The Limited Power of Powering
 Polynomial Identity Testing and a Depth-four Lower Bound for the Permanent

Bruno Grenet Pascal Koiran
ÉNS Lyon
Natacha Portier
ÉNS Lyon
Yann Strozecki
U. Paris Sud XI

FSTTCS
IIT Bombay, India - December 12, 2011

Representation of Univariate Polynomials

$$
P(X)=X^{10}+5 X^{6}+3 X^{2}+1
$$

Representations

- Dense: $[1,0,0,0,5,0,0,0,3,0,1]$
- Sparse: $\{(10,1),(6,5),(2,3),(0,1)\}$

Representation of Multivariate Polynomials

$$
P(x, y, z)=x^{5} y^{3} z^{2}+5 x y^{4} z+3 y z+1
$$

Representations

- Dense: $[1, \ldots, 5, \ldots, 3, \ldots, 1]$
- Sparse: $\{(5 ; 3 ; 2,1),(1 ; 4 ; 1,5),(0 ; 1 ; 1,3),(0,1)\}$
\rightsquigarrow Dense representation no longer relevant!

Representation of Multivariate Polynomials

$$
P(x, y, z)=x^{5} y^{3} z^{2}+5 x y^{4} z+3 y z+1
$$

Representations

- Dense: $[1, \ldots, 5, \ldots, 3, \ldots, 1]$
- Sparse: $\{(5 ; 3 ; 2,1),(1 ; 4 ; 1,5),(0 ; 1 ; 1,3),(0,1)\}$
\rightsquigarrow Dense representation no longer relevant! Sparse representation not always relevant either.

Arithmetic Circuits

$$
\begin{aligned}
Q(x, y, z)=x^{4} & +4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+x^{2} z+2 x y z \\
& +y^{2} z+x^{2}+y^{4}+2 x y+y^{2}+z^{2}+2 z+1
\end{aligned}
$$

Arithmetic Circuits

$$
Q(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
Q(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

Arithmetic Circuits

$$
Q(x, y, z)=(x+y)^{4}+(z+1)^{2}+(x+y)^{2}(z+1)
$$

\rightsquigarrow Straight Line Programs

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

- Which polynomials have low/high complexity?

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

- Which polynomials have low/high complexity?
> Polynomial complexity: Determinant

$$
\operatorname{det}\left(\left(x_{i j}\right)_{1 \leq i, j \leq n}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} x_{i \sigma(i)}
$$

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

- Which polynomials have low/high complexity?
- Polynomial complexity: Determinant
- Non-polynomial complexity: Permanent?

$$
\operatorname{per}\left(\left(x_{i j}\right)_{1 \leq i, j \leq n}\right)=\sum_{\sigma \in \mathfrak{G}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

- Which polynomials have low/high complexity?
> Polynomial complexity: Determinant "Algebraic P vs NP"
- Non-polynomial complexity: Permanent? \} Algebraic P vs NP"

$$
\operatorname{per}\left(\left(x_{i j}\right)_{1 \leq i, j \leq n}\right)=\sum_{\sigma \in \mathfrak{G}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

- Which polynomials have low/high complexity?
- Polynomial complexity: Determinant \quad - Non-polynomial complexity: Permanent? "Algebraic P vs NP"

Conjecture (Algebraic $P \neq N P$)
The complexity of the permanent is super-polynomial.

$$
\operatorname{per}\left(\left(x_{i j}\right)_{1 \leq i, j \leq n}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

- Which polynomials have low/high complexity?

Conjecture (Algebraic $P \neq N P$)

The complexity of the permanent is super-polynomial.

- (Boolean) Complexity of problems on circuits

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

- Which polynomials have low/high complexity?

Conjecture (Algebraic $P \neq N P$)

The complexity of the permanent is super-polynomial.

- (Boolean) Complexity of problems on circuits
- Polynomial Identity Testing

Algebraic Complexity Theory

Complexity of a polynomial $=$ size of its smallest circuit

- Which polynomials have low/high complexity?

Conjecture (Algebraic $P \neq N P$)

The complexity of the permanent is super-polynomial.

