(k, m) circuits.

Proof sketch. (PER_n) \in mSPS(k, m)

$$\implies \mathsf{PW}_n(X) = \prod_{i=1}^{2^n} (X-i) \in \mathsf{SPS}(k, m, \mathsf{poly}(n), 2^{\mathsf{poly}(n)})$$

But PW_n has 2^n roots: contradiction.

Links with PIT

Theorem

For fixed k and m, we can test for zero $f \in SPS(k, m, t, A)$ in time polynomial in t and A.

Links with PIT

Theorem

For fixed k and m, we can test for zero $f \in SPS(k, m, t, A)$ in time polynomial in t and A.

Proposition

With an oracle testing for zero $\sum_{i=1}^{k} \prod_{j=1}^{m} a_{ij}^{\alpha_{ij}}$, PIT algorithm in time polynomial in t and bitsize(A).

Links with PIT

Theorem

For fixed k and m, we can test for zero $f \in SPS(k, m, t, A)$ in time polynomial in t and A.

Proposition

With an oracle testing for zero $\sum_{i=1}^{k} \prod_{j=1}^{m} a_{ij}^{\alpha_{ij}}$, PIT algorithm in time polynomial in t and bitsize(A).

Remark. Works also with mSPS polynomials (Kronecker substitution).

• First result toward the real τ -conjecture

- First result toward the real τ -conjecture
- ► Implementation of Koiran's Theorem in a particular case

- First result toward the real τ -conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing

- First result toward the real τ -conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing
- ▶ Update: Agrawal *et al.,* arXiv:1111.0582

- First result toward the real τ -conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing
- ► Update: Agrawal *et al.*, arXiv:1111.0582

Open Problem

Let f, g be t-sparse polynomials. \rightsquigarrow What is the maximum number of roots of fg + 1?

- First result toward the real τ -conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing
- ► Update: Agrawal *et al.*, arXiv:1111.0582

Open Problem

Let f, g be t-sparse polynomials. \rightsquigarrow What is the maximum number of roots of fg + 1?

$$4t - 3 \le \max_{f,g} \#\{x \in \mathbb{R} : f(x)g(x) + 1 = 0\} \le 2t^2$$

- First result toward the real τ -conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing
- ► Update: Agrawal *et al.*, arXiv:1111.0582

Open Problem

Let f, g be t-sparse polynomials. \rightsquigarrow What is the maximum number of roots of fg + 1?

$$4t - 3 \le \max_{f,g} \#\{x \in \mathbb{R} : f(x)g(x) + 1 = 0\} \le 2t^2$$

Full version: arXiv:1107.1434