- (Boolean) Complexity of problems on circuits
- Polynomial Identity Testing
- Roots finding, factorization, ...

Permanent \& Polynomial Identity Testing

- PIT: randomized polynomial-time algorithm
[Schwartz'80, Zippel'79, DeMillo-Lipton'78]

Permanent \& Polynomial Identity Testing

- PIT: randomized polynomial-time algorithm [Schwartz'80, Zippel'79, DeMillo-Lipton'78]

Theorem (Kabanets-Impagliazzo'03, Agrawal'05)
Derandomization of PIT algorithm
\Longrightarrow Super-polynomial lower bound for the permanent

Permanent \& Polynomial Identity Testing

- PIT: randomized polynomial-time algorithm [Schwartz'80, Zippel'79, DeMillo-Lipton'78]

Theorem (Kabanets-Impagliazzo'03, Agrawal'05)
Derandomization of PIT algorithm
\Longrightarrow Super-polynomial lower bound for the permanent
\rightsquigarrow Connections between PIT and lower bounds already in [Heintz-Schnorr'80]

The τ-conjecture

Conjecture (Shub \& Smale, 1995)
For any $f \in \mathbb{Z}[X]$ of complexity $\tau(f)$,

$$
\#\{n \in \mathbb{Z}: f(n)=0\} \leq \operatorname{poly}(\tau(f)) .
$$

The τ-conjecture

Conjecture (Shub \& Smale, 1995)
For any $f \in \mathbb{Z}[X]$ of complexity $\tau(f)$,

$$
\#\{n \in \mathbb{Z}: f(n)=0\} \leq \operatorname{poly}(\tau(f)) .
$$

Theorem (Bürgisser, 2006)
τ-conjecture
\Longrightarrow super-polynomial lower bound for the permanent

Sum of products of sparse polynomials

Definition

Let $\operatorname{SPS}(k, m, t, A)$ the class of polynomials

$$
f(X)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}(X)^{\alpha_{i j}}
$$

where the $f_{j} \in \mathbb{R}[X]$ are t-sparse and $0 \leq \alpha_{i j} \leq A$.

Sum of products of sparse polynomials

Definition

Let $\operatorname{SPS}(k, m, t, A)$ the class of polynomials

$$
f(X)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}(X)^{\alpha_{i j}}
$$

where the $f_{j} \in \mathbb{R}[X]$ are t-sparse and $0 \leq \alpha_{i j} \leq A$.

- Descartes' rule of signs: t-sparse $\Longrightarrow \leq 2 t-1$ real roots

Sum of products of sparse polynomials

Definition

Let $\operatorname{SPS}(k, m, t, A)$ the class of polynomials

$$
f(X)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}(X)^{\alpha_{i j}}
$$

where the $f_{j} \in \mathbb{R}[X]$ are t-sparse and $0 \leq \alpha_{i j} \leq A$.

- Descartes' rule of signs: t-sparse $\Longrightarrow \leq 2 t-1$ real roots
- $\prod_{j=1}^{m} f_{j}(X)^{\alpha_{j}}$: at most $2 m(t-1)+1$ real roots

Sum of products of sparse polynomials

Definition

Let $\operatorname{SPS}(k, m, t, A)$ the class of polynomials

$$
f(X)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}(X)^{\alpha_{i j}}
$$

where the $f_{j} \in \mathbb{R}[X]$ are t-sparse and $0 \leq \alpha_{i j} \leq A$.

- Descartes' rule of signs: t-sparse $\Longrightarrow \leq 2 t-1$ real roots
- $\prod_{j=1}^{m} f_{j}(X)^{\alpha_{j}}$: at most $2 m(t-1)+1$ real roots
- f is $\left(k \times t^{m A}\right)$-sparse

Sum of products of sparse polynomials

Definition

Let SPS (k, m, t, A) the class of polynomials

$$
f(X)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}(X)^{\alpha_{i j}}
$$

where the $f_{j} \in \mathbb{R}[X]$ are t-sparse and $0 \leq \alpha_{i j} \leq A$.

- Descartes' rule of signs: t-sparse $\Longrightarrow \leq 2 t-1$ real roots
- $\prod_{j=1}^{m} f_{j}(X)^{\alpha_{j}}$: at most $2 m(t-1)+1$ real roots
- f is $\left(k \times t^{m A}\right)$-sparse
- Known techniques: $2^{\mathcal{O}\left((k m t)^{2}\right)}$
[Khovanskii'80, Risler'85]

The real τ-conjecture

Conjecture (Koiran, 2011)
Let $f \in \operatorname{SPS}(k, m, t, A)$, then

$$
\#\{x \in \mathbb{R}: f(x)=0\} \leq \operatorname{poly}(k, m, t, A)
$$

The real τ-conjecture

Conjecture (Koiran, 2011)
Let $f \in \operatorname{SPS}(k, m, t, A)$, then

$$
\#\{x \in \mathbb{R}: f(x)=0\} \leq \operatorname{poly}(k, m, t, A)
$$

Theorem (Koiran, 2011)
Real τ-conjecture
\Longrightarrow Super-polynomial lower bound for the permanent

The real τ-conjecture

Conjecture (Koiran, 2011)
Let $f \in \operatorname{SPS}(k, m, t, A)$, then

$$
\#\{x \in \mathbb{R}: f(x)=0\} \leq \operatorname{poly}(k, m, t, A)
$$

Theorem (Koiran, 2011)
Real τ-conjecture
\Longrightarrow Super-polynomial lower bound for the permanent

1. Upper bound on \# real roots of $f \in \operatorname{SPS}(k, m, t, A)$
2. Lower bound for the permanent
3. Links with Polynomial Identity Testing

Upper bound for the number of real roots of SPS polynomials

Theorem

There exists $C>0$ such that the number of real roots of any $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{i j}} \in \operatorname{SPS}(k, m, t, A)$ is at most

$$
C \cdot\left[e \cdot\left(1+\frac{t^{m}}{2^{k-1}-1}\right)\right]^{2^{k-1}-1}
$$

Upper bound for the number of real roots of SPS polynomials

Theorem

There exists $C>0$ such that the number of real roots of any $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{i j}} \in \operatorname{SPS}(k, m, t, A)$ is at most

$$
C \cdot\left[e \cdot\left(1+\frac{t^{m}}{2^{k-1}-1}\right)\right]^{2^{k-1}-1}
$$

- Independent of A.

Upper bound for the number of real roots of SPS polynomials

Theorem

There exists $C>0$ such that the number of real roots of any $f=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j}^{\alpha_{i j}} \in \operatorname{SPS}(k, m, t, A)$ is at most

$$
C \cdot\left[e \cdot\left(1+\frac{t^{m}}{2^{k-1}-1}\right)\right]^{2^{k-1}-1}
$$

- Independent of A.
- If k and m are fixed, this is polynomial in t.

Case $k=2$

Proposition

The polynomial

$$
f=\prod_{j=1}^{m} f_{j}^{\alpha_{j}}+\prod_{j=1}^{m} f_{j}^{\beta_{j}}
$$

has at most $2 m t^{m}+4 m(t-1)$ real roots.

Case $k=2$

Proposition

The polynomial

$$
f=\prod_{j=1}^{m} f_{j}^{\alpha_{j}}+\prod_{j=1}^{m} f_{j}^{\beta_{j}}
$$

has at most $2 \mathrm{mt}^{m}+4 \mathrm{~m}(t-1)$ real roots.
Proof sketch. Let $F=f / \prod_{j} f_{j}^{\alpha_{j}}=1+\prod_{j} f_{j}^{\beta_{j}-\alpha_{j}}$.

Case $k=2$

Proposition

The polynomial

$$
f=\prod_{j=1}^{m} f_{j}^{\alpha_{j}}+\prod_{j=1}^{m} f_{j}^{\beta_{j}}
$$

has at most
real roots.
Proof sketch. Let $F=f / \prod_{j} f_{j}^{\alpha_{j}}=1+\prod_{j} f_{j}^{\beta_{j}-\alpha_{j}}$. Then

$$
F^{\prime}=\underbrace{\prod_{j=1}^{m} f_{j}^{\beta_{j}-\alpha_{j}-1}} \times \underbrace{\sum_{j=1}^{m}\left(\beta_{j}-\alpha_{j}\right) f_{j}^{\prime} \prod_{l \neq j} f_{l}-1 \text { roots }}_{\leq 2 m(t-1) \text { roots and poles }}
$$

The permanent family

$$
\operatorname{PER}_{n}\left(x_{11}, \ldots, x_{n n}\right)=\operatorname{per}\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

The permanent family

$$
\operatorname{PER}_{n}\left(x_{11}, \ldots, x_{n n}\right)=\operatorname{per}\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

Conjecture (Algebraic $P \neq N P$)
$n \mapsto \tau\left(\mathrm{PER}_{n}\right)$ grows faster than any polynomial function.

The permanent family

$$
\operatorname{PER}_{n}\left(x_{11}, \ldots, x_{n n}\right)=\operatorname{per}\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i=1}^{n} x_{i \sigma(i)}
$$

Conjecture (Algebraic $P \neq N P$)
$n \mapsto \tau\left(\mathrm{PER}_{n}\right)$ grows faster than any polynomial function.

- The conjecture for depth-4 circuits implies the general case [Agrawal-Vinay'08, Koiran'11]

Multivariate SPS polynomials

Definition

$\left(P_{n}\right)_{n \geq 0} \in \operatorname{mSPS}(k, m)$ if

$$
P_{n}\left(x_{1}, \ldots, x_{Q(n)}\right)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j, n}^{\alpha_{j, n}}(\vec{x})
$$

where

- $f_{j, n}$ is $Q(n)$-sparse;

Multivariate SPS polynomials

Definition

$\left(P_{n}\right)_{n \geq 0} \in \operatorname{mSPS}(k, m)$ if there exists a polynomial Q s.t.

$$
P_{n}\left(x_{1}, \ldots, x_{Q(n)}\right)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j, n}^{\alpha_{j j, n}}(\vec{x})
$$

where

- $\operatorname{bitsize}\left(\alpha_{i j, n}\right) \leq Q(n)$;
- $f_{j, n}$ is $Q(n)$-sparse;
- $f_{j, n}$ has complexity at most $Q(n)$.

Multivariate SPS polynomials

Definition

$\left(P_{n}\right)_{n \geq 0} \in \operatorname{mSPS}(k, m)$ if there exists a polynomial Q s.t.

$$
P_{n}\left(x_{1}, \ldots, x_{Q(n)}\right)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j, n}^{\alpha_{i j, n}}(\vec{x})
$$

where

- bitsize $\left(\alpha_{i j, n}\right) \leq Q(n)$;
- $f_{j, n}$ is $Q(n)$-sparse;
- $f_{j, n}$ has complexity at mest $Q(n)$. GRH is assumed.

Multivariate SPS polynomials

Definition

$\left(P_{n}\right)_{n \geq 0} \in \operatorname{mSPS}(k, m)$ if there exists a polynomial Q s.t.

$$
P_{n}\left(x_{1}, \ldots, x_{Q(n)}\right)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j, n}^{\alpha_{j j, n}}(\vec{x})
$$

where

- $\operatorname{bitsize}\left(\alpha_{i j, n}\right) \leq Q(n)$;
- $f_{j, n}$ is $Q(n)$-sparse;
- $f_{j, n}$ has complexity at most $Q(n)$.

Multivariate SPS polynomials

Definition

$\left(P_{n}\right)_{n \geq 0} \in \operatorname{mSPS}(k, m)$ if there exists a polynomial Q s.t.

$$
P_{n}\left(x_{1}, \ldots, x_{Q(n)}\right)=\sum_{i=1}^{k} \prod_{j=1}^{m} f_{j, n}^{\alpha_{j j, n}}(\vec{x})
$$

where

- bitsize $\left(\alpha_{i j, n}\right) \leq Q(n)$;
- $f_{j, n}$ is $Q(n)$-sparse;
- $f_{j, n}$ has complexity at most $Q(n)$.
- exponential-size depth-4 circuits
> polynomial-size circuits with polynomial-depth

Lower bound for the permanent

Theorem

For any fixed k and $m,\left(\mathrm{PER}_{n}\right)$ does not have $\operatorname{mSPS}(k, m)$ circuits.

Lower bound for the permanent

Theorem

For any fixed k and $m,\left(\operatorname{PER}_{n}\right)$ does not have $m S P S(k, m)$ circuits.

Proof sketch. $\left(\mathrm{PER}_{n}\right) \in \operatorname{mSPS}(k, m)$

$$
\Longrightarrow \operatorname{PW}_{n}(X)=\prod_{i=1}^{2^{n}}(X-i) \in \operatorname{SPS}\left(k, m, \operatorname{poly}(n), 2^{\operatorname{poly}(n)}\right)
$$

Lower bound for the permanent

Theorem

For any fixed k and $m,\left(\mathrm{PER}_{n}\right)$ does not have $\operatorname{mSPS}(k, m)$ circuits.

Proof sketch. $\left(\mathrm{PER}_{n}\right) \in \operatorname{mSPS}(k, m)$

$$
\Longrightarrow \operatorname{PW}_{n}(X)=\prod_{i=1}^{2^{n}}(X-i) \in \operatorname{SPS}\left(k, m, \operatorname{poly}(n), 2^{\operatorname{poly}(n)}\right)
$$

But PW_{n} has 2^{n} roots: contradiction.

Links with PIT

Theorem
For fixed k and m, we can test for zero $f \in \operatorname{SPS}(k, m, t, A)$ in time polynomial in t and A.

Links with PIT

Theorem

For fixed k and m, we can test for zero $f \in \operatorname{SPS}(k, m, t, A)$ in time polynomial in t and A.

Proposition

With an oracle testing for zero $\sum_{i=1}^{k} \prod_{j=1}^{m} a_{i j}^{\alpha_{i j}}$, PIT algorithm in time polynomial in t and bitsize (A).

Links with PIT

Theorem

For fixed k and m, we can test for zero $f \in \operatorname{SPS}(k, m, t, A)$ in time polynomial in t and A.

Proposition

With an oracle testing for zero $\sum_{i=1}^{k} \prod_{j=1}^{m} a_{i j}^{\alpha_{i j}}$, PIT algorithm in time polynomial in t and bitsize (A).

Remark. Works also with mSPS polynomials (Kronecker substitution).

Conclusion

- First result toward the real τ-conjecture

Conclusion

- First result toward the real τ-conjecture
- Implementation of Koiran's Theorem in a particular case

Conclusion

- First result toward the real τ-conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing

Conclusion

- First result toward the real τ-conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing
- Update: Agrawal et al., arXiv:1111.0582

Conclusion

- First result toward the real τ-conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing
- Update: Agrawal et al., arXiv:1111.0582

Open Problem
 Let f, g be t-sparse polynomials.
 \rightsquigarrow What is the maximum number of roots of $f g+1$?

Conclusion

- First result toward the real τ-conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing
- Update: Agrawal et al., arXiv:1111.0582

Open Problem

Let f, g be t-sparse polynomials.
\rightsquigarrow What is the maximum number of roots of $f g+1$?

$$
4 t-3 \leq \max _{f, g} \#\{x \in \mathbb{R}: f(x) g(x)+1=0\} \leq 2 t^{2}
$$

Conclusion

- First result toward the real τ-conjecture
- Implementation of Koiran's Theorem in a particular case
- Links with Polynomial Identity Testing
- Update: Agrawal et al., arXiv:1111.0582

Open Problem

Let f, g be t-sparse polynomials.
\rightsquigarrow What is the maximum number of roots of $f g+1$?

$$
4 t-3 \leq \max _{f, g} \#\{x \in \mathbb{R}: f(x) g(x)+1=0\} \leq 2 t^{2}
$$

Full version: arXiv:1107.1434

